首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Mesenchymal stem cells and precursor cells are ideal candidates for tendon and ligament tissue engineering; however, for the stem cell-based approach to succeed, these cells would be required to proliferate and differentiate into tendon/ligament fibroblasts on the tissue engineering scaffold. Among the various fiber-based scaffolds that have been used in tendon/ligament tissue engineering, hybrid fibrous scaffolds comprising both microfibers and nanofibers have been recently shown to be particularly promising. With the nanofibrous coating presenting a biomimetic surface, the scaffolds can also potentially mimic the natural extracellular matrix in function by acting as a depot for sustained release of growth factors. In this study, we demonstrate that basic fibroblast growth factor (bFGF) could be successfully incorporated, randomly dispersed within blend-electrospun nanofibers and released in a bioactive form over 1 week. The released bioactive bFGF activated tyrosine phosphorylation signaling within seeded BMSCs. The bFGF-releasing nanofibrous scaffolds facilitated BMSC proliferation, upregulated gene expression of tendon/ligament-specific ECM proteins, increased production and deposition of collagen and tenascin-C, reduced multipotency of the BMSCs and induced tendon/ligament-like fibroblastic differentiation, indicating their potential in tendon/ligament tissue engineering applications.  相似文献   

2.
Tissue engineering of heart valves utilizes biodegradable or metabolizable scaffolds for remodeling by seeded autologous cells. The aim of this study was to determine and compare extracellular matrix (ECM) formations, cellular phenotypes and cell location of native and tissue engineered (TE) valve leaflets. Ovine carotid arteries, ovine and porcine hearts were obtained from slaughterhouses. Cells were isolated from carotid arteries and dissected ovine, porcine and TE leaflets. TE constructs were fabricated from decellularized porcine pulmonary valves, seeded ovine arterial cells and subsequent 16 days dynamic in vitro culture using a pulsatile bioreactor. Native and TE valves were studied by histology (hematoxylin-eosin, resorcin-fuchsin, Movat pentachrome), NIR femtosecond multiphoton laser scanning microscopy and scanning electron microscopy (SEM). Cells of native and TE tissues were identified and localized by immunohistochemistry. Arterial, valvular and re-isolated TE-construct cells were processed for immunocytochemistry and Western blotting. ECM analysis and SEM revealed characteristical and comparable structures in native and TE leaflets. Most cells in native leaflets stained strongly positive for vimentin. Cells positive to alpha-smooth muscle actin (alpha-SMA), myosin and calponin were only found at the ventricular (inflow) side of ovine aortic and porcine pulmonary valve leaflets. Cells from TE constructs had a strong expression of vimentin, alpha-SMA, myosin, calponin and h-caldesmon throughout the entire leaflet. Comparable ECM formation and endothelial cell lining of native and TE leaflets could be demonstrated. However, immunostaining revealed significant differences between valvular cell phenotypes of native and TE leaflets. These results may be essential for further cardiovascular tissue engineering efforts.  相似文献   

3.
4.
Microfabricated systems equipped with 3D cell culture devices and in‐situ cellular biosensing tools can be a powerful bionanotechnology platform to investigate a variety of biomedical applications. Various construction substrates such as plastics, glass, and paper are used for microstructures. When selecting a construction substrate, a key consideration is a porous microenvironment that allows for spheroid growth and mimics the extracellular matrix (ECM) of cell aggregates. Various bio‐functionalized hydrogels are ideal candidates that mimic the natural ECM for 3D cell culture. When selecting an optimal and appropriate microfabrication method, both the intended use of the system and the characteristics and restrictions of the target cells should be carefully considered. For highly sensitive and near‐cell surface detection of excreted cellular compounds, SERS‐based microsystems capable of dual modal imaging have the potential to be powerful tools; however, the development of optical reporters and nanoprobes remains a key challenge. We expect that the microsystems capable of both 3D cell culture and cellular response monitoring would serve as excellent tools to provide fundamental cellular behavior information for various biomedical applications such as metastasis, wound healing, high throughput screening, tissue engineering, regenerative medicine, and drug discovery and development.  相似文献   

5.
Chemical and mechanical stimulation, when properly utilized, positively influence both the differentiation of in vitro cultured stem cells and the quality of the deposited extracellular matrix (ECM). This study aimed to find if cell‐free extract from primary tenocytes can positively affect the development of a tissue‐engineered tendon construct, consisting of a human umbilical vein (HUV) seeded with mesenchymal stem cells (MSCs) subjected to cyclical mechanical stimulation. The tenocytic cell‐free extract possesses biological material from tendon cells that could potentially influence MSC tenocytic differentiation and construct development. We demonstrate that the addition of tenocytic extract in statically cultured tendon constructs increases ECM deposition and tendon‐related gene expression of MSCs. The incorporation of mechanical stimulation (2% strain for 30 min/day at 0.5 cycles/min) with tenocytic extract further improved the MSC seeded HUV constructs by increasing cellularity of the construct by 37% and the ultimate tensile strength by 33% compared to the constructs with only mechanical stimulation after 14 days. Furthermore, the addition of mechanical stimulation to the extract supplementation produced longitudinal ECM fibril alignment along with dense connective tissue, reminiscent of natural tendon.  相似文献   

6.
In vitro 3D tissue‐engineered (TE) structures have been shown to better represent in vivo tissue morphology and biochemical pathways than monolayer culture, and are less ethically questionable than animal models. However, to create systems with even greater relevance, multiple integrated tissue systems should be recreated in vitro. In the present study, the effects and conditions most suitable for the co‐culture of TE skeletal muscle and bone are investigated. High‐glucose Dulbecco's modified Eagle medium (HG‐DMEM) supplemented with 20% fetal bovine serum followed by HG‐DMEM with 2% horse serum is found to enable proliferation of both C2C12 muscle precursor cells and TE85 human osteosarcoma cells, fusion of C2C12s into myotubes, as well as an upregulation of RUNX2/CBFa1 in TE85s. Myotube formation is also evident within indirect contact monolayer cultures. Finally, in 3D co‐cultures, TE85 collagen/hydroxyapatite constructs have significantly greater expression of RUNX2/CBFa1 and osteocalcin/BGLAP in the presence of collagen‐based C2C12 skeletal muscle constructs; however, fusion within these constructs appears reduced. This work demonstrates the first report of the simultaneous co‐culture and differentiation of 3D TE skeletal muscle and bone, and represents a significant step toward a full in vitro 3D musculoskeletal junction model.  相似文献   

7.
To understand complex micro/nanoscale ECM stem cell interactions, reproducible in vitro models are needed that can strictly recapitulate the relative content and spatial arrangement of native tissue. Additionally, whole ECM proteins are required to most accurately reflect native binding dynamics. To address this need, we use multiphoton excited photochemistry to create 3D whole protein constructs or "modules" to study how the ECM governs stem cell migration. The constructs were created from mixtures of BSA/laminin (LN) and BSA alone, whose comparison afforded studying how the migration dynamics are governed from the combination of morphological and ECM cues. We found that mesenchymal stem cells interacted for significantly longer durations with the BSA/LN constructs than pure BSA, pointing to the importance of binding cues of the LN. Critical to this work was the development of an automated system with feedback based on fluorescence imaging to provide quality control when synthesizing multiple identical constructs.  相似文献   

8.
The use of bioreactors for cartilage tissue engineering has become increasingly important as traditional batch‐fed culture is not optimal for in vitro tissue growth. Most tissue engineering bioreactors rely on convection as the primary means to provide mass transfer; however, convective transport can also impart potentially unwanted and/or uncontrollable mechanical stimuli to the cells resident in the construct. The reliance on diffusive transport may not necessarily be ineffectual as previous studies have observed improved cartilaginous tissue growth when the constructs were cultured in elevated volumes of media. In this study, to approximate an infinite reservoir of media, we investigated the effect of continuous culture on cartilaginous tissue growth in vitro. Isolated bovine articular chondrocytes were seeded in high density, 3D culture on Millicell? filters. After two weeks of preculture, the constructs were cultivated with or without continuous media flow (5–10 μL/min) for a period of one week. Tissue engineered cartilage constructs grown under continuous media flow significantly accumulated more collagen and proteoglycans (increased by 50–70%). These changes were similar in magnitude to the reported effect of through‐thickness perfusion without the need for large volumetric flow rates (5–10μL/min as opposed to 240–800 μL/min). Additionally, tissues grown in the reactor displayed some evidence of the stratified morphology of native cartilage as well as containing stores of intracellular glycogen. Future studies will investigate the effect of long‐term continuous culture in terms of extracellular matrix accumulation and subsequent changes in mechanical function. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009  相似文献   

9.
Tissue engineering/regenerative medicine (TERM) is an interdisciplinary field that applies the principle of engineering and life sciences to restore/replace damaged tissues/organs with in vitro artificially‐created ones. Research on TERM quickly moves forward. Today newest technologies and discoveries, such as 3D‐/bio‐printing, allow in vitro fabrication of ex‐novo made tissues/organs, opening the door to wide and probably never‐ending application possibilities, from organ transplant to drug discovery, high content screening and replacement of laboratory animals. Imaging techniques are fundamental tools for the characterization of tissue engineering (TE) products at any stage, from biomaterial/scaffold to construct/organ analysis. Indeed, tissue engineers need versatile imaging methods capable of monitoring not only morphological but also functional and molecular features, allowing three‐dimensional (3D) and time‐lapse in vivo analysis, in a non‐destructive, quantitative, multidimensional analysis of TE constructs, to analyze their pre‐implantation quality assessment and their fate after implantation. This review focuses on the newest developments in imaging technologies and applications in the context of requirements of the different steps of the TERM field, describing strengths and weaknesses of the current imaging approaches.

  相似文献   


10.
The tooth and its supporting tissues are organized with complex three-dimensional (3D) architecture, including the dental pulp with a blood supply and nerve tissues, complex multilayer periodontium, and highly aligned periodontal ligament (PDL). Mimicking such 3D complexity and the multicellular interactions naturally existing in dental structures represents great challenges in dental regeneration. Attempts to construct the complex system of the tooth and tooth-supporting apparatus (i.e., the PDL, alveolar bone, and cementum) have made certain progress owing to 3D printing biotechnology. Recent advances have enabled the 3D printing of biocompatible materials, seed cells, and supporting components into complex 3D functional living tissue. Furthermore, 3D bioprinting is driving major innovations in regenerative medicine, giving the field of regenerative dentistry a boost. The fabrication of scaffolds via 3D printing is already being performed extensively at the laboratory bench and in clinical trials; however, printing living cells and matrix materials together to produce tissue constructs by 3D bioprinting remains limited to the regeneration of dental pulp and the tooth germ. This review summarizes the application of scaffolds for cell seeding and biofabricated tissues via 3D printing and bioprinting, respectively, in the tooth and its supporting tissues. Additionally, the key advantages and prospects of 3D bioprinting in regenerative dentistry are highlighted, providing new ideas for dental regeneration.  相似文献   

11.
Tissues are composed of multiple cell types in a well‐organized three‐dimensional (3D) microenvironment. To faithfully mimic the tissue in vivo, tissue‐engineered constructs should have well‐defined 3D chemical and spatial control over cell behavior to recapitulate developmental processes in tissue‐ and organ‐specific differentiation and morphogenesis. It is a challenge to build a 3D complex from two‐dimensional (2D) patterned structures with the presence of cells. In this study, embryonic stem (ES) cells grown on polymeric scaffolds with well‐defined microstructure were constructed into a multilayer cell‐scaffold complex using low pressure carbon dioxide (CO2) and nitrogen (N2). The mouse ES cells in the assembled constructs were viable, retained the ES cell‐specific gene expression of Oct‐4, and maintained the formation of embryoid bodies (EBs). In particular, cell viability was increased from 80% to 90% when CO2 was replaced with N2. The compressed gas‐assisted bioassembly of stem cell‐polymer constructs opens up a new avenue for tissue engineering and cell therapy. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009  相似文献   

12.
The insufficient load-bearing capacity of today’s tissue- engineered (TE) cartilage limits its clinical application. Generally, cartilage TE studies aim to increase the extracellular matrix (ECM) content, as this is thought to determine the load-bearing properties of the cartilage. However, there are apparent inconsistencies in the literature regarding the correlation between ECM content and mechanical properties of TE constructs. In addition to the amount of ECM, the spatial inhomogeneities in ECM distribution at the tissue scale as well as at the cell scale may affect the mechanical properties of TE cartilage. The relative importance of such structural inhomogeneities on mechanical behavior of TE cartilage is unknown. The aim of the present study was, therefore, to theoretically elucidate the influence of these inhomogeneities on the mechanical behavior of chondrocyte-agarose TE constructs. A validated non-linear fiber-reinforced poro-elastic swelling cartilage model that can accommodate for effects of collagen reinforcement and swelling by proteoglycans was used. At the tissue scale, ECM was gradually varied from predominantly localized in the periphery of the TE construct toward an ECM-rich inner core. The effect of these inhomogeneities in relation to the total amount of ECM was also evaluated. At the cell scale, ECM was gradually varied from localized in the pericellular area, toward equally distributed throughout the interterritorial area. Results from the tissue-scale model indicated that localization of ECM in either the construct periphery or in the inner core may reduce construct stiffness compared with that of constructs with homogeneous ECM. Such effects are more significant at high ECM amounts. At the cell scale, localization of ECM around the cells significantly reduced the overall stiffness, even at low ECM amounts. The compressive stiffness gradually increased when ECM distribution became more homogeneous and the osmotic swelling pressure in the interterritorial area increased. We conclude that for the same amount of ECM content in TE cartilage constructs, superior mechanical properties can be achieved with more homogeneous ECM distribution at both tissue and cell scale. Inhomogeneities at the cell scale are more important than those at the tissue scale.  相似文献   

13.
Bioprinting is the assembly of three-dimensional (3D) tissue constructs by layering cell-laden biomaterials using additive manufacturing techniques, offering great potential for tissue engineering and regenerative medicine. Such a process can be performed with high resolution and control by personalized or commercially available inkjet printers. However, bioprinting's clinical translation is significantly limited due to process engineering challenges. Upstream challenges include synthesis, cellular incorporation, and functionalization of “bioinks,” and extrusion of print geometries. Downstream challenges address sterilization, culture, implantation, and degradation. In the long run, bioinks must provide a microenvironment to support cell growth, development, and maturation and must interact and integrate with the surrounding tissues after implantation. Additionally, a robust, scaleable manufacturing process must pass regulatory scrutiny from regulatory bodies such as U.S. Food and Drug Administration, European Medicines Agency, or Australian Therapeutic Goods Administration for bioprinting to have a real clinical impact. In this review, recent advances in inkjet-based 3D bioprinting will be presented, emphasizing on biomaterials available, their properties, and the process to generate bioprinted constructs with application in medicine. Current challenges and the future path of bioprinting and bioinks will be addressed, with emphasis in mass production aspects and the regulatory framework bioink-based products must comply to translate this technology from the bench to the clinic.  相似文献   

14.
Bone extracellular matrix (ECM) is a 3D network, composed of collagen type I and a number of other macromolecules, including glycosaminoglycans (GAGs), which stimulate signaling pathways that regulate osteoblast growth and differentiation. To model the ECM of bone for tissue regenerative approaches, dense collagen/chitosan (Coll/CTS) hybrid hydrogels were developed using different proportions of CTS to mimic GAG components of the ECM. MC3T3-E1 mouse calvaria preosteoblasts were seeded within plastically compressed Coll/CTS hydrogels with solid content approaching that of native bone osteoid. Dense, cellular Coll/CTS hybrids were maintained for up to 8 weeks under either basal or osteogenic conditions. Higher CTS content significantly increased gel resistance to collagenase degradation. The incorporation of CTS to collagen gels decreased the apparent tensile modulus from 1.82 to 0.33 MPa. In contrast, the compressive modulus of Coll/CTS hybrids increased in direct proportion to CTS content exhibiting an increase from 23.50 to 55.25 kPa. CTS incorporation also led to an increase in scaffold resistance to cell-induced contraction. MC3T3-E1 viability, proliferation, and matrix remodeling capability (via matrix metalloproteinase expression) were maintained. Alkaline phosphatase activity was increased up to two-fold, and quantification of phosphate mineral deposition was significantly increased with CTS incorporation. Thus, dense Coll/CTS scaffolds provide osteoid-like models for the study of osteoblast differentiation and bone tissue engineering.  相似文献   

15.
Bioprinting, which is based on thermal inkjet printing, is one of the most attractive enabling technologies in the field of tissue engineering and regenerative medicine. With digital control cells, scaffolds, and growth factors can be precisely deposited to the desired two-dimensional (2D) and three-dimensional (3D) locations rapidly. Therefore, this technology is an ideal approach to fabricate tissues mimicking their native anatomic structures. In order to engineer cartilage with native zonal organization, extracellular matrix composition (ECM), and mechanical properties, we developed a bioprinting platform using a commercial inkjet printer with simultaneous photopolymerization capable for 3D cartilage tissue engineering. Human chondrocytes suspended in poly(ethylene glycol) diacrylate (PEGDA) were printed for 3D neocartilage construction via layer-by-layer assembly. The printed cells were fixed at their original deposited positions, supported by the surrounding scaffold in simultaneous photopolymerization. The mechanical properties of the printed tissue were similar to the native cartilage. Compared to conventional tissue fabrication, which requires longer UV exposure, the viability of the printed cells with simultaneous photopolymerization was significantly higher. Printed neocartilage demonstrated excellent glycosaminoglycan (GAG) and collagen type II production, which was consistent with gene expression. Therefore, this platform is ideal for accurate cell distribution and arrangement for anatomic tissue engineering.  相似文献   

16.
The supply of oxygen within three-dimensional tissue-engineered (TE) cartilage polymer constructs is mainly by diffusion. Oxygen consumption by cells results in gradients in the oxygen concentration. The aims of this study were, firstly, to identify the gradients within TE cartilage polymer constructs and, secondly, to predict the profiles during in vitro culture. A glass microelectrode system was adapted and used to penetrate cartilage and TE cartilaginous constructs, yielding reproducible measurements with high spatial resolution. Cartilage polymer constructs were cultured for up to 41 days in vitro. Oxygen concentrations, as low as 2-5%, were measured within the center of these constructs. At the beginning of in vitro culture, the oxygen gradients were steeper in TE constructs in comparison to native tissue. Nevertheless, during the course of culture, oxygen concentrations approached the values measured in native tissue. A mathematical model was developed which yields oxygen profiles within cartilage explants and TE constructs. Model input parameters were assessed, including the diffusion coefficient of cartilage (2.2 x 10(-9)) + (0.4 x 10(-9) m(2) s(-1)), 70% of the diffusion coefficient of water and the diffusion coefficient of constructs (3.8 x 10(-10) m(2) s(-1)). The model confirmed that chondrocytes in polymer constructs cultured for 27 days have low oxygen requirements (0.8 x 10(-19) mol m(-3) s(-1)), even lower than chondrocytes in native cartilage. The ability to measure and predict local oxygen tensions offers new opportunities to obtain more insight in the relation between oxygen tension and chondrogenesis.  相似文献   

17.
Efficient cell seeding and subsequent support from a substrate ensure optimal cell growth and neotissue development during tissue engineering, including heart valve tissue engineering. Fibrin gel as a cell carrier may provide high cell seeding efficiency and adhesion property, improved cellular interaction, and structural support to enhance cellular growth in trilayer polycaprolactone (PCL) substrates that mimic the structure of native heart valve leaflets. This cell carrier gel coupled with a trilayer PCL substrate may enable the production of native-like cell-cultured leaflet constructs suitable for heart valve tissue engineering. In this study, we seeded valvular interstitial cells onto trilayer PCL substrates with fibrin gel as a cell carrier and cultured them for 1 month in vitro to determine if this gel can improve cell proliferation and production of extracellular matrix within the trilayer cell-cultured constructs. We observed that the fibrin gel enhanced cellular proliferation, their vimentin expression, and collagen and glycosaminoglycan production, leading to improved structure and mechanical properties of the developing PCL cell-cultured constructs. Fibrin gel as a cell carrier significantly improved the orientations of the cells and their produced tissue materials within trilayer PCL substrates that mimic the structure of native heart valve leaflets and, thus, may be highly beneficial for developing functional tissue-engineered leaflet constructs.  相似文献   

18.
The combination of hMSCs with 3D scaffolds has become an important approach to creating functional bone constructs. Bioreactors are important tools to mitigate mass transfer limitations and to provide controlled physiochemical and biomechanical environments for the 3D bone construct development. Media flow in the bioreactor systems is generally controlled either parallel or transverse with respect to the 3D construct, creating different cellular and biomechanical microenvironments in the 3D constructs. In this study, a custom designed modular perfusion bioreactor system was operated under either the parallel or transverse flow. The influence of the flow patterns on the characteristics of the hMSCs' cellular microenvironment and subsequent construct development was investigated. The parallel flow configuration retained ECM proteins and mitogenic growth factors within the scaffold, effectively preserving hMSC progenicity and proliferation potential (e.g., CFU-F, proliferation, and OCT-4), whereas the transverse flow induced hMSC osteogenic differentiation with higher ALP activity and calcium deposition and up-regulation of osteogenic bone markers (e.g., BMP-2, ALP, RUNX2, OSX, and OC). These results demonstrate the regulatory role of the macroscopic flow on the cellular microenvironment of the 3D hMSC construct, and suggest configuring media flow as a strategy for directing hMSC fate and 3D bone construct development in the perfusion bioreactor.  相似文献   

19.
For the aim of ex vivo engineering of functional tissue substitutes, Laser-assisted BioPrinting (LaBP) is under investigation for the arrangement of living cells in predefined patterns. So far three-dimensional (3D) arrangements of single or two-dimensional (2D) patterning of different cell types have been presented. It has been shown that cells are not harmed by the printing procedure. We now demonstrate for the first time the 3D arrangement of vital cells by LaBP as multicellular grafts analogous to native archetype and the formation of tissue by these cells. For this purpose, fibroblasts and keratinocytes embedded in collagen were printed in 3D as a simple example for skin tissue. To study cell functions and tissue formation process in 3D, different characteristics, such as cell localisation and proliferation were investigated. We further analysed the formation of adhering and gap junctions, which are fundamental for tissue morphogenesis and cohesion. In this study, it was demonstrated that LaBP is an outstanding tool for the generation of multicellular 3D constructs mimicking tissue functions. These findings are promising for the realisation of 3D in vitro models and tissue substitutes for many applications in tissue engineering.  相似文献   

20.
In this work, we investigated whether osteoinductive constructs can be generated by isolation and expansion of sheep bone marrow stromal cells (BMSC) directly within three-dimensional (3D) ceramic scaffolds, bypassing the typical phase of monolayer (2D) expansion prior to scaffold loading. Nucleated cells from sheep bone marrow aspirate were seeded into 3D ceramic scaffolds either by static loading or under perfusion flow and maintained in culture for up to 14 days. The resulting constructs were exposed to enzymatic treatment to assess the number and lineage of extracted cells, or implanted subcutaneously in nude mice to test their capacity to induce bone formation. As a control, BMSC expanded in monolayer for 14 days were also seeded into the scaffolds and implanted. BMSC could be isolated and expanded directly in the 3D ceramic scaffolds, although they proliferated slower than in 2D. Upon ectopic implantation, the resulting constructs formed a higher amount of bone tissue than constructs loaded with the same number of 2D-expanded cells. Constructs cultivated for 14 days generated significantly more bone tissue than those cultured for 3 days. No differences in bone formation were found between samples seeded by static loading or under perfusion. In conclusion, the culture of bone marrow nucleated cells directly on 3D ceramic scaffolds represents a promising approach to expand BMSC and streamline the engineering of osteoinductive grafts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号