首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary The three-way differentiation of sister chromatids (3-way SCD) in M3 endoreduplicated chromosomes in a Bloom syndrome (BS) B-lymphoid cell line, suggested that in addition to exchanges between sister chromatids (intra-exchanges), non-sister chromatid exchanges (inter-exchanges) also occur, especially in BS high SCE cells. In BS diploid chromosomes such inter-exchanges probably get confused with intra-exchanges when total SCEs are accounted for. Bloom syndrome high SCE cells probably do not follow the same bromodeoxyuridine (BrdU) uptake pattern over three cell cycles as normal cells. The 3-way SCD in M3 endoreduplicated chromosomes can be explained on the basis of Schvartzman's second model (1979) as well as Miller's model (1976), depending on the pattern of uptake of BrdU over three cell cycles. An interference in the previous events of exchanges in the following cell cycle (i.e., cancellation of SCEs) in BS chromosomes was observed in some regions, though not in high numbers.  相似文献   

2.
Differential fluorescence of sister chromatids (SCD) and sister chromatid exchanges (SCE) were visualized in chromosomes obtained directly from growing chicken embryos. SCD was obtained by exposing 3-day embryos to BrdU (12.5-50 mug) in ovo for 26 hours and staining air dried chromosome preparations with 33258 Hoechst. Bright, stable fluorescence and continued SCD were achieved if slides were mounted in McIlvaine's pH 4.4 buffer. Embryo growth, mitotic activity and gross chromosome morphology were not adversely altered by the BrdU treatments. The SCE rate was estimated to be 0.07 SCEs per macrochromosome and 0.75 SCEs per metaphase for two cell cycles.  相似文献   

3.
Sister chromatid exchange (SCE) induction by methotrexate (MTX) was analyzed in C3H10T1/2 clone 8 mouse cells and in two MTX-resistant subclones with numerous double minute chromosomes (DM) present in the majority of cells. Significantly higher SCE levels were found, as expected, in sensitive cells after treatments with 10-2 or 10-5M MTX but not in resistant cells permanently growing in the presence of a high concentration of MTX (2×10-3M) and characterized by a markedly lower cell cycle replication index (R.I.), i.e. in conditions that are known to otherwise favour SCE induction. These observations suggest, for the MTX-resistant cells under study, the existence of conditions limiting SCE formation.  相似文献   

4.
5.
A stable staining procedure of sister-chromatid differentiation (SCD) using a monoclonal antibromodeoxyuridine (BrdU) antibody was newly established by combining it with the immunoperoxidase reaction (3,3'-diaminobenzidine, DAB reaction). This procedure permitted detection of SCD and SCE at very low BrdU concentrations. SCD was not usually observed below 2.0 micrograms/ml BrdU with flame-dried chromosome slides. When chromosome slides were prepared by air-drying over 37 degrees C warm water, SCD was detected at 10.0, 5.0, 1.0, 0.5, 0.3 and 0.2 micrograms/ml BrdU with FPG and even at 0.1 microgram/ml BrdU with the antibody technique. SCE levels were evaluated using the antibody technique and endomitotic analysis with FPG at low BrdU concentrations (1.0, 0.5, 0.3, 0.2 microgram/ml) in two BS B-lymphoblastoid cell lines (LCLs). Even though the BS SCE level was approximately 70 per cell at 10 micrograms/ml, the value decreased to the level of 20-30 SCE per cell at 0.1 microgram/ml with the antibody technique. In BrdU-labelled BS endomitoses, single SCEs highly decreased with BrdU concentrations (130-140 level at 10 micrograms/ml: 38-60 level at 0.2 microgram/ml), when compared to the rare twin SCE values (3-6 SCE level) at all BrdU concentrations. These findings conclusively indicate that the spontaneous baseline SCE in BS B-lymphoblastoid cells is low and most BS SCEs are caused by BrdU.  相似文献   

6.
Rotenone-induced endoreduplication was investigated in Chinese hamster CHL cells. Cell cycle analyses, using 5-bromo-2-deoxyuridine (BrdU) labeling, revealed that endoreduplicaiton was induced between the G2-phase and mitotic metaphase. Morphological studies indicated that the chromosomes of cells in metaphase at the time of rotenone exposure immediately aggregated. Within 1 h, however, the aggregated chromosomes began to decondense forming telophase nuclei. Cells with aggregated chromosomes were collected by mitotic selection using the mitotic arrestant TN-16 and then cultured for 30 h following rotenone administration. This population of cells demonstrated an extremely high frequency of endoreduplicated metaphases. Further analysis by BrdU labeling indicated that the aggregated metaphases underwent only one round of DNA replication before endoreduplicated metaphases were formed. The most sensitive period for the induction of endoreduplication by rotenone occurs during mitotic metaphase.by M.F. Trendelenburg  相似文献   

7.
Central and peripheral sister chromatid exchanges (SCE) were evaluated separately in human phytohemagglutinin (PHA)-stimulated lymphocytes after culture for 72 h in 5-bromodeoxyuridine (BrdU) containing medium. At the same time, the length of chromosome No. 1 was measured in 10 metaphases per case and the mean value taken as a representative parameter for the contraction of chromosomes. The statistical analysis of regression revealed a close relationship between the percentage of SCE observed in the centromere and the contraction state of chromosomes (P less than or equal to 0.01). A statistically significant increase of central exchanges was seen in more condensed chromosomes, due to the difficulty in differentiating clearly between centric and pericentric exchanges. Consequently, if exchanges in the centromere are omitted from evaluation, this would lead to spuriously low SCE rates in more contracted chromosomes. In order to exclude the variable factor of chromosome contraction in SCE studies, we highly recommend inclusion of counts of central exchanges. Results obtained on chromosomes with twisted chromatids, a situation which tends to stimulate SCE, should be omitted.  相似文献   

8.
Sodium selenite (Na2SeO3) was tested for its sister-chromatid exchange (SCE)-inducing ability in human whole blood cultures and for the effect of its co-exposure with methyl methanesulfonate (MMS) or N-hydroxy-2-acetylaminofluorene (N-OH-AAF) on SCE frequency. Long exposure times (77 h and 96 h) to 3.95 X 10(-6) M Na2SeO3 resulted in cell death as measured by mitotic indices, but mitotic figures were present after exposure to higher concentrations for a shorter time (19 h). High Na2SeO3 concentrations (7.90 X 10(-6) and 1.19 X 10(-5) M) resulted in a three-fold increase in the SCE frequency above background level (6--7 SCEs/cell). Exposure of lymphocytes to 1 X 10(-4) M MMS for the last 19 h of culture yielded an average SCE frequency of 30.17 +/- 0.75 while a similar exposure to 2.7 X 10(-5) M N-OH-AAF resulted in 13.61 +/- 0.43 SCEs/cell. Simultaneous addition of the high Na2SeO3 concentrations and MMS or N-OH-AAF to the cultures resulted in SCE frequencies that were 25--30% and 11--17%, respectively, below the sum of the SCE frequencies produced by the individual compounds.  相似文献   

9.
Hydrazine in high concentrations very effectively induces endoreduplication in Chinese hamster V 79 cells. The addition of 5-bromodeoxyuridine (BrdU) for the duration of one cell cycle prior to the induction of endoreduplication produces diplochromosomes with sister chromatid differentiation (SCD) after differential chromatid staining. The fact that diplochromosomes with complete SCD are obtained shows that endoreduplication was induced in cells that were in G2-phase. The analysis of sister chromatid exchanges (SCEs) showed that hydrazine treatment rarely led to increased SCE frequencies in mitoses after endoreduplication, but that it caused a strong SCE induction in diploid second division metaphases in the same culture. Neither catalase nor cysteine had an effect on the induction of endoreduplication or the incidence of SCEs. Treatment of the cells with mitomycin C prior to addition of BrdU led to increased SCE frequencies. Compared with the normal mitoses from the same preparation, the mitoses after endoreduplication showed a significantly reduced induction of SCEs. In contrast to these findings, SCE induction was not reduced in the common tetraploid V 79 cells after colcemid-induced polyploidization.  相似文献   

10.
The Structural Maintenance of Chromosome (SMC) complex, termed cohesin, is essential for sister chromatid cohesion. Cohesin is also important for chromosome condensation, DNA repair, and gene expression. Cohesin is comprised of Scc3, Mcd1, Smc1, and Smc3. Scc3 also binds Pds5 and Wpl1, cohesin-associated proteins that regulate cohesin function, and to the Scc2/4 cohesin loader. We mutagenized SCC3 to elucidate its role in cohesin function. A 5 amino acid insertion after Scc3 residue I358, or a missense mutation of residue D373 in the adjacent stromalin conservative domain (SCD) induce inviability and defects in both cohesion and cohesin binding to chromosomes. The I358 and D373 mutants abrogate Scc3 binding to Mcd1. These results define an Scc3 region extending from I358 through the SCD required for binding Mcd1, cohesin localization to chromosomes and cohesion. Scc3 binding to the cohesin loader, Pds5 and Wpl1 are unaffected in I358 mutant and the loader still binds the cohesin core trimer (Mcd1, Smc1 and Smc3). Thus, Scc3 plays a critical role in cohesin binding to chromosomes and cohesion at a step distinct from loader binding to the cohesin trimer. We show that residues Y371 and K372 within the SCD are critical for viability and chromosome condensation but dispensable for cohesion. However, scc3 Y371A and scc3 K372A bind normally to Mcd1. These alleles also provide evidence that Scc3 has distinct mechanisms of cohesin loading to different loci. The cohesion-competence, condensation-incompetence of Y371 and K372 mutants suggests that cohesin has at least one activity required specifically for condensation.  相似文献   

11.
Chinese hamster cells were grown with 50 M 5-bromodeoxyuridine (BrdU) during the penultimate S phase to obtain chromosomes with the TB-TT chromatid constitution. Chromosome preparations made by the air-drying method were used to study the sister chromatid differential staining (SCD) resulting from ultraviolet (UV) irradiation followed by Giemsa staining by light and scanning electron microscopy (SEM). When chromosomes irradiated with UV light (253.7 nm, 5.2 J/m2/s) for more than 5 h were stained with 1% to 4% Giemsa in phosphate buffered saline (PBS) or in distilled water, the resulting SCD invariably belonged to the B-light type in which the TB-chromatid stained lightly. SEM observations of these chromosomes suggested that the B-light SCD was due to the selective photolysis of the TB-chromatid. On the other hand, when chromosomes were irradiated for only 10 min, and stained with 1% Giemsa in PBS, they showed a B-dark type SCD in which the TB-chromatid stained darkly. However, when chromosomes irradiated for 10 min were stained with 4% Giemsa in PBS or 1% Giemsa in distilled water, the resulting SCD again belonged to the B-light type. These findings indicate that when the irradiation dose is small, the resultant SCD is not a simple reflection of selective photolysis in the TB-chromatids and the type of SCD depends not only on the concentration of Giemsa but also on the salinity of the staining solution.  相似文献   

12.
The influence of low doses of 5-bromodeoxyuridine (BrdU) on the occurrence of sister chromatid exchanges (SCEs) during the first cell cycle, when unsubstituted DNA templates replicate in the presence of the halogenated nucleoside (SCE1) has been assessed in third mitosis (M3) Chinese hamster ovary (CHO) cells showing three-way differential (TWD) staining. In addition, lower concentrations of BrdU, not detectable by Giemsa staining, have been tested by a high resolution immunoperoxidase method (anti-BrdU monoclonal antibody) and SCEs were scored in second mitosis (M2) cells. Our findings was a dose-response curve for SCE1 that allows an estimated mean spontaneous yield of 1.32/cell per cell cycle by extrapolation to zero concentration of BrdU. On the other hand, when the total SCE frequency corresponding to the first and second rounds of replication (SCE1+SCE2) found in M3 chromosomes was compared with the yield of SCEs scored in M2 cells grown in BrdU at doses lower than 1 M no further reduction was achieved. This seems to indicate that SCEs can occur spontaneously in this cell line, though the estimated frequency is higher than that reported in vivo.by S. Wolff  相似文献   

13.
Blood lymphocyte cultures from 32 Comisana and Laticauda sheep breeds (15 males and 17 females) raised in Southern Italy were studied using sister chromatid exchange (SCE) test. Of the 932 cells studied, the SCE-mean value was 7.20 +/- 2.5 per cell for both breeds. Indeed, the SCE mean values were 7.12 +/- 2.45 and 7.28 +/- 2.55 in Comisana and Laticauda breeds, respectively, and the differences were not significant. No statistical differences were noticed between male and female cells (7.25 +/- 2.39 and 7.16 +/- 2.60, respectively). The SCE frequency distribution did not follow a Poisson distribution. The number of SCE were significantly higher than expected in chromosomes 1, 2 and 3 (p < 0.001) and significantly lower than expected in the X and remaining chromosomes (p < 0.001) on the basis of relative chromosome lengths.  相似文献   

14.
The effect of a treatment with 5-fluoro-2'-deoxyuridine (FdUrd) in combination with 2'-deoxyuridine (dUrd) on cell proliferation, incorporation of DNA precursors into DNA and sister-chromatid exchanges (SCEs) has been analyzed in Allium cepa meristem cells. FdUrd in the range 10(-9)-5 X 10(-7) M produced a dose- and time-dependent decrease in the amount of cells in mitosis. This inhibitory effect could be reversed by 70-80% in short-term (6 h) experiments, by exogenously supplied dUrd at a concentration of 10(-4) M. However, at the highest FdUrd dose tested (10(-7) M), 10(-4) M dUrd could not reverse the FdUrd effect in long-term experiments (20 h, about one cell cycle interval), as shown by analyzing the kinetics of synchronous cell populations. DNA extracted from cells pulsed with [6-3H]dUrd in the presence of FdUrd and 6-amino-uracil (6-AU), an inhibitor of uracil-DNA glycosylase, contained a small amount of label (at least 3% of the total radioactivity incorporated into DNA) in the form of [6-3H]dUMP. Thus, we conclude that, under our experimental conditions, exogenously supplied dUrd may be metabolized intracellularly to 2'-deoxyuridine triphosphate (dUTP) and that this deoxynucleotide may eventually be mis-incorporated into DNA. As far as the formation of SCEs is concerned, analysis of second division chromosomes showed that 2'-deoxyuridine monophosphate (dUMP) residues present in newly-synthesized DNA strands are probably not relevant to SCE formation. However, by analyzing SCE levels in third division chromosomes of cells treated with FdUrd and dUrd during their second cycle, we have scored a 6-fold increase in the reciprocal SCE level which demonstrates that the replication of a dUMP-containing DNA template leads to a higher SCE yield.  相似文献   

15.
Schizophrenic patients who were receiving, or who had received chlorpromazine showed SCE levels similar to those in a normal control population. Of 8 normal individuals whose lymphocytes were exposed in vitro to chlorpromazine (0.05–2.00 μg/ml) for two cell cycles, 4 showed a significant increase in SCE, 3 showed no increase and 1 a decrease compared with untreated lymphocytes. Lymphocytes from a further 8 donors treated with 2.0 μg/ml chlorpromazine prior to mitogen stimulation (G0 lymphocytes) showed a similar SCE response. Only 3 of the 8 donors showed a significant increase in SCEs over the baseline level. When proliferating lymphocytes were exposed to chlorpromazine 38 h after culture initiation and prior to the addition of BrdUrd to the culture medium, metaphase chromosomes from only 3 of the 8 individuals studied showed increased levels of exchange. These results indicate that chlorpromazine can induce SCEs in vitro but that there is considerable variation in SCE response among individuals. Furthermore, our data emphasises the importance of using more than 1 or 2 donors when analysing SCE response in human chromosomes.  相似文献   

16.
The effect of bromodeoxyuridine (BrdU)-substituted DNA template and thymidine (dT) pool on excess sister-chromatid exchanges (SCEs) was studied in Bloom syndrome (BS) cells and an ataxia telangiectasia (AT)-derived mutant cell line (AsHa). When BS endomitotic cells were labeled with low and high (or high and low) BrdU concentrations during S1 and S2, only the BrdU concentration during S1 phase affected the observed SCE. In BS cells about a 10-fold increase in SCEs occurs during or following replication on a BrdU-substituted template (high-high and high-low BrdU labeling) relative to the normal DNA template. SCEs decreased to about half in AsHa cells labeled with various BrdU doses (40, 60, 80 and 100 μg/ml) during only S1, compared with those labeled during S1 and S2. Co-cultivation of AsHa and BS cells resulted in a significant reduction in SCE level from 70 to 13–17 in BS cells, lowered the BrdU concentrations necessary for sister-chromatid differential (SCD) staining from 40 to 10 μg/ml with normal SCE level and resulted in decreased level of SCEs at high BrdU concentrations (80–100 μg/ml) 12–14 SCE) in AsHa cells, compared with the originally increased SCE level (36.65 SCE at 100 μg/ml) without co-culture. However, co-cultivation between AsHa and normal cells lowered the BrdU dose necessary for SCD staining from 40 to 30 μg/ml; the dT pool possibly balanced at this level, which is clearly higher than that at co-cultivation between AsHa and BS cells. The reason for the very high BrdU doses needed to achieve SCD would seem to be that AsHa cells have high levels of thymidylate (TMP) synthetase, which maintain a large endogenous thymidine pool. This has been confirmed by direct measurement. These findings strongly support that excess and decreased dT pools are closely related to the condition necessary for high SCE induction.  相似文献   

17.
Summary The frequency of mitotic chiasmata is compared in endoreduplicated and non-endoreduplicated Bloom's syndrome fibroblasts and in endoreduplicated Fanconi's anemia lymphocytes. The incidence of mitotic chiasmata in BS diplochromosomes is greatly increased over that in diploid BS cells and is much higher than in FA or normal diplochromosomes. The distribution of chiasmata among the BS diplochromosomes is not significantly different from that expected if crossing-over occurs at random along the chromosomes. This is in contrast to the distribution of chiasmata in chromosomes of diploid BS cells which is highly non-random among chromosomes and chromosome regions (Kuhn 1976). Mitotic crossing-over is increased in endoreduplicated cells from all sources compared to diploid cells, but the incidence is highest in endoreduplicated BS cells. This provides evidence against the idea that the high rate of mitotic crossing-over in diploid BS lymphocytes is primarily due to an increase in chromosome pairing. BS chromosomes apparently have a greater tendency to undergo mitotic exchange than normal or FA cells, both in diplo-chromosomes and in accidentally paired homologous segments in diploid cells.  相似文献   

18.
Fate of DNA lesions that elicit sister-chromatid exchanges   总被引:3,自引:0,他引:3  
Using 3-way differential staining (TWD) of sister chromatids, the fate of DNA lesions involved in sister-chromatid exchange (SCE) formation was determined in murine bone marrow cells in vivo, after treatment with either mitomycin C (MMC) or cyclophosphamide (CP). Both MMC (2.6 mg/kg b.w.) and CP (7 mg/kg b.w.) induced an SCE frequency near the expected in the 2 subsequent cell divisions, but the frequency of SCE occurring at the same locus in successive cell divisions was substantially lower than expected. The results are compared with previous data obtained after exposure to gamma-rays. A model of SCE induction is proposed.  相似文献   

19.
Sister chromatids of metaphase chromosomes can be differentially stained if the cells have replicated their DNA semiconservatively for two cell cycles in a medium containing 5-bromodeoxyuridine (BrdU). When prematurely condensed chromosomes (PCC) are induced in cells during the second S phase after BrdU is added to the medium, the replicated chromosome segments show sister chromatid differential (SCD) staining. Employing this PCC-SCD system on synchronous and asynchronous Chinese hamster ovary (CHO) cells, we have demonstrated that the replication patterns of the CHO cells can be categorized into G1/S, early, early-mid, mid-late, and late S phase patterns according to the amount of replicated chromosomes. During the first 4 h of the S phase, the replication patterns show SCD staining in chains of small chromosome segments. The amount of replicated chromosomes increase during the mid-late and late S categories (last 4 h). Significantly, small SCD segments are also present during these late intervals of the S phase. Measurements of these replicated segments indicate the presence of characteristic chromosome fragment sizes between 0.2 to 1.2 m in all S phase cells except those at G1/S which contain no SCD fragments. These small segments are operationally defined as chromosome replicating units or chromosomal replicons. They are interpreted to be composed of clusters of molecular DNA replicons. The larger SCD segments in the late S cells may arise by the joining of adjacent chromosomal replicons. Further application of this PCC-SCD method to study the chromosome replication process of two other rodents, Peromyscus eremicus and Microtus agrestis, with peculiar chromosomal locations of heterochromatin has demonstrated an ordered sequence of chromosome replication. The euchromatin and heterochromatin of the two species undergo two separate sequences of decondensation, replication, and condensation during the early-mid and mid-late intervals respectively of the S phase. Similar-sized chromosomal replicons are present in both types of chromatin. These data suggest that mammalian chromosomes are replicated in groups of replicating units, or chromosomal replicons, along their lengths. The organization and structure of these chromosomal replicons with respect to those of the interphase nucleus and metaphase chromosomes are discussed.  相似文献   

20.
In the present paper we have used a rationale based on the development of theoretical equations that define sister-chromatid exchange (SCE) frequencies as a function of two variables, namely the baseline (BrdU-independent) and the BrdU-dependent SCE frequencies. The experimental design includes the estimation of SCE frequencies in second division chromosomes when both cycles occurred in the presence of BrdU and when BrdU incubation took place only during the first cycle in a wide range of BrdU concentrations. The final SCE yields in second division chromosomes could be separated into three different components: (1) The BrdU-independent, ‘spontaneous’ or baseline SCEs, whose low but biologically significant frequency was calculated to be about 0.06 SCEs per pg of DNA; this figure could be similar for most of the cell types; (2) the BrdU-dependent SCEs whose frequency increases with BrdU dose, probably as a result of BrdU substitution for thymidine; (3) the BrdU-dependent SCEs as a consequence of other cellular factors such as disturbance of nucleotide pool sizes. At high BrdU concentrations (300 μM upward) the three components appear to have a significant value in the final SCE yield, whereas at lower BrdU doses the third component seems to be negligible.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号