首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
2.
The enzyme tRNA-guanine transglycosylase (TGT) is involved in the queuosine modification of tRNAs in eukarya and eubacteria and in the archaeosine modification of tRNAs in archaea. However, the different classes of TGTs utilize different heterocyclic substrates (and tRNA in the case of archaea). Based on the X-ray structural analyses, an earlier study [Stengl et al. (2005) Mechanism and substrate specificity of tRNA-guanine transglycosylases (TGTs): tRNA-modifying enzymes from the three different kingdoms of life share a common catalytic mechanism. Chembiochem, 6, 1926-1939] has made a compelling case for the divergent evolution of the eubacterial and archaeal TGTs. The X-ray structure of the eukaryal class of TGTs is not known. We performed sequence homology and phylogenetic analyses, and carried out enzyme kinetics studies with the wild-type and mutant TGTs from Escherichia coli and human using various heterocyclic substrates that we synthesized. Observations with the Cys145Val (E. coli) and the corresponding Val161Cys (human) TGTs are consistent with the idea that the Cys145 evolved in eubacterial TGTs to recognize preQ(1) but not queuine, whereas the eukaryal equivalent, Val161, evolved for increased recognition of queuine and a concomitantly decreased recognition of preQ(1). Both the phylogenetic and kinetic analyses support the conclusion that all TGTs have divergently evolved to specifically recognize their cognate heterocyclic substrates.  相似文献   

3.
4.
The tRNA modifying enzyme tRNA-guanine transglycosylase (TGT) is involved in the exchange of guanine in the first position of the anticodon with preQ1 as part of the biosynthesis of the hypermodified base queuine (Q). Mutation of Ser90 to an alanine in Escherichia coli TGT leads to a dramatic reduction of enzymatic activity (Reuter, K. et al. (1994) Biochemistry 33, 7041-7046). To further clarify the role of this residue in the catalytic center, we have mutated the corresponding Ser103 of the crystallizable Zymomonas mobilis TGT into alanine. The crystal structure of a TGT(S103A)/preQ1 complex combined with biochemical data presented in this paper suggest that Ser103 is essential for substrate orientation in the TGT reaction.  相似文献   

5.
C Romier  K Reuter  D Suck    R Ficner 《The EMBO journal》1996,15(11):2850-2857
tRNA-guanine transglycosylases (TGT) are enzymes involved in the modification of the anticodon of tRNAs specific for Asn, Asp, His and Tyr, leading to the replacement of guanine-34 at the wobble position by the hypermodified base queuine. In prokaryotes TGT catalyzes the exchange of guanine-34 with the queuine (.)precursor 7-aminomethyl-7-deazaguanine (preQ1). The crystal structure of TGT from Zymomonas mobilis was solved by multiple isomorphous replacement and refined to a crystallographic R-factor of 19% at 1.85 angstrom resolution. The structure consists of an irregular (beta/alpha)8-barrel with a tightly attached C-terminal zinc-containing subdomain. The packing of the subdomain against the barrel is mediated by an alpha-helix, located close to the C-terminus, which displaces the eighth helix of the barrel. The structure of TGT in complex with preQ1 suggests a binding mode for tRNA where the phosphate backbone interacts with the zinc subdomain and the U33G34U35 sequence is recognized by the barrel. This model for tRNA binding is consistent with a base exchange mechanism involving a covalent tRNA-enzyme intermediate. This structure is the first example of a (beta/alpha)-barrel protein interacting specifically with a nucleic acid.  相似文献   

6.
7.
tRNA-guanine transglycosylases (TGTs) are responsible for incorporating 7-deazaguanine-modified bases into certain tRNAs in eubacteria (preQ1), eukarya (queuine) and archaea (preQ0). In each kingdom, the specific modified base is different. We have found that the eubacterial and eukaryal TGTs have evolved to be quite specific for their cognate heterocyclic base and that Cys145 (Escherichia coli) is important in recognizing the amino methyl side chain of preQ1 (Chen et al., Nuc. Acids Res. 39 (2011) 2834 [15]). A series of mutants of the E. coli TGT have been constructed to probe the role of three other active site amino acids in the differential recognition of heterocyclic substrates. These mutants have also been used to probe the differential inhibition of E. coli versus human TGTs by pteridines. The results indicate that mutation of these active site amino acids can “open up” the active site, allowing for the binding of competitive pteridine inhibitors. However, even the “best” of these mutants still does not recognize queuine at concentrations up to 50 μM, suggesting that other changes are necessary to adapt the eubacterial TGT to incorporate queuine into RNA. The pteridine inhibition results are consistent with an earlier hypothesis that pteridines may regulate eukaryal TGT activity (Jacobson et al., Nuc. Acids Res. 9 (1981) 2351 [8]).  相似文献   

8.
In eubacteria, the biosynthesis of queuine, a modified base found in the wobble position (#34) of tRNAs coding for Tyr, His, Asp, and Asn, occurs via a multistep pathway. One of the key enzymes in this pathway, tRNA-guanine transglycosylase (TGT), exchanges the genetically encoded guanine at position 34 with a queuine precursor, preQ1. Previous studies have identified a minimal positive RNA recognition motif for Escherichia coli TGT consisting of a stable minihelix that contains a U-G-U sequence starting at the second position of its seven base anticodon loop. Recently, we reported that TGT was capable of recognizing the U-G-U sequence outside of this limited structural context. To further characterize the ability of TGT to recognize the U-G-U sequence in alternate contexts, we constructed mutants of the previously characterized E. coli tRNA(Tyr) minihelix. The U-G-U sequence was shifted to various positions within the anticodon loop of these mutants. Characterization of these analogs demonstrates that in addition to the normal U33G34U35 position, TGT can also recognize the U34G35U36 analog (UGU(+1)). The other analogs were not active. This indicates that the recognition of the U-G-U sequence is not strictly dependent upon its position relative to the stem. In E. coli, the full-length tRNA with a U34G35U36 anticodon sequence is one of the isoacceptors that codes for threonine. We found that TGT is able to recognize tRNA(Thr(UGU)) but only in the absence of a uridine at position 33. U33, an invariant base present in all tRNAs, has been shown to strongly influence the conformation of the anticodon loop of certain tRNAs. We find that mutation of this base confers on TGT the ability to recognize U34G35U36, and suggests that loop conformation affects recognition. The fact that the other analogs were not active indicates that although TGT is capable of recognizing the U-G-U sequence in additional contexts, this recognition is not indiscriminate.  相似文献   

9.
Bacterial tRNA-guanine transglycosylase (TGT) replaces the G in position 34 of tRNA with preQ(1), the precursor to the modified nucleoside queuosine. Archaeal TGT, in contrast, substitutes preQ(0) for the G in position 15 of tRNA as the first step in archaeosine formation. The archaeal enzyme is about 60% larger than the bacterial protein; a carboxyl-terminal extension of 230 amino acids contains the PUA domain known to contact the four 3'-terminal nucleotides of tRNA. Here we show that the C-terminal extension of the enzyme is not required for the selection of G15 as the site of base exchange; truncated forms of Pyrococcus furiosus TGT retain their specificity for guanine exchange at position 15. Deletion of the PUA domain causes a 4-fold drop in the observed k(cat) (2.8 x 10(-3) s(-1)) and results in a 75-fold increased K(m) for tRNA(Asp)(1.2 x 10(-5) m) compared with full-length TGT. Mutations in tRNA(Asp) altering or abolishing interactions with the PUA domain can compete with wild-type tRNA(Asp) for binding to full-length and truncated TGT enzymes. Whereas the C-terminal domains do not appear to play a role in selection of the modification site, their relevance for enzyme function and their role in vivo remains to be discovered.  相似文献   

10.
The bacterial tRNA-guanine transglycosylase (TGT) is a tRNA modifying enzyme catalyzing the exchange of guanine 34 by the modified base preQ1. The enzyme is involved in the infection pathway of Shigella, causing bacterial dysentery. As no crystal structure of the Shigella enzyme is available the homologous Zymomonas mobilis TGT was used for structure-based drug design resulting in new, potent, lin-benzoguanine-based inhibitors. Thorough kinetic studies show size-dependent inhibition of these compounds resulting in either a competitive or non-competitive blocking of the base exchange reaction in the low micromolar range. Four crystal structures of TGT-inhibitor complexes were determined with a resolution of 1.58-2.1 A. These structures give insight into the structural flexibility of TGT necessary to perform catalysis. In three of the structures molecular rearrangements are observed that match with conformational changes also noticed upon tRNA substrate binding. Several water molecules are involved in these rearrangement processes. Two of them demonstrate the structural and catalytic importance of water molecules during TGT base exchange reaction. In the fourth crystal structure the inhibitor unexpectedly interferes with protein contact formation and crystal packing. In all presently known TGT crystal structures the enzyme forms tightly associated homodimers internally related by crystallographic symmetry. Upon binding of the fourth inhibitor the dimer interface, however, becomes partially disordered. This result prompted further analyses to investigate the relevance of dimer formation for the functional protein. Consultation of the available TGT structures and sequences from different species revealed structural and functional conservation across the contacting residues. This suggests that bacterial and eukaryotic TGT could possibly act as homodimers in catalysis. It is hypothesized that one unit of the dimer performs the catalytic reaction whereas the second is required to recognize and properly orient the bound tRNA for the catalytic reaction.  相似文献   

11.
12.
Deshpande KL  Katze JR 《Gene》2001,265(1-2):205-212
Queuosine (Q) is a 7-deazaguanosine found in the first position of the anticodon of tRNAs that recognize NAU and NAC codons (Tyr, Asn, Asp and His). Eukaryotes synthesize Q by the base-for-base exchange of queuine (Q base) for guanine in the unmodified tRNA, a reaction catalyzed by TGT. A search of the human EST database for sequences with significant homology to the well studied TGT from Escherichia coli identified several candidates for full-length (1.3-1.4 kb) cDNA clones. Three candidate cDNA clones, available from IMAGE Consortium, LLNL, (Lennon et al., 1996, Genomics 33, 151-152) were obtained: IMAGE Clone Id Nos. 611146, 1422928, and 72154. Here we report the complete sequences of these clones. IMAGE:72154 contains an ORF encoding a 44 kDa polypeptide with high homology to bacterial TGTs and was subcloned into the mammalian expression vector pMAMneo-Cat. When this construct was transfected into the TGT-negative cell line, GC(3)/c1 (Gündüz et al., 1992, Biochim. Biophys. Acta 1139, 229-238), it restored the ability of the cells to form Q-containing tRNA. This TGT cDNA sequence is encoded in human chromosome 19 clone CTC-539A10 (GenBank accession no. AC011475), enabling determination of the exon-intron boundaries for the TGT gene. The sequence of IMAGE:611146 is 5'-truncated by 76 bp compared to that from IMAGE:72154 and, except for two differences in the 3'-non-coding region, the remainder of the sequence is identical to that of IMAGE:72154. IMAGE:1422928 is a 1390 bp chimera: the 5'-portion, bp 1-708, is identical to a genomic DNA sequence from chromosome 15 (GenBank accession no. AC067805, bp 148976-149683); the 3'-end, bp 726-1390, is identical to the 3'-end of the TGT cDNA sequence from IMAGE:611146.  相似文献   

13.
The eukaryotic tRNA:guanine transglycosylase (TGT) catalyses the base-for-base exchange of guanine for queuine (the q-base)--a nutrition factor for eukaryotes--at position 34 of the anticodon of tRNAsGUN (where 'N' represents one of the four canonical tRNA nucleosides), yielding the modified tRNA nucleoside queuosine (Q). This unique tRNA modification process was investigated in HeLa cells grown under either aerobic (21% O2) or hypoxic conditions (7% O2) after addition of chemically synthesized q-base to q-deficient cells. While the q-base was always inserted into tRNA under aerobic conditions, HeLa cells lost this ability under hypoxic conditions, however, only when serum factors became depleted from the culture medium. The inability to insert q into tRNA did not result from a lack of substrate, because the q-base accumulated within these cells against the concentration gradient, suggesting the presence of an active transport system for this base in HeLa cells. The activity of the TGT enzyme was restored after treatment of the cells with the protein kinase C activator, TPA, even in the presence of mRNA or protein synthesis inhibitors. The results indicate that the eukaryotic tRNA modifying enzyme, TGT, is a downstream target of activated protein kinase C.  相似文献   

14.
Archaeosine tRNA-guanine transglycosylase (ArcTGT) catalyzes the exchange of guanine at position 15 in the D-loop of archaeal tRNAs with a free 7-cyano-7-deazaguanine (preQ(0)) base, as the first step in the biosynthesis of an archaea-specific modified base, archaeosine (7-formamidino-7-deazaguanosine). We determined the crystal structures of ArcTGT from Pyrococcus horikoshii at 2.2 A resolution and its complexes with guanine and preQ(0), at 2.3 and 2.5 A resolutions, respectively. The N-terminal catalytic domain folds into an (alpha/beta)(8) barrel with a characteristic zinc-binding site, showing structural similarity with that of the bacterial queuosine TGT (QueTGT), which is involved in queuosine (7-[[(4,5-cis-dihydroxy-2-cyclopenten-1-yl)-amino]methyl]-7-deazaguanosine) biosynthesis and targets the tRNA anticodon. ArcTGT forms a dimer, involving the zinc-binding site and the ArcTGT-specific C-terminal domain. The C-terminal domains have novel folds, including an OB fold-like "PUA domain", whose sequence is widely conserved in eukaryotic and archaeal RNA modification enzymes. Therefore, the C-terminal domains may be involved in tRNA recognition. In the free-form structure of ArcTGT, an alpha-helix located at the rim of the (alpha/beta)(8) barrel structure is completely disordered, while it is ordered in the guanine-bound and preQ(0)-bound forms. Structural comparison of the ArcTGT.preQ(0), ArcTGT.guanine, and QueTGT.preQ(1) complexes provides novel insights into the substrate recognition mechanisms of ArcTGT.  相似文献   

15.
16.
17.
Eubacterial tRNA-guanine transglycosylase (TGT) is involved in the hyper-modification of cognate tRNAs leading to the exchange of G34 at the wobble position in the anticodon loop by preQ1 (2-amino-5-(aminomethyl)pyrrolo[2,3-d]pyrimidin-4(3H)-one) as part of the biosynthesis of queuine (Q). Mutation of the tgt gene in Shigella flexneri results in a significant loss of pathogenicity of the bacterium, revealing TGT as a new target for the design of potent drugs against Shigellosis. The X-ray structure of Zymomonas mobilis TGT in complex with preQ1 was used to search for new putative inhibitors with the computer program LUDI. An initial screen of the Available Chemical Directory, a database compiled from commercially available compounds, suggested several hits. Of these, 4-aminophthalhydrazide (APH) showed an inhibition constant in the low micromolar range. The 1.95 A crystal structure of APH in complex with Z. mobilis TGT served as a starting point for further modification of this initial lead.  相似文献   

18.
19.
Queuine can replace guanine in the anticodon of certain tRNAs and is a hypermodified guanine derivative that can be synthesized by bacteria but not by mice. The study demonstrates that Drosophila can incorporate dietary queuine into tRNA but cannot synthesize it de novo for this purpose. Since an earlier study had shown that dietary CdCl2 caused Drosophila to increase greatly the proportion of queuine-containing tRNA over non-queuine tRNA the ability of dietary queuine to counteract cadmium toxicity was evaluated. When queuine was present in the cadmium-containing medium more pupae matured into adults than when queuine was absent. Other studies had demonstrated that the transglycosylase enzyme, that catalyzes the replacement of guanine in the anticodon of tRNA by queuine, is present in Drosophila larvae but the tRNA is virtually devoid of queuine. This study shows that in the presence of dietary queuine the larval tRNA contains abundant amounts of queuine. Therefore, we postulate a significant role for bacteria in supplying queuine to Drosophila for its incorporation into tRNA and that the control of this process by Drosophila is passive, i.e. is not an essential feature in differentiation.  相似文献   

20.
Queuosine (Q), found exclusively in the first position of the anticodons of tRNA(Asp), tRNA(Asn), tRNA(His) and tRNA(Tyr), is synthesized in eucaryotes by a base-for-base exchange of queuine, the base of Q, for guanine at tRNA position 34. This reaction is catalyzed by the enzyme tRNA-guanine transglycosylase (EC 2.4.2.29). We measured the specific release of queuine from Q-5'-phosphate (queuine salvage) and the extent of tRNA Q modification in 6 human tumors carried as xenografts in immune-deprived mice. Q-deficient tRNA was found in 3 of the tumors but it did not correlate with diminished queuine salvage. The low tRNA Q content of one tumor, the HxGC3 colon adenocarcinoma, prompted us to examine a HxGC3-derived cell line, GC3/M. GC3/M completely lacks Q in its tRNA and measurable tRNA-guanine transglycosylase activity; the first example of a higher eucaryotic cell which lacks this enzyme. Exposure of GC3/M cells to 5-azacytidine induces the transient appearance of Q-positive tRNA. This result suggests that at least one allele of the transglycosylase gene in GC3/M cells may have been inactivated by DNA methylation. In clinical samples, we found Q-deficient tRNA in 10 of 46 solid tumors, including 2 of 13 colonic carcinomas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号