首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Identification of genes expressed in the Arabidopsis female gametophyte   总被引:2,自引:0,他引:2  
The angiosperm female gametophyte typically consists of one egg cell, two synergid cells, one central cell, and three antipodal cells. Each of these four cell types has unique structural features and performs unique functions that are essential for the reproductive process. The gene regulatory networks conferring these four phenotypic states are largely uncharacterized. As a first step towards dissecting the gene regulatory networks of the female gametophyte, we have identified a large collection of genes expressed in specific cells of the Arabidopsis thaliana female gametophyte. We identified these genes using a differential expression screen based on reduced expression in determinant infertile1 (dif1) ovules, which lack female gametophytes. We hybridized ovule RNA probes with Affymetrix ATH1 genome arrays and validated the identified genes using real-time RT-PCR. These assays identified 71 genes exhibiting reduced expression in dif1 ovules. We further validated 45 of these genes using promoter::GFP fusions and 43 were expressed in the female gametophyte. In the context of the ovule, 11 genes were expressed exclusively in the antipodal cells, 11 genes were expressed exclusively or predominantly in the central cell, 17 genes were expressed exclusively or predominantly in the synergid cells, one gene was expressed exclusively in the egg cell, and three genes were expressed strongly in multiple cells of the female gametophyte. These genes provide insights into the molecular processes functioning in the female gametophyte and can be used as starting points to dissect the gene regulatory networks functioning during differentiation of the four female gametophyte cell types.  相似文献   

2.
3.
A microprojectile based transient expression assay was used to investigate the functional conservation of gene regulatory mechanisms in the male gametophytes of an angiosperm ( Nicotiana tabacum ) and two gymnospermous ( Picea abies and Pinus pinaster ) species. The activities of two angiosperm gene promoters, which have previously shown to be either preferentially expressed in the male gametophyte ( lat52 ) or highly expressed in both the sporophyte and male gametophyte ( Act I), were analysed. The results showed that in P. abies and P. pinaster , activity of the Act 1 promoter was significantly higher than the activity of the lat52 promoter, while the converse was observed in N. tabacum . Detailed analysis of lat52 5'promoter deletions demonstrated that although the minimal -67 bp lat52 core promoter was active at low levels in all three species, upstream regulatory elements conserved among several pollen-expressed genes, including the PBI element, were not functional in P. abies and P. pinaster . These results suggest that both taxa-specific and conserved regulatory mechanisms operate to control gene expression during pollen germination and tube growth.  相似文献   

4.
The female and male gametophytes are critical components of the angiosperm life cycle and are essential for the reproductive process. The gametophytes share many essential cellular processes with each other and with the sporophyte generation. As a consequence, these processes can only be analyzed genetically in the gametophyte generation. Here, we report the characterization of the gametophytic factor 1 (gfa1) mutant. The gfa1 mutation exhibits reduced transmission through both the female and male gametophytes. Reduced transmission through the female gametophyte is due to an effect on female gametophyte development. By contrast, development of the pollen grain is not affected in gfa1; rather, reduced transmission is likely due to an effect on pollen tube growth. We have identified multiple T-DNA-insertion alleles of gfa1 in a gene encoding a protein with high similarity to Snu114/U5-116 kD proteins from yeast and animals required for normal pre-mRNA splicing. Consistent with its predicted function, the GFA1 gene (At1g06220) is expressed throughout the plant. Together, these data suggest that GFA1 functions in mRNA splicing during the plant life cycle. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

5.
Recent studies suggest a complex regulatory network in female gametophyte of angiosperm. The cell-cell communication between female gametes was confirmed during their maturation and functional specialization. The mitochondria-responsive signaling may play a critical role in this process. Here, we briefly summarized the recent discussion on this topic and proposed a two-pathway’s mechanism for regulating coordinated development of the female gamete cells.  相似文献   

6.
7.
The recent consensus that Amborellaceae, Nymphaeales, and Austrobaileyales form the three earliest-diverging lineages of angiosperms has led comparative biologists to reconsider the origin and early developmental evolution of the angiosperm seven-celled/eight-nucleate (Polygonum-type) female gametophyte. Illicium mexicanum (Illiciaceae; Austrobaileyales) develops a four-celled/four-nucleate female gametophyte. The ontogenetic sequence of the Illicium female gametophyte is consistent with that of all other Austrobaileyales and also with all Nymphaeales and is likely a plesiomorphy of angiosperms. A character analysis based on more than 250 embryological studies indicates that a transition from an ancestrally four-celled/four-nucleate Illicium-like female gametophyte to a seven-celled/eight-nucleate female gametophyte occurred in the common ancestor of the sister group to Austrobaileyales (a clade that includes monocots, eumagnoliids, and eudicots). Comparative analysis of reconstructed ancestral female gametophyte ontogenies identifies specific early stages of ontogeny that were modified during this transition. These modifications generated two important angiosperm novelties-a set of three persistent antipodal cells and a binucleate central cell, which upon fertilization yields a triploid endosperm. Early angiosperms are anatomically quite diverse in these two features, although triploid endosperm, composed of one paternal genome and two maternal genomes, is a conserved feature of the overwhelming majority of angiosperms.  相似文献   

8.
9.
The monosporic seven-celled/eight-nucleate Polygonum-type female gametophyte has long served as a focal point for discussion of the origin and subsequent evolution of the angiosperm female gametophyte. In Polygonum-type female gametophytes, two haploid female nuclei are incorporated into the central cell, and fusion of a sperm cell with the binucleate central cell produces a triploid endosperm with a complement of two maternal and one paternal genomes, characteristic of most angiosperms. We document the development of a four-celled/four-nucleate female gametophyte in Nuphar polysepala (Engelm.) and infer its presence in many other ancient lineages of angiosperms. The central cell of the female gametophyte in these taxa contains only one haploid nucleus; thus endosperm is diploid and has a ratio of one maternal to one paternal genome. Based on comparisons among flowering plants, we conclude that the angiosperm female gametophyte is constructed of modular developmental subunits. Each module is characterized by a common developmental pattern: (1) positioning of a single nucleus within a cytoplasmic domain (pole) of the female gametophyte; (2) two free-nuclear mitoses to yield four nuclei within that domain; and (3) partitioning of three uninucleate cells adjacent to the pole such that the fourth nucleus is confined to the central region of the female gametophyte (central cell). Within the basal angiosperm lineages Nymphaeales and Illiciales, female gametophytes are characterized by a single developmental module that produces a four-celled/four-nucleate structure with a haploid uninucleate central cell. A second pattern, typical of Amborella and the overwhelming majority of eumagnoliids, monocots, and eudicots, involves the early establishment of two developmental modules that produce a seven-celled/eight-nucleate female gametophyte with two haploid nuclei in the central cell. Comparative analysis of ontogenetic sequences suggests that the seven-celled female gametophyte (two modules) evolved by duplication and ectopic expression of an ancestral Nuphar-like developmental module within the chalazal domain of the female gametophyte. These analyses indicate that the first angiosperm female gametophytes were composed of a single developmental module, which upon double fertilization yielded a diploid endosperm. Early in angiosperm history this basic module was duplicated, and resulted in a seven-celled/eight-nucleate female gametophyte, which yielded a triploid endosperm with the characteristic 2:1 maternal to paternal genome ratio.  相似文献   

10.
11.
Genetic analysis of female gametophyte development and function.   总被引:13,自引:1,他引:12       下载免费PDF全文
The female gametophyte is an absolutely essential structure for angiosperm reproduction. It produces the egg cell and central cell (which give rise to the embryo and endosperm, respectively) and mediates several reproductive processes including pollen tube guidance, fertilization, the induction of seed development, and perhaps also maternal control of embryo development. Although much has been learned about these processes at the cytological level, specific molecules mediating and controlling megagametogenesis and female gametophyte function have not been identified. A genetic approach to the identification of such molecules has been initiated in Arabidopsis and maize. Although genetic analyses are still in their infancy, mutations affecting female gametophyte function and specific steps of megagametogenesis have already been identified. Large-scale genetic screens aimed at identifying mutants affecting every step of megagametogenesis and female gametophyte function are in progress; the characterization of genes identified in these screens should go a long way toward defining the molecules that are required for female gametophyte development and function.  相似文献   

12.
Alternation of generations underpins all plant life histories and is held to possess important adaptive features. A wide range of data have accumulated over the past century which suggest that alternation from sporophyte to gametophyte in angiosperms includes a significant phase of 'informational reprogramming', leaving the founder cells of the gametophyte developmentally uncommitted. This review attempts to bring together results from these historic studies with more recent data on molecular and epigenetic events which accompany alternation, gametophyte development and gametogenesis in angiosperms. It is striking that most members of the other principal group of multicellular eukaryotes – the animals - have a completely different a life history: animals generate their gametes directly from diploid germlines, often set aside early in development. Nevertheless, a comparison between animal germlines and angiosperm gametophyte development reveals a number of surprising similarities at the cytological and molecular levels. This difference in life history but similarity in developmental process is reviewed in the context of the very different life strategies adopted by plants and animals, and particularly the fact that plants do not set aside diploid germlines early in development.  相似文献   

13.
Morphological characters from the gametophyte and sporophyte generations have been used in land plants to infer relationships and construct classifications, but sporophytes provide the vast majority of data for the systematics of vascular plants. In bryophytes both generations are well developed and characters from both are commonly used to classify these organisms. However, because morphological traits of gametophytes and sporophytes can have different genetic bases and experience different selective pressures, taxonomic emphasis on one generation or the other may yield incongruent classifications. The moss order Hookeriales has a controversial taxonomic history because previous classifications have focused almost exclusively on either gametophytes or sporophytes. The Hookeriales provide a model for comparing morphological evolution in gametophytes and sporophytes, and its impact on alternative classification systems. In this study we reconstruct relationships among mosses that are or have been included in the Hookeriales based on sequences from five gene regions, and reconstruct morphological evolution of six sporophyte and gametophyte traits that have been used to differentiate families and genera. We found that the Hookeriales, as currently circumscribed, are monophyletic and that both sporophyte and gametophyte characters are labile. We documented parallel changes and reversals in traits from both generations. This study addresses the general issue of morphological reversals to ancestral states, and resolves novel relationships in the Hookeriales.  相似文献   

14.
E Strain  B Hass  J A Banks 《Genetics》2001,159(3):1271-1281
Gametophytes of the fern Ceratopteris are either male or hermaphroditic. Their sex is epigenetically determined by the pheromone antheridiogen, which is secreted by the hermaphrodite and induces male and represses female development in other young, sexually undetermined gametophytes. To understand how antheridiogen represses the development of female traits at the genetic level, 16 new mutations that feminize the gametophyte in the presence of antheridiogen were identified and characterized. Seven are very tightly linked to the FEM1 locus previously described. Nine others define another locus named NOTCHLESS1 (NOT1), as several of the not1 mutants lack a meristem notch. Some not1 mutations also affect sporophyte development only when homozygous, indicating that the not1 mutations are recessive and that NOT1 is also required for normal sporophyte development. The epistatic interactions among FEM1, NOT1, and other sex-determining genes are described. This information was used to expand the genetic model of the sex-determining pathway in Ceratopteris. On the basis of this model, we can say that the presence of antheridiogen leads to the activation of the FEM1 gene, which not only promotes the differentiation of male traits, but also represses female development by activating the NOT1 gene. NOT1 represses the TRA genes necessary for the development of female traits in the gametophyte.  相似文献   

15.
Genetic diversity in the Killarney fern, Trichomanes speciosum Willd. has been investigated in south-western Scotland, the northern-most limit of the distribution of the sporophyte. T. speciosum is unique amongst European pteridophytes in that both phases of the life cycle are perennial and capable of vegetative propagation. Within sites no variation was revealed by allozyme electrophoresis, even where both generations were growing together. In contrast, diversity was observed among sites, with seven different multilocus phenotypes (MLPs) present in the area. Two of these MLPs covered large areas while the others were restricted to one, or few localities. Asexual reproduction of the gametophyte via gemmae is assumed to be the main means of dispersal in recent times, allowing single clones to become widespread, while the overall genetic variability may be attributed to sexual reproduction and spore dispersal in historic times under more favourable climatic conditions. We suggest that it is not inbreeding, nor lack of genetic variation that limits sporophyte production, but rather the prevailing climatic conditions. The sporophyte is extremely rare and vulnerable. However, when the gametophyte is considered, the species is neither threatened with extinction, nor does it appear to face the danger of marked genetic erosion, because the long-lived gametophyte stage contains all of the genetic variability present in the area and can be regarded as a valuable 'seed-bank'.  相似文献   

16.
Development of the sporophyte and gametophyte generations of the brown alga E. siliculosus involves two different patterns of early development, which begin with either a symmetric or an asymmetric division of the initial cell, respectively. A mutant, immediate upright (imm), was isolated that exhibited several characteristics typical of the gametophyte during the early development of the sporophyte generation. Genetic analyses showed that imm is a recessive, single-locus Mendelian factor and analysis of gene expression in this mutant indicated that the regulation of a number of life-cycle-regulated genes is specifically modified in imm mutant sporophytes. Thus, IMM appears to be a regulatory locus that controls part of the sporophyte-specific developmental programme, the mutant exhibiting partial homeotic conversion of the sporophyte into the gametophyte, a phenomenon that has not been described previously.  相似文献   

17.
18.
Land plants possess a multicellular diploid stage (sporophyte) that begins development while attached to a multicellular haploid progenitor (gametophyte). Although the closest algal relatives of land plants lack a multicellular sporophyte, they do produce a zygote that grows while attached to the maternal gametophyte. The diploid offspring shares one haploid set of genes with the haploid mother that supplies it with resources and a paternal haploid complement that is not shared with the mother. Sexual conflict can arise within the diploid offspring because the offspring's maternal genome will be transmitted in its entirety to all other sexual and asexual offspring that the mother may produce, but the offspring's paternally derived genes may be absent from these other offspring. Thus, the selective forces favouring the evolution of genomic imprinting may have been present from the origin of modern land plants. In bryophytes, where gametophytes are long-lived and capable of multiple bouts of asexual and sexual reproduction, we predict strong sexual conflict over allocation to sporophytes. Female gametophytes of pteridophytes produce a single sporophyte and often lack means of asexual reproduction. Therefore, sexual conflict is predicted to be attenuated. Finally, we explore similarities among models of mate choice, offspring choice and segregation distortion.  相似文献   

19.
B. DeYoung  T. Weber  B. Hass    J. A. Banks 《Genetics》1997,147(2):809-814
The haploid gametophytes of the fern Ceratopteris richardii are autotrophic and develop independently of the diploid sporophyte plant. While haploid genetics is useful for screening and characterizing mutations affecting gametophyte development in Ceratopteris, it is difficult to assess whether a gametophytic mutation is dominant or recessive or to determine allelism by complementation analysis in a haploid organism. This report describes how apospory can be used to produce genetically marked polyploid sporophytes whose gametophyte progeny are heterozygous for mutations affecting sex determination in the gametophyte and a known recessive mutation affecting the phenotype of both the gametophyte and sporophyte. The segregation ratios of wild-type to mutant phenotypes in the gametophyte progeny of polyploid sporophyte plants indicate that all of the mutations examined are recessive. The presence of many multivalents and few univalents in meiotic chromosome preparations of spore mother cells confirm that the sporophyte plants assayed are polyploid. The DNA content of the sperm of their progeny gametophytes was also found to be approximately twice that of sperm from wild-type haploid gametophytes.  相似文献   

20.
Studies of quantitative trait loci based on genetic linkage maps require the establishment of a mapping population. Permanent mapping populations are more ideal than temporary ones because they can be used repeatedly. However, there has been no reported permanent sporophyte population of economically important kelp species. Based on the characteristics of the kelp life cycle, we proposed a method to establish, and then constructed experimentally, an “immortalized F2” (IF2) population of Undaria pinnatifida. Doubled-haploid “female” and “male” sporophytes were obtained through the parthenogenesis of a female gametophyte clone and the selfing of a “monoicous” gametophyte clone (originally male), respectively, and they were used as the parents. The F1 hybrid line was generated by crossing the female and male gametophytes derived from the respective female and male parents. Full-sibling F2 gametophyte clones, consisting of 260 females and 260 males, were established from an F1 hybrid sporophyte. Thirty-five females and 35 males were randomly selected and paired to give rise to an IF2 population containing 35 crossing lines. A parentage analysis using 10 microsatellite markers confirmed the accuracy of the IF2 population and indicated the feasibility of this method. This proposed method may be adapted for use in other kelp species, and thus, it will be useful for genetic studies of kelp.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号