首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Human Rad51 (hRad51) and Rad54 proteins are key members of the RAD52 group required for homologous recombination. We show an ability of hRad54 to promote transient separation of the strands in duplex DNA via its ATP hydrolysis-driven DNA supercoiling function. The ATPase, DNA supercoiling, and DNA strand opening activities of hRad54 are greatly stimulated through an interaction with hRad51. Importantly, we demonstrate that hRad51 and hRad54 functionally cooperate in the homologous DNA pairing reaction that forms recombination DNA intermediates. Our results should provide a biochemical model for dissecting the role of hRad51 and hRad54 in recombination reactions in human cells.  相似文献   

2.
The Rad51B, Rad51C, Rad51D and Xrcc2 proteins are Rad51 paralogs, and form a complex (BCDX2 complex) in mammalian cells. Mutant cells defective in any one of the Rad51-paralog genes exhibit spontaneous genomic instability and extreme sensitivity to DNA-damaging agents, due to inefficient recombinational repair. Therefore, the Rad51 paralogs play important roles in the maintenance of genomic integrity through recombinational repair. In the present study, we examined the DNA-binding preference of the human BCDX2 complex. Competitive DNA-binding assays using seven types of DNA substrates, single-stranded DNA (ssDNA), double-stranded DNA, 5′- and 3′-tailed duplexes, nicked duplex DNA, Y-shaped DNA and a synthetic Holliday junction, revealed that the BCDX2 complex preferentially bound to the two DNA substrates with branched structures (the Y-shaped DNA and the synthetic Holliday junction). Furthermore, the BCDX2 complex catalyzed the strand-annealing reaction between a long linear ssDNA (1.2 kb in length) and its complementary circular ssDNA. These properties of the BCDX2 complex may be important for its roles in the maintenance of chromosomal integrity.  相似文献   

3.
The SRS2 (Suppressor of RAD Six screen mutant 2) gene encodes an ATP-dependent DNA helicase that regulates homologous recombination in Saccharomyces cerevisiae. Mutations in SRS2 result in a hyper-recombination phenotype, sensitivity to DNA damaging agents and synthetic lethality with mutations that affect DNA metabolism. Several of these phenotypes can be suppressed by inactivating genes of the RAD52 epistasis group that promote homologous recombination, implicating inappropriate recombination as the underlying cause of the mutant phenotype. Consistent with the genetic data, purified Srs2 strongly inhibits Rad51-mediated recombination reactions by disrupting the Rad51-ssDNA presynaptic filament. Srs2 interacts with Rad51 in the yeast two-hybrid assay and also in vitro. To investigate the functional relevance of the Srs2-Rad51 complex, we have generated srs2 truncation mutants that retain full ATPase and helicase activities, but differ in their ability to interact with Rad51. Importantly, the srs2 mutant proteins attenuated for Rad51 interaction are much less capable of Rad51 presynaptic filament disruption. An internal deletion in Srs2 likewise diminishes Rad51 interaction and anti-recombinase activity. We also present evidence that deleting the Srs2 C-terminus engenders a hyper-recombination phenotype. These results highlight the importance of Rad51 interaction in the anti-recombinase function of Srs2, and provide evidence that this Srs2 function can be uncoupled from its helicase activity.  相似文献   

4.
Rad51, the major eukaryotic homologous recombinase, is important for the repair of DNA damage and the maintenance of genomic diversity and stability. The active form of this DNA-dependent ATPase is a helical filament within which the search for homology and strand exchange occurs. Here we present the crystal structure of a Saccharomyces cerevisiae Rad51 filament formed by a gain-of-function mutant. This filament has a longer pitch than that seen in crystals of Rad51's prokaryotic homolog RecA, and places the ATPase site directly at a new interface between protomers. Although the filament exhibits approximate six-fold symmetry, alternate protein-protein interfaces are slightly different, implying that the functional unit of Rad51 within the filament may be a dimer. Additionally, we show that mutation of His352, which lies at this new interface, markedly disrupts DNA binding.  相似文献   

5.
Rad51 and Rad54 proteins are important for the repair of double-stranded DNA (dsDNA) breaks by homologous recombination in eukaryotes. Rad51 assembles on single-stranded DNA (ssDNA) to form a helical nucleoprotein filament that performs homologous pairing with dsDNA; Rad54 stimulates this pairing substantially. Here, we demonstrate that Rad54 acts in concert with the mature Rad51-ssDNA filament. Enhancement of DNA pairing by Rad54 is greatest at an equimolar ratio relative to Rad51 within the filament. Reciprocally, the Rad51-ssDNA filament enhances both the dsDNA-dependent ATPase and the dsDNA unwinding activities of Rad54. We conclude that Rad54 participates in the DNA homology search as a component of the Rad51-nucleoprotein filament and that the filament delivers Rad54 to the dsDNA pairing locus, thereby linking the unwinding of potential target DNA with the homology search process.  相似文献   

6.
Rad51 and Rad54 are key proteins that collaborate during homologous recombination. Rad51 forms a presynaptic filament with ATP and ssDNA active in homology search and DNA strand exchange, but the precise role of its ATPase activity is poorly understood. Rad54 is an ATP-dependent dsDNA motor protein that can dissociate Rad51 from dsDNA, the product complex of DNA strand exchange. Kinetic analysis of the budding yeast proteins revealed that the catalytic efficiency of the Rad54 ATPase was stimulated by partial filaments of wild-type and Rad51-K191R mutant protein on dsDNA, unambiguously demonstrating that the Rad54 ATPase activity is stimulated under these conditions. Experiments with Rad51-K191R as well as with wild-type Rad51-dsDNA filaments formed in the presence of ATP, ADP or ATP-γ-S showed that efficient Rad51 turnover from dsDNA requires both the Rad51 ATPase and the Rad54 ATPase activities. The results with Rad51-K191R mutant protein also revealed an unexpected defect in binding to DNA. Once formed, Rad51-K191R-DNA filaments appeared normal upon electron microscopic inspection, but displayed significantly increased stability. These biochemical defects in the Rad51-K191R protein could lead to deficiencies in presynapsis (filament formation) and postsynapsis (filament disassembly) in vivo.  相似文献   

7.
The Rad52 protein, which is unique to eukaryotes, plays important roles in the Rad51-dependent and the Rad51-independent pathways of DNA recombination. In the present study, we have biochemically characterized the homologous pairing activity of the HsRad52 protein (Homo sapiens Rad52) and found that the presynaptic complex formation with ssDNA is essential in its catalysis of homologous pairing. We have identified an N-terminal fragment (amino acid residues 1-237, HsRad52(1-237)) that is defective in binding to the human Rad51 protein, which catalyzed homologous pairing as efficiently as the wild type HsRad52. Electron microscopic visualization revealed that HsRad52 and HsRad52(1-237) both formed nucleoprotein filaments with single-stranded DNA. These lines of evidence suggest the role of HsRad52 in the homologous pairing step of the Rad51-independent recombination pathway. Our results reveal the striking similarity between HsRad52 and the Escherichia coli RecT protein, which functions in a RecA-independent recombination pathway.  相似文献   

8.
The human Rad51 protein is essential for DNA repair by homologous recombination. In addition to Rad51 protein, five paralogs have been identified: Rad51B/Rad51L1, Rad51C/Rad51L2, Rad51D/Rad51L3, XRCC2, and XRCC3. To further characterize a subset of these proteins, recombinant Rad51, Rad51B-(His)(6), and Rad51C proteins were individually expressed employing the baculovirus system, and each was purified from Sf9 insect cells. Evidence from nickel-nitrilotriacetic acid pull-down experiments demonstrates a highly stable Rad51B.Rad51C heterodimer, which interacts weakly with Rad51. Rad51B and Rad51C proteins were found to bind single- and double-stranded DNA and to preferentially bind 3'-end-tailed double-stranded DNA. The ability to bind DNA was elevated with mixed Rad51 and Rad51C, as well as with mixed Rad51B and Rad51C, compared with that of the individual protein. In addition, both Rad51B and Rad51C exhibit DNA-stimulated ATPase activity. Rad51C displays an ATP-independent apparent DNA strand exchange activity, whereas Rad51B shows no such activity; this apparent strand exchange ability results actually from a duplex DNA destabilization capability of Rad51C. By analogy to the yeast Rad55 and Rad57, our results suggest that Rad51B and Rad51C function through interactions with the human Rad51 recombinase and play a crucial role in the homologous recombinational repair pathway.  相似文献   

9.
Previous studies showed that the K342E substitution in the Saccharomyces cerevisiae Rad51 protein increases the interaction with Rad54 protein in the two-hybrid system, leads to increased sensitivity to the alkylating agent MMS and hyper-recombination in an oligonucleotide-mediated gene targeting assay. K342 localizes in loop 2, a region of Rad51 whose function is not well understood. Here, we show that Rad51-K342E displays DNA-independent and DNA-dependent ATPase activities, owing to its ability to form filaments in the absence of a DNA lattice. These filaments exhibit a compressed pitch of 81 Å, whereas filaments of wild-type Rad51 and Rad51-K342E on DNA form extended filaments with a 97 Å pitch. Rad51-K342E shows near normal binding to ssDNA, but displays a defect in dsDNA binding, resulting in less stable protein-dsDNA complexes. The mutant protein is capable of catalyzing the DNA strand exchange reaction and is insensitive to inhibition by the early addition of dsDNA. Wild-type Rad51 protein is inhibited under such conditions, because of its ability to bind dsDNA. No significant changes in the interaction between Rad51-K342E and Rad54 could be identified. These findings suggest that loop 2 contributes to the primary DNA-binding site in Rad51, controlling filament formation and ATPase activity.  相似文献   

10.
BRCA2 likely exerts its tumor suppressor function by enhancing the efficiency of the homology-directed repair of injured chromosomes. To help define the DNA repair role of BRCA2, we expressed and purified a polypeptide, BRC3/4-DBD, that harbors its BRC3 and BRC4 repeats and DNA binding domain. BRC3/4-DBD interacted with hRad51 and bound DNA with a distinct preference for single-stranded (ss) DNA. Importantly we demonstrated by biochemical means and electron microscopy that BRC3/4-DBD nucleates hRad51 onto ssDNA and acts as a recombination mediator in enabling hRad51 to utilize replication protein A-coated ssDNA as recombination substrate. These functions of BRC3/4-DBD required both the BRC repeats and the BRCA2 DNA binding domain. The results thus clarify the role of BRCA2 in Rad51-dependent DNA recombination and repair, and the experimental strategies described herein should be valuable for systematically deciphering this BRCA2 function.  相似文献   

11.
The Xrcc3 protein, which is required for the homologous recombinational repair of damaged DNA, forms a complex with the Rad51C protein in human cells. Mutations in either the Xrcc3 or Rad51C gene cause extreme sensitivity to DNA-damaging agents and generate the genomic instability frequently found in tumors. In the present study, we found that the Xrcc3 segment containing amino acid residues 63–346, Xrcc363–346, is the Rad51C-binding region. Biochemical analyses revealed that Xrcc363–346 forms a complex with Rad51C, and the Xrcc363–346– Rad51C complex possesses ssDNA and dsDNA binding abilities comparable to those of the full-length Xrcc3–Rad51C complex. Based on the structure of RecA, which is thought to be the ancestor of Xrcc3, six Xrcc3 point mutants were designed. Two-hybrid and biochemical analyses of the Xrcc3 point mutants revealed that Tyr139 and Phe249 are essential amino acid residues for Rad51C binding. Superposition of the Xrcc3 Tyr139 and Phe249 residues on the RecA structure suggested that Tyr139 may function to ensure proper folding and Phe249 may be important to constitute the Rad51C-binding interface in Xrcc3.  相似文献   

12.
Homologous recombination (HR) represents a major error-free pathway to eliminate pre-carcinogenic chromosomal lesions. The DNA strand invasion reaction in HR is mediated by a helical filament of the Rad51 recombinase assembled on single-stranded DNA that is derived from the nucleolytic processing of the primary lesion. Recent studies have found that the human and mouse Swi5 and Sfr1 proteins form a complex that influences Rad51-mediated HR in cells. Here, we provide biophysical evidence that the mouse Swi5-Sfr1 complex has a 1:1 stoichiometry. Importantly, the Swi5-Sfr1 complex, but neither Swi5 nor Sfr1 alone, physically interacts with Rad51 and stimulates Rad51-mediated homologous DNA pairing. This stimulatory effect stems from the stabilization of the Rad51-ssDNA presynaptic filament. Moreover, we provide evidence that the RSfp (rodent Sfr1 proline rich) motif in Sfr1 serves as a negative regulatory element. These results thus reveal an evolutionarily conserved function in the Swi5-Sfr1 complex and furnish valuable information as to the regulatory role of the RSfp motif that is specific to the mammalian Sfr1 orthologs.  相似文献   

13.
DNA double-strand break (DSB) resection, which results in RPA-bound single-stranded DNA (ssDNA), is activated in S phase by Cdk2. RPA-ssDNA activates the ATR-dependent checkpoint and homology-directed repair (HDR) via Rad51-dependent mechanisms. On the other hand, the fate of DSBs sustained during vertebrate M phase is largely unknown. We use cell-free Xenopus laevis egg extracts to examine the recruitment of proteins to chromatin after DSB formation. We find that S-phase extract recapitulates a two-step resection mechanism. M-phase chromosomes are also resected in cell-free extracts and cultured human cells. In contrast to the events in S phase, M-phase resection is solely dependent on MRN-CtIP. Despite generation of RPA-ssDNA, M-phase resection does not lead to ATR activation or Rad51 chromatin association. Remarkably, we find that Cdk1 permits resection by phosphorylation of CtIP but also prevents Rad51 binding to the resected ends. We have thus identified Cdk1 as a critical regulator of DSB repair in M phase. Cdk1 induces persistent ssDNA-RPA overhangs in M phase, thereby preventing both classical NHEJ and Rad51-dependent HDR.  相似文献   

14.
A case-control study was conducted to analyze the possible associations between the head and neck cancer (HNC) risk and fourteen single nucleotide polymorphisms (SNPs) and haplotypes in Xrcc3 and Rad51 genes. This study involved 81 HNC cases and 111 healthy control subjects. A significant risk-increasing effect of rs3212057 (p.Arg94His) SNP in Xrcc3 (OR=6.6; p<0.01) was observed. On the other hand, risk-decreasing effect was found for rs5030789 (g.3997A>G) and rs1801321 (c.-60G>T) in 5' near gene and 5'UTR regions of Rad51, respectively (OR=0.3 and OR=0.2, p<0.05, respectively). Moreover, these effects were shown to be modulated by tobacco-smoking status and gene-gene interactions. Concluding, the genetic variability of Xrcc3 and/or Rad51 genes might be of relevance with respect to HNC risk.  相似文献   

15.
Homologous recombination is important for the repair of double-stranded DNA breaks in all organisms. Rad51 and Rad54 proteins are two key components of the homologous recombination machinery in eukaryotes. In vitro, Rad51 protein assembles with single-stranded DNA to form the helical nucleoprotein filament that promotes DNA strand exchange, a basic step of homologous recombination. Rad54 protein interacts with this Rad51 nucleoprotein filament and stimulates its DNA pairing activity, suggesting that Rad54 protein is a component of the nucleoprotein complex involved in the DNA homology search. Here, using physical criteria, we demonstrate directly the formation of Rad54-Rad51-DNA nucleoprotein co-complexes that contain equimolar amounts of each protein. The binding of Rad54 protein significantly stabilizes the Rad51 nucleoprotein filament formed on either single-stranded DNA or double-stranded DNA. The Rad54-stabilized nucleoprotein filament is more competent in DNA strand exchange and acts over a broader range of solution conditions. Thus, the co-assembly of an interacting partner with the Rad51 nucleoprotein filament represents a novel means of stabilizing the biochemical entity central to homologous recombination, and reveals a new function of Rad54 protein.  相似文献   

16.
17.
Rad51 protein promotes homologous recombination in eukaryotes. Recombination activities are activated by Rad51 filament assembly on ssDNA. Previous studies of yeast Rad51 showed that His352 occupies an important position at the filament interface, where it could relay signals between subunits and active sites. To investigate, we characterized yeast Rad51 H352A and H352Y mutants, and solved the structure of H352Y. H352A forms catalytically competent but salt-labile complexes on ssDNA. In contrast, H352Y forms salt-resistant complexes on ssDNA, but is defective in nucleotide exchange, RPA displacement and strand exchange with full-length DNA substrates. The 2.5 Å crystal structure of H352Y reveals a right-handed helical filament in a high-pitch (130 Å) conformation with P61 symmetry. The catalytic core and dimer interface regions of H352Y closely resemble those of DNA-bound Escherichia coli RecA protein. The H352Y mutation stabilizes Phe187 from the adjacent subunit in a position that interferes with the γ-phosphate-binding site of the Walker A motif/P-loop, potentially explaining the limited catalysis observed. Comparison of Rad51 H352Y, RecA–DNA and related structures reveals that the presence of bound DNA correlates with the isomerization of a conserved cis peptide near Walker B to the trans configuration, which appears to prime the catalytic glutamate residue for ATP hydrolysis.  相似文献   

18.
Homologous recombination is of major importance for the prevention of genomic instability during chromosome duplication and repair of DNA damage, especially double-strand breaks. Biochemical experiments have revealed that during the process of homologous recombination the RAD52 group proteins, including Rad51, Rad52 and Rad54, are involved in an essential step: formation of a joint molecule between the broken DNA and the intact repair template. Accessory proteins for this reaction include the Rad51 paralogs and BRCA2. The significance of homologous recombination for the cell is underscored by the evolutionary conservation of the Rad51, Rad52 and Rad54 proteins from yeast to humans. Upon treatment of cells with ionizing radiation, the RAD52 group proteins accumulate at the sites of DNA damage into so-called foci. For the yeast Saccharomyces cerevisiae, foci formation of Rad51 and Rad54 is abrogated in the absence of Rad52, while Rad51 foci formation does occur in the absence of the Rad51 paralog Rad55. By contrast, we show here that in mammalian cells, Rad52 is not required for foci formation of Rad51 and Rad54. Furthermore, radiation-induced foci formation of Rad51 and Rad54 is impaired in all Rad51 paralog and BRCA2 mutant cell lines tested, while Rad52 foci formation is not influenced by a mutation in any of these recombination proteins. Despite their evolutionary conservation and biochemical similarities, S. cerevisiae and mammalian Rad52 appear to differentially contribute to the DNA-damage response.  相似文献   

19.
Rad51D, one of five Rad51 paralogs, is required for homologous recombination and disruption of Holliday junctions with bloom syndrome protein (BLM) in vertebrates. The N-terminal domain of Rad51D is highly conserved in eukaryotic Rad51D orthologs and is essential for protein-protein interaction with XRCC2, but nothing is known about its individual structure or function. In this study, we determined the solution structure of the human Rad51D N-terminal domain (residues 1-83), which consists of four short helices flanked by long N- and C-terminal tails. Interestingly, the position of the N-terminal tail (residues 1-13) is fixed within the domain structure via several hydrophobic interactions between Leu4 and Thr27, Leu4 and Val28, and Val6 and Ile17. We show that the domain preferentially binds to ssDNA versus dsDNA and does not bind to a mobile Holliday junction by electrophoretic mobility shift assay. NMR titration and dynamics studies showed that human Rad51D-N interacts with ssDNA by positively charged and hydrophobic residues on its surface. The results suggest that the N-terminal domain of Rad51D is required for the ssDNA-specific binding function of human Rad51D and that the conserved N-terminal domains of other Rad51 paralogs may have distinguishable functions from each other in homologous recombination.  相似文献   

20.
Replication of herpes simplex virus 1 is coupled to recombination, but the molecular mechanisms underlying this process are poorly characterized. The role of Rad51 and Rad52 recombinases in viral recombination was examined in human fibroblast cells 1BR.3.N (wild type) and in GM16097 with replication defects caused by mutations in DNA ligase I. Intermolecular recombination between viruses, tsS and tsK, harboring genetic markers gave rise to ∼17% recombinants in both cell lines. Knock-down of Rad51 and Rad52 by siRNA reduced production of recombinants to 11% and 5%, respectively, in wild type cells and to 3% and 5%, respectively, in GM16097 cells. The results indicate a specific role for Rad51 and Rad52 in recombination of replicating herpes simplex virus 1 DNA. Mixed infections using clinical isolates with restriction enzyme polymorphisms in the US4 and US7 genes revealed recombination frequencies of 0.7%/kbp in wild type cells and 4%/kbp in GM16097 cells. Finally, tandem repeats in the US7 gene remained stable upon serial passage, indicating a high fidelity of recombination in infected cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号