首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In planta RNAi against essential insect genes offers a promising route to control insect crop pests, but is constrained for many insect groups, notably phloem sap-feeding hemipterans, by poor RNAi efficacy. This study conducted on the phloem-feeding whitefly Bemisia tabaci reared on tomato plants investigated the causes of low RNAi efficacy and routes to ameliorate the problem. Experiments using tomato transgenic lines containing ds-GFP (green fluorescent protein) revealed that full-length dsRNA is phloem-mobile, ingested by the insects, and degraded in the insect. We identified B. tabaci homologs of nuclease genes (dsRNases) in other insects that degrade dsRNA, and demonstrated that degradation of ds-GFP in B. tabaci is suppressed by administration of dsRNA against these genes. dsRNA against the nuclease genes was co-administered with dsRNA against two insect genes, an aquaporin AQP1 and sucrase SUC1, that are predicted to protect B. tabaci against osmotic collapse. When dsRNA constructs for AQP1, SUC1, dsRNase1 and dsRNase2 were stacked, insect mortality was significantly elevated to 50% over 6 days on artificial diets. This effect was accompanied by significant reduction in gene expression of the target genes in surviving diet-fed insects. This study offers proof-of-principle that the efficacy of RNAi against insect pests can be enhanced by using dsRNA to suppress the activity of RNAi-suppressing nuclease genes, especially where multiple genes with related physiological function but different molecular function are targeted.  相似文献   

2.
Plant-mediated RNAi has been developed as a powerful weapon in the fight against agricultural insect pests. The gap gene hunchback (hb) is of crucial importance in insect axial patterning and knockdown of hb is deforming and lethal to the next generation. The peach potato aphid, Myzus persicae (Sulzer), has many host plants and can be found throughout the world. To investigate the effect of plant-mediated RNAi on control of this insect, the hb gene in M. persicae was cloned, plant RNAi vector was constructed, and transgenic tobacco expressing Mphb dsRNA was developed. Transgenic tobacco had a different integration pattern of the transgene. Bioassays were performed by applying neonate aphids to homozygous transgenic plants in the T2 generation. Results revealed that continuous feeding of transgenic diet reduced Mphb mRNA level in the fed aphids and inhibited insect reproduction, indicating successful knockdown of the target gene in M. persicae by plant-mediated RNAi.  相似文献   

3.
Silencing of aphid genes by dsRNA feeding from plants   总被引:4,自引:0,他引:4  

Background

RNA interference (RNAi) is a valuable reverse genetics tool to study gene function in various organisms, including hemipteran insects such as aphids. Previous work has shown that RNAi-mediated knockdown of pea aphid (Acyrthosiphon pisum) genes can be achieved through direct injection of double-stranded RNA (dsRNA) or small-interfering RNAs (siRNA) into the pea aphid hemolymph or by feeding these insects on artificial diets containing the small RNAs.

Methodology/Principal Findings

In this study, we have developed the plant-mediated RNAi technology for aphids to allow for gene silencing in the aphid natural environment and minimize handling of these insects during experiments. The green peach aphid M. persicae was selected because it has a broad plant host range that includes the model plants Nicotiana benthamiana and Arabidopsis thaliana for which transgenic materials can relatively quickly be generated. We targeted M. persicae Rack1, which is predominantly expressed in the gut, and M. persicae C002 (MpC002), which is predominantly expressed in the salivary glands. The aphids were fed on N. benthamiana leaf disks transiently producing dsRNA corresponding to these genes and on A. thaliana plants stably producing the dsRNAs. MpC002 and Rack-1 expression were knocked down by up to 60% on transgenic N. benthamiana and A. thaliana. Moreover, silenced M. persicae produced less progeny consistent with these genes having essential functions.

Conclusions/Significance

Similar levels of gene silencing were achieved in our plant-mediated RNAi approach and published silencing methods for aphids. Furthermore, the N. benthamiana leaf disk assay can be developed into a screen to assess which genes are essential for aphid survival on plants. Our results also demonstrate the feasibility of the plant-mediated RNAi approach for aphid control.  相似文献   

4.

Background

RNA silencing is an important mechanism for regulation of endogenous gene expression and defense against genomic intruders in plants. This natural defense system was adopted to generate virus-resistant plants even before the mechanism of RNA silencing was unveiled. With the clarification of that mechanism, transgenic antiviral plants were developed that expressed artificial virus-specific hairpin RNAs (hpRNAs) or microRNAs (amiRNAs) in host plants. Previous works also showed that plant-mediated RNA silencing technology could be a practical method for constructing insect-resistant plants by expressing hpRNAs targeting essential genes of insects.

Methodology/Principal findings

In this study, we chose aphid Myzus persicae of order Hemiptera as a target insect. To screen for aphid genes vulnerable to attack by plant-mediated RNA silencing to establish plant aphid resistance, we selected nine genes of M. persicae as silencing targets, and constructed their hpRNA-expressing vectors. For the acetylcholinesterase 2 coding gene (MpAChE2), two amiRNA-expressing vectors were also constructed. The vectors were transformed into tobacco plants (Nicotiana tabacum cv. Xanti). Insect challenge assays showed that most of the transgenic plants gained aphid resistance, among which those expressing hpRNAs targeting V-type proton ATPase subunit E-like (V-ATPaseE) or tubulin folding cofactor D (TBCD) genes displayed stronger aphicidal activity. The transgenic plants expressing amiRNAs targeting two different sites in the MpAChE2 gene exhibited better aphid resistance than the plants expressing MpAChE2-specific hpRNA.

Conclusions/Significance

Our results indicated that plant-mediated insect-RNA silencing might be an effective way to develop plants resistant to insects with piercing-sucking mouthparts, and both the selection of vulnerable target genes and the biogenetic type of the small RNAs were crucial for the effectiveness of aphid control. The expression of insect-specific amiRNA is a promising and preferable approach to engineer plants resistant to aphids and, possibly, to other plant-infesting insects.  相似文献   

5.
The potato/tomato psyllid, Bactericera cockerelli (B. cockerelli), is an important plant pest and the vector of the phloem-limited bacterium Candidatus Liberibacter psyllaurous (solanacearum), which is associated with the zebra chip disease of potatoes. Previously, we reported induction of RNA interference effects in B. cockerelli via in vitro-prepared dsRNA/siRNAs after intrathoracic injection, and after feeding of artificial diets containing these effector RNAs. In order to deliver RNAi effectors via plant hosts and to rapidly identify effective target sequences in plant-feeding B. cockerelli, here we developed a plant virus vector-based in planta system for evaluating candidate sequences. We show that recombinant Tobacco mosaic virus (TMV) containing B. cockerelli sequences can efficiently infect and generate small interfering RNAs in tomato (Solanum lycopersicum), tomatillo (Physalis philadelphica) and tobacco (Nicotiana tabacum) plants, and more importantly delivery of interfering sequences via TMV induces RNAi effects, as measured by actin and V-ATPase mRNA reductions, in B. cockerelli feeding on these plants. RNAi effects were primarily detected in the B. cockerelli guts. In contrast to our results with TMV, recombinant Potato virus X (PVX) and Tobacco rattle virus (TRV) did not give robust infections in all plants and did not induce detectable RNAi effects in B. cockerelli. The greatest RNA interference effects were observed when B. cockerelli nymphs were allowed to feed on leaf discs collected from inoculated or lower expanded leaves from corresponding TMV-infected plants. Tomatillo plants infected with recombinant TMV containing B. cockerelli actin or V-ATPase sequences also showed phenotypic effects resulting in decreased B. cockerelli progeny production as compared to plants infected by recombinant TMV containing GFP. These results showed that RNAi effects can be achieved in plants against the phloem feeder, B. cockerelli, and the TMV-plant system will provide a faster and more convenient method for screening of suitable RNAi target sequences in planta.  相似文献   

6.
Tomato aphid (Myzus persicae) is a destructive insect pest of tomato responsible for huge losses in the production as well in the vegetable industry. In the present in vitro study two protein elicitors, PeaT1 and PeBL1 were considered to study their efficacies to exhibit defense response against tomato aphid. Three different concentrations of both protein elicitors were applied on the tomato seedlings. After the application of PeaT1 and PeBL1, population growth rates of tomato aphid were decreased as compared to the control treatment. In host preference assay, the tomato aphid showed a preference to build a colony on the control as compared to the treated tomato plant, because tomato leaves provided hazardous surface for aphid after the formation of wax and trichome. The concentrations of protein showed significant (p < 0.05) results in life-history traits of the aphid. Jasmonic acid (JA), salicylic acid (SA) and ethylene (ET) showed significant accumulation in tomato seedlings treated with PeaT1 and PeBL1. Elicitors treated plants produced resistance against M. persicae. Our finding suggests that PeaT1 and PeBL1 have shown high potentials against the damage of M. persicae, and both elicitors could be used as novel biological tools against tomato aphid.  相似文献   

7.
RNA interference (RNAi)-based technologies are starting to be commercialized as a new approach for agricultural pest control. Horizontally transferred genes (HTGs), which have been transferred into insect genomes from viruses, bacteria, fungi or plants, are attractive targets for RNAi-mediated pest control. HTGs are often unique to a specific insect family or even genus, making it unlikely that RNAi constructs targeting such genes will have negative effects on ladybugs, lacewings and other beneficial predatory insect species. In this study, we sequenced the genome of a red, tobacco-adapted isolate of Myzus persicae (green peach aphid) and bioinformatically identified 30 HTGs. We then used plant-mediated virus-induced gene silencing (VIGS) to show that several HTGs of bacterial and plant origin are important for aphid growth and/or survival. Silencing the expression of fungal-origin HTGs did not affect aphid survivorship but decreased aphid reproduction. Importantly, although there was uptake of plant-expressed RNA by Coccinella septempunctata (seven-spotted ladybugs) via the aphids that they consumed, we did not observe negative effects on ladybugs from aphid-targeted VIGS constructs. To demonstrate that this approach is more broadly applicable, we also targeted five Bemisia tabaci (whitefly) HTGs using VIGS and demonstrated that knockdown of some of these genes affected whitefly survival. As functional HTGs have been identified in the genomes of numerous pest species, we propose that these HTGs should be explored further as efficient and safe targets for control of insect pests using plant-mediated RNA interference.  相似文献   

8.
9.
10.
Organic mulches, like peel and rice-straw, besides other materials affect the UV and temperature, which cause a reduction in the aphid arrival. The aim was to evaluate the effect of covering the soil with straw on the populations of the green peach aphid, Myzus persicae on the kale, Brassica oleracea var. acephala plants. The first experiment evaluated the direct effect of the rice-straw mulch and the second its indirect effect on aphid immigration, testing the plant characteristics that could lead to the landing preference of this insect. The third experiment evaluated the direct effect of the mulch on the aphid population. In the second and third experiments, four plants, each in a 14 L polyethylene pot with holes at the bottom, were used in areas with and without soil mulching. These pots were changed between areas, after seven days, to evaluate the effects of this change on the arrival of the winged aphids to the plants. Each plant was covered with anti-aphid gauze and inoculated with one winged M. persicae. Winged and apterous adults of this insect were counted per plant after 15 days. The temperature increased in the mulched plots to a maximum of 21–36°C and to 18–32°C in the plots with or without soil covering, respectively. Plant growth reduced the numbers of the winged aphids landing before and after they were moved to the bare soil plots. The nutrient content was similar in plants in both the mulched and no mulched plots. The population growth of M. persicae was higher in the control than in the mulched plots. This was partially due to temperatures close to 30°C in these plots and changes in the plant physiology. The soil mulching with rice-straw decreased the M. persicae landing, increased the plot temperatures and improved the vegetative growth of the kale plants.  相似文献   

11.
Herbivore-induced plant volatiles provide foraging cues for herbivores and for herbivores’ natural enemies. Aphids induce plant volatile emissions and also utilize plant-derived olfactory volatile cues, but the chemical ecology of aphids and other phloem-feeding insects is less extensively documented than that of chewing insects. Here, we characterize the volatile cues emitted by turnip plants (Brassica rapa) under attack by an aphid (Myzus persicae) or by the chewing lepidopteran larva Heliothis virescens. We also tested the behavioral responses of M. persicae individuals to the odors of undamaged and herbivore-damaged plants presented singly or in combination, as well as to the odor of crushed conspecifics (simulating predation). Gas chromatographic analysis of the volatile blend of infested turnips revealed distinct profiles for both aphid- and caterpillar-induced plants, with induced compounds including green-leaf alcohols, esters, and isothiocyanates. In behavioral trials, aphids exhibited increased activity in the presence of plant odors and positive attraction to undamaged turnip plants. However, aphids exhibited a strong preference for the odors of healthy versus plants subjected to herbivore damage, and neither aphid- or caterpillar-damaged plants were attractive compared to clean-air controls. Reduced aphid attraction to herbivore-infested plants may be mediated by changes in the volatile blend constituent composition, including large amounts of isothiocyanates and green-leaf volatiles or, in the case of aphid-infested plants, of the aphid alarm pheromone, (E)-β-farnesene.  相似文献   

12.
13.
14.
15.
Fusion proteins of a protease inhibitor from an entomopathogenic nematode symbiotic bacterium (PIN1) and green fluorescent protein (GFP) were expressed in tobacco (Nicotiana tobacum cv. Samsun NN). The PIN1-GFP protein expressed under the control of the CaMV-35S promoter was detected in leaves of transgenic tobacco plants. The effect of PIN1 on anti-pest activity for Myzus persicae was tested by feeding neonate aphids on three independent homozygous lines. For nymphs fed on PIN1-GFP-expressing plants, no effects on insect survival were observed but average insect weight and fecundity were significantly reduced. The aphid biomass was decreased by 30–35?% compared to those reared on control plants. The effects of PIN1 on M. persicae were correlated with the decrease of the leucine aminopeptidase and total protease activities of whole insect extracts. Furthermore, an increase in polyphenoloxidase activity was observed in PIN1-GFP-expressing plants. These results revealed that the transgenic expression of PIN1 in tobacco enhanced tolerance against aphids. Key message This study suggests that entomopathogenic nematode symbiotic bacterium is another valuable resource of protease inhibitors which can be engineered into plants for insect pest management.  相似文献   

16.
17.
Aphids, including the peach-potato aphid, Myzus persicae, are major insect pests of agriculture and horticulture, and aphid control measures are limited. There is therefore an urgent need to develop alternative and more sustainable means of control. Recent studies have shown that environmental microbes have varying abilities to kill insects. We screened a range of environmental bacteria isolates for their abilities to kill target aphid species. Tests demonstrated the killing aptitude of these bacteria against six aphid genera (including Myzus persicae). No single bacterial strain was identified that was consistently toxic to insecticide-resistant aphid clones than susceptible clones, suggesting resistance to chemicals is not strongly correlated with bacterial challenge. Pseudomonas fluorescens PpR24 proved the most toxic to almost all aphid clones whilst exhibiting the ability to survive for over three weeks on three plant species at populations of 5–6 log CFU cm−2 leaf. Application of PpR24 to plants immediately prior to introducing aphids onto the plants led to a 68%, 57% and 69% reduction in aphid populations, after 21 days, on Capsicum annuum, Arabidopsis thaliana and Beta vulgaris respectively. Together, these findings provide new insights into aphid susceptibility to bacterial infection with the aim of utilizing bacteria as effective biocontrol agents.  相似文献   

18.
19.
Plants respond adaptively to herbivore stress in order to maintain fitness. Upon herbivore attack, plants emit blends of volatile organic compounds (VOCs) that differ from those that are constitutively emitted. These defense responses are typically specific to the identity of the attacking herbivore and often linked to the herbivore's feeding guild (e.g. chewing, phloem-feeding). Herbivores use plant volatiles to locate suitable host plants and changes in volatile emissions can affect host-plant location. Therefore, herbivores from separate feeding guilds can interact indirectly through the modulation of plant responses. In this study we tested how damage by an herbivore from one feeding guild affected the host-plant choice of an herbivore from a separate feeding guild, and vice versa. A chewing herbivore, the Colorado potato beetle (Leptinotarsa decemlineata), and a phloem feeding herbivore, the green peach aphid (Myzus persicae), were assayed in olfactometers to assess behavioral responses to odors emitted by potato plants (Solanum tuberosum) that were damaged by herbivores from the other feeding guild. Leptinotarsa decemlineata oriented more frequently towards undamaged plants compared to M. persicae damaged plants. Surprisingly, M. persicae preferred plants that were damaged by L. decemlineata, although previous studies had shown that they perform worse on these plants. Distinct differences were detected in the volatile profiles of herbivore-damaged and undamaged plants. Leptinotarsa decemlineata induced stronger volatile emissions compared to undamaged control plants, while M. persicae tended to suppress volatile emissions. These herbivores demonstrate contrasting induction of plant volatiles and behavioral responses. Exploring the nature of co-occurring herbivores and how they perceive potential hosts can play a significant role in understanding the ecological functions and community dynamics of plant plasticity and interactions with a variety of herbivores.  相似文献   

20.

Background

Sap sucking hemipteran aphids damage diverse crop species. Although delivery of ds-RNA or siRNA through microinjection/feeding has been demonstrated, the efficacy of host-mediated delivery of aphid-specific dsRNA in developing aphid resistance has been far from being elucidated.

Methodology/Principal Findings

Transgenic Arabidopsis expressing ds-RNA of Myzus persicae serine protease (MySP) was developed that triggered the generation of corresponding siRNAs amenable for delivery to the feeding aphids. M. persicae when fed on the transgenic plants for different time intervals under controlled growth conditions resulted in a significant attenuation of the expression of MySP and a commensurate decline in gut protease activity. Although the survivability of these aphids was not affected, there was a noticeable decline in their fecundity resulting in a significant reduction in parthenogenetic population.

Conclusions/Significance

The study highlighted the feasibility of developing host based RNAi-mediated resistance against hemipteran pest aphids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号