首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 547 毫秒
1.
Telomere length can be maintained by telomerase or by a recombination-based pathway. Because individual telomeres in cells using the recombination-based pathway of telomere maintenance appear to periodically become extremely short, cells using this pathway to maintain telomeres may be faced with a continuous state of crisis. We expressed telomerase in a human cell line that uses the recombination-based pathway of telomere maintenance to test whether telomerase would prevent telomeres from becoming critically short and examine the effects that this might have on the recombination-based pathway of telomere maintenance. In these cells, telomerase maintains the length of the shortest telomeres. In some cases, the long heterogeneous telomeres are completely lost, and the cells now permanently contain short telomeres after only 40 population doublings. This corresponds to a telomere reduction rate of 500 base pairs/population doubling, a rate that is much faster than expected for normal telomere shortening but is consistent with the rapid telomere deletion events observed in cells using the recombination-based pathway of telomere maintenance (Murnane, J. P., Sabatier, L., Marder, B. A., and Morgan, W. F. (1994) EMBO J. 13, 4953-4962). We also observed reductions in the fraction of cells containing alternative lengthening of telomere-associated promyelocytic leukemia bodies and extrachromosomal telomere repeats; however, no alterations in the rate of sister chromatid exchange were observed. Our results demonstrate that human cells using the recombination-based pathway of telomere maintenance retain factors required for telomerase to maintain telomeres and that once the telomerase-based pathway of telomere length regulation is engaged, recombination-based elongation of telomeres can be functionally inhibited.  相似文献   

2.
3.
Yeast mutants lacking telomerase are able to elongate their telomeres through processes involving homologous recombination. In this study, we investigated telomeric recombination in several mutants that normally maintain very short telomeres due to the presence of a partially functional telomerase. The abnormal colony morphology present in some mutants was correlated with especially short average telomere length and with a requirement for RAD52 for indefinite growth. Better-growing derivatives of some of the mutants were occasionally observed and were found to have substantially elongated telomeres. These telomeres were composed of alternating patterns of mutationally tagged telomeric repeats and wild-type repeats, an outcome consistent with amplification occurring via recombination rather than telomerase. Our results suggest that recombination at telomeres can produce two distinct outcomes in the mutants we studied. In occasional cells, recombination generates substantially longer telomeres, apparently through the roll-and-spread mechanism. However, in most cells, recombination appears limited to helping to maintain very short telomeres. The latter outcome likely represents a simplified form of recombinational telomere maintenance that is independent of the generation and copying of telomeric circles.  相似文献   

4.
Telomere lengthening early in development   总被引:1,自引:0,他引:1  
Stem cells and cancer cells maintain telomere length mostly through telomerase. Telomerase activity is high in male germ line and stem cells, but is low or absent in mature oocytes and cleavage stage embryos, and then high again in blastocysts. How early embryos reset telomere length remains poorly understood. Here, we show that oocytes actually have shorter telomeres than somatic cells, but their telomeres lengthen remarkably during early cleavage development. Moreover, parthenogenetically activated oocytes also lengthen their telomeres, thus the capacity to elongate telomeres must reside within oocytes themselves. Notably, telomeres also elongate in the early cleavage embryos of telomerase-null mice, demonstrating that telomerase is unlikely to be responsible for the abrupt lengthening of telomeres in these cells. Coincident with telomere lengthening, extensive telomere sister-chromatid exchange (T-SCE) and colocalization of the DNA recombination proteins Rad50 and TRF1 were observed in early cleavage embryos. Both T-SCE and DNA recombination proteins decrease in blastocyst stage embryos, whereas telomerase activity increases and telomeres elongate only slowly. We suggest that telomeres lengthen during the early cleavage cycles following fertilization through a recombination-based mechanism, and that from the blastocyst stage onwards, telomerase only maintains the telomere length established by this alternative mechanism.  相似文献   

5.
Although telomerase is the major mechanism for telomere elongation in most cells, telomerase-independent mechanisms of telomere maintenance can allow cell survival. Yeast cells that lack telomerase maintain telomere length through a form of recombination known as gene conversion. Understanding the role that telomeric recombination might play in mammalian cells has important implications for cancer therapeutics.  相似文献   

6.
Fission yeast cells survive loss of the telomerase catalytic subunit Trt1 (TERT) through recombination-based telomere maintenance or through chromosome circularization. Although trt1Δ survivors with linear chromosomes can be obtained, they often spontaneously circularize their chromosomes. Therefore, it was difficult to establish genetic requirements for telomerase-independent telomere maintenance. In contrast, when the telomere-binding protein Taz1 is also deleted, taz1Δ trt1Δ cells are able to stably maintain telomeres. Thus, taz1Δ trt1Δ cells can serve as a valuable tool in understanding the regulation of telomerase-independent telomere maintenance. In this study, we show that the checkpoint kinase Tel1 (ATM) and the DNA repair complex Rad32-Rad50-Nbs1 (MRN) are required for telomere maintenance in taz1Δ trt1Δ cells. Surprisingly, Rap1 is also essential for telomere maintenance in taz1Δ trt1Δ cells, even though recruitment of Rap1 to telomeres depends on Taz1. Expression of catalytically inactive Trt1 can efficiently inhibit recombination-based telomere maintenance, but the inhibition requires both Est1 and Ku70. While Est1 is essential for recruitment of Trt1 to telomeres, Ku70 is dispensable. Thus, we conclude that Taz1, TERT-Est1, and Ku70-Ku80 prevent telomere recombination, whereas MRN-Tel1 and Rap1 promote recombination-based telomere maintenance. Evolutionarily conserved proteins in higher eukaryotic cells might similarly contribute to telomere recombination.  相似文献   

7.
Fifteen percent of tumors utilize recombination-based alternative lengthening of telomeres (ALT) to maintain telomeres. The mechanisms underlying ALT are unclear but involve several proteins involved in homologous recombination including the BLM helicase, mutated in Bloom''s syndrome, and the BRCA1 tumor suppressor. Cells deficient in either BLM or BRCA1 have phenotypes consistent with telomere dysfunction. Although BLM associates with numerous DNA damage repair proteins including BRCA1 during DNA repair, the functional consequences of BLM-BRCA1 association in telomere maintenance are not completely understood. Our earlier work showed the involvement of BRCA1 in different mechanisms of ALT, and telomere shortening upon loss of BLM in ALT cells. In order to delineate their roles in telomere maintenance, we studied their association in telomere metabolism in cells using ALT. This work shows that BLM and BRCA1 co-localize with RAD50 at telomeres during S- and G2-phases of the cell cycle in immortalized human cells using ALT but not in cells using telomerase to maintain telomeres. Co-immunoprecipitation of BRCA1 and BLM is enhanced in ALT cells at G2. Furthermore, BRCA1 and BLM interact with RAD50 predominantly in S- and G2-phases, respectively. Biochemical assays demonstrate that full-length BRCA1 increases the unwinding rate of BLM three-fold in assays using a DNA substrate that models a forked structure composed of telomeric repeats. Our results suggest that BRCA1 participates in ALT through its interactions with RAD50 and BLM.  相似文献   

8.
Short Telomeres Initiate Telomere Recombination in Primary and Tumor Cells   总被引:2,自引:0,他引:2  
Human tumors that lack telomerase maintain telomeres by alternative lengthening mechanisms. Tumors can also form in telomerase-deficient mice; however, the genetic mechanism responsible for tumor growth without telomerase is unknown. In yeast, several different recombination pathways maintain telomeres in the absence of telomerase—some result in telomere maintenance with minimal effects on telomere length. To examine non-telomerase mechanisms for telomere maintenance in mammalian cells, we used primary cells and lymphomas from telomerase-deficient mice (mTR−/− and Eμmyc+mTR−/−) and CAST/EiJ mouse embryonic fibroblast cells. These cells were analyzed using pq-ratio analysis, telomere length distribution outliers, CO-FISH, Q-FISH, and multicolor FISH to detect subtelomeric recombination. Telomere length was maintained during long-term growth in vivo and in vitro. Long telomeres, characteristic of human ALT cells, were not observed in either late passage or mTR−/− tumor cells; instead, we observed only minimal changes in telomere length. Telomere length variation and subtelomeric recombination were frequent in cells with short telomeres, indicating that length maintenance is due to telomeric recombination. We also detected telomere length changes in primary mTR−/− cells that had short telomeres. Using mouse mTR+/− and human hTERT+/− primary cells with short telomeres, we found frequent length changes indicative of recombination. We conclude that telomere maintenance by non-telomerase mechanisms, including recombination, occurs in primary cells and is initiated by short telomeres, even in the presence of telomerase. Most intriguing, our data indicate that some non-telomerase telomere maintenance mechanisms occur without a significant increase in telomere length.  相似文献   

9.
10.
Some human cancers maintain telomeres using alternative lengthening of telomeres (ALT), a process thought to be due to recombination. In Kluyveromyces lactis mutants lacking telomerase, recombinational telomere elongation (RTE) is induced at short telomeres but is suppressed once telomeres are moderately elongated by RTE. Recent work has shown that certain telomere capping defects can trigger a different type of RTE that results in much more extensive telomere elongation that is reminiscent of human ALT cells. In this study, we generated telomeres composed of either of two types of mutant telomeric repeats, Acc and SnaB, that each alter the binding site for the telomeric protein Rap1. We show here that arrays of both types of mutant repeats present basally on a telomere were defective in negatively regulating telomere length in the presence of telomerase. Similarly, when each type of mutant repeat was spread to all chromosome ends in cells lacking telomerase, they led to the formation of telomeres produced by RTE that were much longer than those seen in cells with only wild-type telomeric repeats. The Acc repeats produced the more severe defect in both types of telomere maintenance, consistent with their more severe Rap1 binding defect. Curiously, although telomerase deletion mutants with telomeres composed of Acc repeats invariably showed extreme telomere elongation, they often also initially showed persistent very short telomeres with few or no Acc repeats. We suggest that these result from futile cycles of recombinational elongation and truncation of the Acc repeats from the telomeres. The presence of extensive 3′ overhangs at mutant telomeres suggests that Rap1 may normally be involved in controlling 5′ end degradation.  相似文献   

11.
Since telomere integrity is required to guarantee the unlimited replicative potential of cancer cells, telomerase, the enzyme responsible for telomere length maintenance in most human tumors, and lately also telomeres themselves have become extremely attractive targets for new anticancer interventions. At the current status of knowledge, it is still not possible to define the best therapeutic target between telomerase and telomeres. It is noteworthy that interfering with telomeres, through direct targeting of telomeric DNA or proteins involved in the telosome complex, could negatively affect the proliferative potential not only of tumors expressing telomerase activity but also of those that maintain their telomeres through alternative lengthening or still unknown mechanisms. This review presents the different therapeutic approaches proposed thus far and developed in preclinical tumor models and discusses the perspectives for their use in the clinical setting.  相似文献   

12.
Telomere maintenance is required for chromosome stability, and telomeres are typically replicated by the action of telomerase. In yeast cells that lack telomerase, telomeres are maintained by alternative type I and type II recombination mechanisms. Previous studies identified several proteins to control the choice between two types of recombinations. Here, we demonstrate that configuration of telomeres also plays a role to determine the fate of telomere replication in progeny. When diploid yeasts from mating equip with a specific type of telomeric structure in their genomes, they prefer to maintain this type of telomere replication in their descendants. While inherited telomere structure is easier to be utilized in progeny at the beginning stage, the telomeres in type I diploids can gradually switch to the type II cells in liquid culture. Importantly, the TLC1/tlc1 yeast cells develop type II survivors suggesting that haploid insufficiency of telomerase RNA component, which is similar to a type of dyskeratosis congenital in human. Altogether, our results suggest that both protein factors and substrate availability contribute to the choice among telomere replication pathways in yeast.  相似文献   

13.
14.
Zein SS  Levene SD 《Biochemistry》2005,44(12):4817-4828
Telomeric DNA sequences in human cells and those of other vertebrates consist of long d(TTAGGG) repeats. In somatic cells, telomeres shorten every cell division with shortening serving as a mitotic clock that counts cell divisions and ultimately results in cellular senescence. Telomere length is principally maintained by a ribonucleoprotein, telomerase. However, a non-negligible proportion of human cells use a recombination-based mechanism for telomere maintenance, termed alternative maintenance of telomeres (ALT). Although the molecular mechanism of ALT is not known, GT-rich sequences in prokaryotes and eukaryotes display high levels of recombination relative to those of non-GT-rich DNA. We show that human telomeric strand-exchange complexes mediated by Escherichia coli RecA protein differ from those formed with nontelomeric sequences. Moreover, telomeric strand-exchange intermediates, unlike those involving nontelomeric sequences, exhibit a tendency to form higher-order nucleoprotein structures. We propose that the strong DNA unwinding activity inherent in the assembly of the RecA strand-exchange complex promotes the formation of alternative DNA structures at human telomeric loci. Organization of these noncanonical structures into higher-order complexes involving multiple DNA duplexes could facilitate the search for homology on different DNA molecules and provide a framework for understanding recombination-dependent mechanisms of telomere maintenance.  相似文献   

15.
16.
Recombinational telomere elongation (RTE) known as alternate lengthening of telomeres is the mechanism of telomere maintenance in up to 5 to 10% of human cancers. The telomeres of yeast mutants lacking telomerase can also be maintained by recombination. Previously, we proposed the roll-and-spread model to explain this elongation in the yeast Kluveromyces lactis. This model suggests that a very small ( approximately 100-bp) circular molecule of telomeric DNA is copied by a rolling circle event to generate a single long telomere. The sequence of this primary elongated telomere is then spread by recombination to all remaining telomeres. Here we show by two-dimensional gel analysis and electron microscopy that small circles of single- and double-stranded telomeric DNA are commonly made by recombination in a K. lactis mutant with long telomeres. These circles were found to be especially abundant between 100 and 400 bp (or nucleotides). Interestingly, the single-stranded circles consist of only the G-rich telomeric strand sequence. To our knowledge this is the first report of single-stranded telomeric circles as a product of telomere dysfunction. We propose that the small telomeric circles form through the resolution of an intratelomeric strand invasion which resembles a t-loop. Our data reported here demonstrate that K. lactis can, in at least some circumstances, make telomeric circles of the very small sizes predicted by the roll-and-spread model. The very small circles seen here are both predicted products of telomere rapid deletion, a process observed in both human and yeast cells, and predicted templates for roll-and-spread RTE.  相似文献   

17.
The activation of a telomere maintenance mechanism is required for cancer development in humans. While most tumors achieve this by expressing the enzyme telomerase, a fraction (5–15%) employs a recombination-based mechanism termed alternative lengthening of telomeres (ALT). Here we show that loss of the single-stranded DNA-binding protein replication protein A (RPA) in human ALT cells, but not in telomerase-positive cells, causes increased exposure of single-stranded G-rich telomeric DNA, cell cycle arrest in G2/M phase, accumulation of single-stranded telomeric DNA within ALT-associated PML bodies (APBs), and formation of telomeric aggregates at the ends of metaphase chromosomes. This study demonstrates differences between ALT cells and telomerase-positive cells in the requirement for RPA in telomere processing and implicates the ALT mechanism in tumor cells as a possible therapeutic target.  相似文献   

18.
Telomere lengths are tightly regulated within a narrow range in normal human cells. Previous studies have extensively focused on how short telomeres are extended and have demonstrated that telomerase plays a central role in elongating short telomeres. However, much about the molecular mechanisms of regulating excessively long telomeres is unknown. In this report, we demonstrated that the telomerase enzymatic component, hTERT, plays a dual role in the regulation of telomere length. It shortens excessively long telomeres and elongates short telomeres simultaneously in one cell, maintaining the optimal telomere length at each chromosomal end for efficient protection. This novel hTERT-mediated telomere-shortening mechanism not only exists in cancer cells, but also in primary human cells. The hTERT-mediated telomere shortening requires hTERT’s enzymatic activity, but the telomerase RNA component, hTR, is not involved in that process. We found that expression of hTERT increases telomeric circular DNA formation, suggesting that telomere homologous recombination is involved in the telomere-shortening process. We further demonstrated that shelterin protein TPP1 interacts with hTERT and recruits hTERT onto the telomeres, suggesting that TPP1 might be involved in regulation of telomere shortening. This study reveals a novel function of hTERT in telomere length regulation and adds a new element to the current molecular model of telomere length maintenance.  相似文献   

19.
Dewar JM  Lydall D 《The EMBO journal》2010,29(23):4020-4034
Essential telomere 'capping' proteins act as a safeguard against ageing and cancer by inhibiting the DNA damage response (DDR) and regulating telomerase recruitment, thus distinguishing telomeres from double-strand breaks (DSBs). Uncapped telomeres and unrepaired DSBs can both stimulate a potent DDR, leading to cell cycle arrest and cell death. Using the cdc13-1 mutation to conditionally 'uncap' telomeres in budding yeast, we show that the telomere capping protein Cdc13 protects telomeres from the activity of the helicase Pif1 and the exonuclease Exo1. Our data support a two-stage model for the DDR at uncapped telomeres; Pif1 and Exo1 resect telomeric DNA <5 kb from the chromosome end, stimulating weak checkpoint activation; resection is extended >5 kb by Exo1 and full checkpoint activation occurs. Cdc13 is also crucial for telomerase recruitment. However, cells lacking Cdc13, Pif1 and Exo1, do not senesce and maintain their telomeres in a manner dependent upon telomerase, Ku and homologous recombination. Thus, attenuation of the DDR at uncapped telomeres can circumvent the need for otherwise-essential telomere capping proteins.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号