首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 561 毫秒
1.
2.
Diaphorina citri (Kuwayama) is a global pest of citrus that transmits the bacteria associated with the disease, Huanglongbing. Entomopathogenic fungi and the parasitoid Tamarixia radiata (Waterston) are important biological control agents of this pest and likely to interact in D. citri populations. As a basis for interaction studies, we determined the susceptibility of nymphs and adults of D. citri and adults of the parasitoid T. radiata to six fungal isolates from the species Beauveria bassiana s.l. (Bals.-Criv.) Vuill. (isolates B1 and B3), Metarhizium anisopliae s.s. (Metsch.) (Ma129 and Ma65) and Isaria fumosorosea Wize (I2 and Pae). We conducted experiments evaluating infection levels in all three insect groups following inoculation with a series of conidial concentrations (1 × 104–1 × 108 conidia mL?1). Results showed that D. citri nymphs and T. radiata were more susceptible to fungal isolates than D. citri adults. Overall, B. bassiana and M. anisopliae isolates caused the greatest infection compared with I. fumosorosea isolates in all three groups of insects. Isolates B1 (B. bassiana) and Ma129 (M. anisopliae) infected a greater proportion of adults and nymphs of D. citri, respectively. Both isolates of B. bassiana caused greater infection in T. radiata compared with isolates of the other fungal species. We propose that isolates B1 and Ma129 are the strongest candidates for control of D. citri. Our results represent the first report of entomopathogenic fungi infecting T. radiata, and the basis for future studies to design a biological control programme that uses both agents more efficiently against D. citri populations.  相似文献   

3.
Seven isolates of entomopathogenic fungi, Isaria fumosorosea (IFCF-H and IFCF-L), Beauveria bassiana s.l. (Bb02 and Bb04) and Metarhizium anisopliae s.l. (Ma01, SM076 and M09), were selected for their pathogenicity against Solenopsis invicta as well as feeding preference of S. invicta. When ants were treated with a conidial suspension at a concentration of 1 × 108 conidia/ml, the median lethal times (LT50) of IFCF-H, IFCF-L, Bb02, Bb04, Ma01, SM076 and M09 were 3.4, 162.6, 7.3, 2.8, 3.8, 7.3 and 2.7 days, respectively, after 10 days. The median lethal concentrations (LC50) on the 10th day after inoculation were 1.20 × 107, 1.56 × 1010, 4.23 × 107, 3.04 × 106, 6.13 × 106, 2.90 × 107 and 9.90 × 105 conidia/ml, respectively. Furthermore, S. invicta consumed significantly less solution flavoured with Bb04 conidia than the control, which was demonstrated by the lowest preference index (PREF = 0.09). S. invicta did not have a significant feeding preference for other fungal isolates. The pathogenicity (LC50) of fungal isolates was not significantly correlated (R2 = 0.013) with the PREF of S. invicta. However, in the paired-choice experiments between different virulent isolates belonging to the same genera, S. invicta tended to select the solution flavoured with conidia of relatively lower pathogenic isolates such as IFCF-L, Bb02 and SM076. We conclude that the pathogenicity of congeneric fungi may affect the feeding preference of S. invicta. Red imported fire ants might adjust their feeding response to entomopathogenic fungi based on the profile of microbial volatile organic compounds.  相似文献   

4.
This study compared the insecticidal activity of liquid culture-produced blastospores and solid substrate-produced aerial conidia of Beauveria bassiana GHA and Isaria fumosorosea ARSEF3581 strains against Diaphorina citri adults. Insects exposed to 107 propagules/ml in a spray residue contact leaf bioassay died within 6 days at 25°C, with no significant differences between fungal treatments. At higher concentrations (108 propagules/ml), I. fumosorosea conidia killed psyllids faster compared to its blastospore formulation, i.e. 4 versus 5 days, respectively. In greenhouse tests, the same treatments applied to infested citrus plants (2?×?106 spores/ml) all significantly reduced the number of nymphs compared with the untreated controls over 3 weeks; however, only I. fumosorosea blastospores significantly reduced the number of F1 adult psyllids when compared with controls. Similar results were observed in the follow-up greenhouse test, where I. fumosorosea blastospores were the most effective treatment overall, reducing D. citri populations by about 60% after 21 days; by contrast, imidacloprid killed almost 100% of psyllids within a week in both tests. Fewer psyllids exhibited mycosis in the greenhouse (i.e. ≈20 versus?≥?87% in the laboratory). This is the first report comparing both conidial and blastospore formulations of B. bassiana and I. fumosorosea for the control of a psyllid pest. Field testing is required to determine how successful different spore formulations might be under various environmental conditions.  相似文献   

5.
Recently, the Q biotype of tobacco whitefly has been recognized as the most hazardous strain of Bemisia tabaci worldwide because of increased resistance to some insecticide groups requiring alternative strategies for its control. We studied the susceptibility of this biotype of B. tabaci to 21 isolates of Beauveria bassiana, three isolates of Isaria fumosorosea, one isolate of I. cateni, three isolates of Lecanicillium lecanii, one isolate of L. attenuatum, and one isolate of Aschersonia aleyrodis. These isolates were evaluated on pruned eggplant seedlings, at a concentration of 108 conidia/mL (deposited at 6000±586 conidia mm?2). The mortality based on mycosis varied from 18 to 97% after 6 days. Isaria fumosorosea isolate Pf04, B. bassiana isolates Bb06, Bb12, and L. lecanii L14 were found the most effective. Furthermore, five isolates were chosen for concentration–mortality response assays and compared to B. bassiana GHA as a standard. The numbers of nymphs infected by fungi were correlated with the spore concentration. L. lecanii L14 and I. fumosorosea Pf04 had the shortest LT50 at 3.5 and 3.3 days at 6000±586 conidia mm?2. Mortality declined and LT50 values were longer as the concentration of conidia was reduced. The LD50 values were calculated as 87, 147, 191, 263, and 269 conidia mm?2 for isolates L14, GHA, AS1260, Bb13, and Pf04, respectively. These results indicated that the Q biotype of sweetpotato whitefly was susceptible to the five isolates of entomopathogenic fungi and these isolates have potential to be developed as microbial pesticides for whitefly control.  相似文献   

6.
The pathogenicity of 15 isolates of Beauveria bassiana (Balsamo) Vuillemin, five isolates of Metarhizium anisopliae (Metschnikoff) Sorokin and one isolate of M. flavoviride (Gams and Rozsypal) were tested under laboratory conditions against the subterranean life stages of the citrus pests, Ceratitis rosa Karsch, C. capitata Wiedemann (Diptera: Tephritidae) and Thaumatotibia leucotreta Meyrick. (Lepidoptera: Tortricidae). When these citrus pests were treated with a concentration of 1×107 conidia mL?1, fungal isolates had a significantly greater effect on the adults of C. rosa and C. capitata than they did on the puparia of these two fruit fly species. Further, C. rosa and C. capitata did not differ significantly in their response to entomopathogenic fungi when adult and pupal mycosis were considered. Depending on fungal isolate, the percentage of T. leucotreta adults which emerged from fungal treated sand ranged from 5 to 60% and the percentage of pupae with visible signs of mycosis ranged from 21 to 93%. The relative virulence of the four most promising fungal isolates, as well as the commercially available B. bassiana product, BroadBand® (Biological Control Products, South Africa), were compared against one another as log-probit regressions of mortality against T. leucotreta which exhibited a dose-dependent response. The estimated LC50 values of the three most virulent B. bassiana isolates ranged from 6.8×105 to 2.1×106 conidia mL?1, while those of the least pathogenic ranged from 1.6×107 to 3.7×107 conidia mL?1.  相似文献   

7.
《Journal of Asia》2022,25(2):101885
The beetle Dinoderus porcellus Lesne is a serious storage insect pest that causes important losses by destroying stocks of yam chips. In the aim to found an alternative control method to the use of synthetic insecticides for its management, the virulence of the entomopathogenic fungi Beauveria bassiana (Balsamo) Vuillemin (isolate Bb115) and Metarhizium anisopliae (Metschnikoff) Sorokin (isolate Met 31) against adults of D. porcellus was evaluated under laboratory conditions (25 ± 2 °C and 70 ± 5% RH). Then, the effectiveness of the most virulent entomopathogenic fungus as biological agent against D. porcellus was assessed under farmer storage conditions. For each entomopathogenic fungus isolate, four conidial concentration (0, 105, 107, and 109 conidia/mL) at the dose of 1 µL were inoculated topically on D. porcellus adults (3–5 days old). Observations focused on insect mortality, cadaver sporulation and weight loss of yam chips. Lethal dose and lethal time values were estimated using probit analysis. Both fungal isolates at all conidial dose caused more than 50% mortality on day 7, with the highest mortality (94.44%) achieved using B. bassiana at the 109 conidia/mL. LT50 values for B. bassiana and M. anisopliae isolates were 2.63 and 3.35 days, respectively, while their LT90 values were 6.15 and 9.87 days, respectively. Yielding the lower LD90 values and the highest rates of cadaver sporulation, B. bassiana isolate appeared as the most virulent against D. porcellus. After 3 months of storage, comparatively to the control, the B. bassiana isolate at the highest conidial dose (109 conidia/mL) significantly reduced D. porcellus populations, and weight loss of yam chips. This study revealed the potential of B. bassiana and M. anisoplae isolates as biological control agent against D. porcellus for yam chips protection.  相似文献   

8.
Abstract The red turpentine beetle (RTB), Dendroctonus valens LeConte, as a destructive invasive pest, has become one of the most economically important forest pest in China. Effective control measures are desperately needed. Entomopathogenic fungi, such as Beauveria bassiana, have shown great potential for the management of some bark beetle species. In this study, 12 isolates of B. bassiana from bark beetle were examined for biological characteristics and virulence, to assess their potential as biocontrol agents for RTB. There were significant differences (at P= 0.05) in colony growth rate, conidial yield, conidial germination, tolerance to UV light and extracellular proteases activity among the tested B. bassiana isolates. Isolates, including Bb1801, Bb1906, Bb789 and Bb773, exhibited the best characteristics, because they have faster hyphal growth rate, higher spore production and faster spore germination, higher UV tolerance and protease (Pr1) production. The results of a pathogenicity test of B. bassiana on RTB larvae showed that most isolates of B. bassiana have demonstrated high efficacy and the highest virulent isolate was Bb1801, which killed 100% of the treated insects and had a median lethal time (LT50) of 4.60 days at a concentration of 1×107 conidia/mL. Therefore, isolate Bb1801 has a great potential for sustainable control of RTB in the forest. The correlation between biological characteristics and virulence of the fungal isolates is discussed and the possibility of combination of entomopathogenic fungi with semiochemicals, as one of the promising strategy for RTB control, is considered.  相似文献   

9.
Helicoverpa armigera, a polyphagous insect of crops and vegetables, is acquiring resistance against many commercial insecticides. The present study shows variations in the activity of two detoxification enzymes, namely esterase and glutathione S‐transferase (GST), in H. armigera after exposure to different isolates of entomopathogenic fungi. After treatment of larvae with the different isolates (Day 0), samples were collected on three days (Days 3, 5 and 7) for enzyme analysis. High GST activity was found in samples of hemolymph, intestine and fat bodies of H. armigera following treatment with Beauveria bassiana (isolate Bb‐08), Metarhizium anisopliae (isolates Ma‐11.1 and Ma‐4.1), and Isaria fumosorosea (isolates If‐02 and If‐2.3). High esterase activity was recorded in samples of the intestine and fat bodies on various days after treatment, whereas increased esterase activity in hemolymph was noted only in samples from Day 5 after treatment with M. anisopliae (Ma‐4.1). The detection of high GST and esterase activity demonstrates the possibility of the development of resistance against these microbial control agents in H. armigera.  相似文献   

10.
A laboratory bioassay was developed to evaluate strains of Isaria fumosorosea Wize, against Diaphorina citri. Up to 100% of adult psyllids were killed at concentrations between 106 and 107 blastospores/ml after 12 days, with derived LC50 values (at 7 days post treatment) between 1.4 × 105 and 2.0 × 106 blastospores/ml for strains ARSEF 3581, FE 9901 and Apopka-97. A significantly higher value (1.5 × 107) was obtained with a conidial formulation of Apopka-97. Average survival times were dosage dependent, i.e. between 10.2 days at 103 blastospores/ml and 3.5 days at 108 blastospores/ml. Rates of mycosis were also dosage dependent, with up to 100% sporulation on cadavers at 108 blastospores/ml but declining at lower concentrations. The Apopka-97 strain (commercially available as PFR-97) was tested against established D. citri infestations in potted citrus in greenhouse cages. Treatments at label rates reduced psyllid populations by approximately 50% over 3 weeks. The combination of PFR-97 with emulsifiable oils (0.25% v/v) did not increase psyllid mortality compared with either agent alone. Imidacloprid applied as a drench killed 100% of psyllids within 3 weeks. Subsequent greenhouse tests during humid conditions were hampered by natural dissemination of I. fumosorosea to untreated psyllids, suggesting that this fungus is spread by air movement and may be highly effective under very humid conditions. In later tests, a Cladosporium sp. rapidly colonised psyllid cadavers and leaf surfaces, but was not pathogenic in laboratory tests. Our studies confirm the potential of I. fumosorosea to be used in IPM strategies for D. citri that rely on other tactics, such as insecticidal oils and native or introduced biological control agents.  相似文献   

11.
Spoladea recurvalis (Fabricius) is one of the most devastating pests of amaranths causing severe yield losses of 60%–100% to the crop. Unfortunately use of chemical pesticides is the most common control strategy that vegetable farmers rely on to control the pest. However, it is not effective and harmful to environmental and human health. Aiming to provide more environmentally friendly alternatives, this study evaluated the effects of various entomopathogenic fungal isolates and commercial based Bacillus thuringiensis Subsp. kurstaki product Halt®, on the pest. Twenty‐four entomopathogenic fungal (EPF) isolates from three genera (14 Metarhizium anisopliae, 9 Beauveria bassiana and 1 lsaria fumosorosea) were screened in the laboratory to assess their pathogenicity against second instar larvae of S. recurvalis. Only M. anisopliae ICIPE 30 reached a moderate threshold, causing 58.3% larval mortality. All the 11 isolates (8 M. anisopliae, 2 B. bassiana and 1 l. fumosorosea) tested against adult S. recurvalis were pathogenic, with M. anisopliae ICIPE 30 and B. bassiana ICIPE 725 causing the highest mortality of 92% and 83%, respectively. Metarhizium anisopliae ICIPE 30 had the shortest LT50 value of 4.8 days. Bacillus thuringiensis Subsp. kurstaki product Halt® caused <50% mortality on S. recurvalis larvae. A consecutive application of M. anisopliae ICIPE 30 and Bt did not cause a significant increase in larval mortality compared to separate applications of both products. Results of this study suggest that M. anisopliae ICIPE 30 was the most potent candidate and could be used in an autodissemination approach for management of adult S. recurvalis.  相似文献   

12.
《Journal of Asia》2022,25(2):101913
The red imported fire ant (RIFA), Solenopsis invicta, is one of the globalized invasive pests. This study focused on pathogenicity and virulence of entomopathogenic fungi as one of the biological control agents to RIFA workers under different temperatures. The fungal pathogen, Beauveria bassiana ANU1 was isolated from Korea in 2015 and showed the pathogenicity to RIFA workers. A conidial suspension (1 × 107 conidia/ml) induced a low mortality from day 2 after treatment and reached to 100% mortality at day 7 and day 8 after treatment for major and minor workers, respectively. The median lethal concentrations of B. bassiana ANU1 were calculated as 3.9 × 103 for major and 4.6 × 103 for minor workers at day 7 after treatment. Low temperatures decreased a virulence of B. bassiana ANU1 (1 × 107 conidia/ml) to RIFA and showed mortality of 26.6% for major and 20% for minor workers. Based on bioassay results, this study provides one of possibilities of effective and successful strategy for controlling RIFA by entomopathogenic fungi.  相似文献   

13.
Management of the banana root borer (BRB), Cosmopolites sordidus (Germar; Coleoptera: Curculionidae), remains a challenge in banana and plantain production worldwide. Synthetic pesticides remain the most widely used solution while mycoinsecticides are increasingly being recommended. In this study, we selected indigenous isolates of Beauveria bassiana and Metarhizium anisopliae collected from plantain fields in Cameroon, and tested them in the laboratory for their viability, pathogenicity and virulence against all C. sordidus life stages. Of 13 isolates initially screened for spore germination and pathogenicity to adult weevils in conidial suspension of 3.2 × 108 conidia/ml, eight isolates with high to moderate germination and highest weevil mortality were selected for dose–response bioassays with four concentrations per isolate: 3.2 × 102, 3.2 × 104, 3.2 × 106 and 3.2 × 108 conidia/ml. The virulent isolates from adult bioassays were tested with eggs, larva and pupae in conidial suspension of 3.2 × 108 conidia/ml. Isolates performance depended on insect life stage with significantly high pathogenicity and virulence against larval, pupa and adult stages. The Beauveria isolate BIITAC6.2.2 caused the highest mortality rates followed by MIITAC1.1.5. Lethal times and lethal concentrations were relatively low for the three M. anisopliae isolates and three B. bassiana isolates which were the best isolates in almost all insect life stages. Apart from being effective in multiple life stages, these isolates were transmitted horizontally from one stage to another when eggs and pupae were treated. The implication of these findings for integrated management of the BRB, and potential biopesticides development and commercialization are discussed.  相似文献   

14.
Metarhizium anisopliae and Beauveria bassiana sensu lato were isolated, from 7 and 41 % of soil samples from a commercial banana field, with average fungal density of 4.3 × 103 and 8.2 × 103 CFU g?1 soil, respectively. Twenty-one morphologically distinct B. bassiana and four M. anisopliae sensu lato isolates from different plots within the field were further characterized. ISSR fingerprinting revealed six different clusters for B. bassiana, whereas gene sequencing revealed three M. anisopliae sensu stricto and one unclassified Metarhizium sp. Bioassays with one or more representative isolates from each Metarhizium species and B. bassiana cluster showed that all indigenous isolates had lower virulence and significantly greater ST50s than reference (exotic) isolates. The data suggest that the low virulence of most indigenous isolates toward Cosmopolites sordidus adults and their relatively low density in soil samples, may help explain the low occurrence of epizootics caused by entomopathogenic fungi in populations of this pest, also known to burrow under the soil surface in banana plantations.  相似文献   

15.
The virulence of 20 isolates of Beauveria bassiana (Balsamo) Vuillemin to larvae of the leafminer, Aproaerema modicella, was tested in the laboratory. Leafminer larvae were sprayed with a standard concentration of 1×108 condia/mL of each B. bassiana isolate. All the B. bassiana isolates tested were pathogenic to A. modicella and the mortality varied between 16.7 and 68.9%. Beauveria bassiana isolate B2 was found to be the most virulent followed by isolate B4 which resulted in 59% mortality. Beauveria isolate B2 was selected for dose–response mortality studies with four different doses (1×102, 1×104, 1×106 and 1×108 conidia/mL). Among the various doses tested, 1×108 conidia/mL produced the highest mortality (70.7%). In addition, morphogenesis of the insect pest in all stages, larval, pupal and adult was greatly affected due to fungal infection. Further, B. bassiana isolate B2 and two Pseudomonas fluorescens strains, TDK1 and Pf1 were tested alone and in combination for suppression of groundnut leafminer and collar rot disease and promotion of plant growth and yield both under glasshouse and field conditions. The mixture of B. bassiana and P. fluorescens strains significantly reduced the leafminer and collar rot disease incidences when applied as talc-based formulation through seed, soil and foliar application under glasshouse and field conditions.  相似文献   

16.
The Asian citrus psyllid, Diaphorina citri Kuwayama, a vector of citrus huanglongbing, is now present in all citrus‐producing states in the USA and Mexico. In addition to citrus, the insect can reproduce on several other plant species in the Rutaceae family; orange jasmine (Murraya spp.) and curry leaf (Bergera koenigii) are among its preferred hosts. There are several indigenous Rutaceae species in North America, and some are popular ornamentals. A study was therefore initiated to determine the suitability of some of these plants for feeding and development of the psyllid in choice and no‐choice experiments. D. citri was found to reproduce successfully on Choisya ternata, C. arizonica and Helietta parvifolia in no‐choice tests, but preferentially selected orange jasmine and curry leaf for feeding and reproduction, in choice tests. On Amyris madrensis, A. texana and Zanthoxylum fagara, adult psyllids laid eggs which hatched, but no successful nymphal development was recorded beyond the first instars. No oviposition was recorded on Esenbeckia berlandieri, Ptelea trifoliata and Casimiroa tetrameria, although adult psyllids were able to survive on these species for several days. Results showed that C. ternata, C. arizonica and H. parvifolia can serve host plants of D. citri and this constitutes the first report of these plants serving as host for D. citri. The findings of the present study suggest that native rutaceous host plants can serve as host plants and thus affect D. citri population dynamics and the epidemiology of Huanglongbing, the deadly citrus greening disease whose pathogen is vectored by D. citri. Thus, area‐wide management of this pest also should target these riparian habitats where these host plants are present with D. citri biological control agents for sustainable management of this pest.  相似文献   

17.
Preliminary screening assays were carried out on 17 isolates from five fungal species Beauveria bassiana, Lecanicillium muscarium, Metarhizium anisopliae, Isaria farinosa, and I. fumosorosea. The three most effective isolates against Peregrinus maidis (Hemiptera: Delphacidae) were B. bassiana CEP 147, CEP 150, and CEP 189. There were no consistent differences found in males and females regarding fungal susceptibility. However, more females than males were proportionally infected. There was not a correlation between the percentage of conidial germination and the percentage of mortality caused by fungal infection in any of the treatments. Only B. bassiana CEP 147, which caused a cumulative mortality of 69.8 ± 6.4% after 7 days post-inoculation, was selected to be assayed against adults of P. maidis, Delphacodes kuscheli (Hemiptera: Delphacidae), and Dalbulus maidis (Hemiptera: Cicadellidae). In pathogenicity tests significant differences were observed among treatments. After 2 weeks post-inoculation, both D. kuscheli (cumulative mortality of 73.3 ± 9.0%) and P. maidis (cumulative mortality of 68.6 ± 6.7%) were significantly more susceptible than D. maidis (cumulative mortality of 49.9 ± 9.7%) to the selected isolate.  相似文献   

18.
In a survey performed in Chania and Aetoloacarnania, Greece in years 2013–2014, fungal isolates causing twig and shoot blight and branch canker of citrus trees were morphologically characterized and identified by multiple gene sequence analysis. By sequencing the ITS‐5.8S rRNA, the elongation factor 1‐α (EF1‐α), the β‐tubulin and the RNA polymerase II subunit (Rpb2) genes, the isolates examined were associated with Diaporthe foeniculina (six isolates) and Neofusicoccum parvum (one isolate). All six D. foeniculina isolates showed slow colony growth rates (7.4 ± 3.2 mm/day), while the N. parvum isolate exhibited fast growth (41.6 mm/day). Koch's criteria were met after re‐isolation of D. foeniculina isolates from all inoculated Citrus spp. and N. parvum from inoculated C. reticulata “Ortanique” and after having developed symptoms similar to those detected on shoots and branches collected from citrus fields. Based on lesion length on detached C. medica “Lia Kritis” shoots, N. parvum caused long necrotic lesions (58 mm in length) in comparison with a length of 12–21 mm lesions caused by D. foeniculina isolates. Pathogenicity trials on nine Citrus spp., which had been inoculated with D. foeniculina and N. parvum, revealed different levels of susceptibility, indicating a host‐dependent infection effect, with Poncirus trifoliate × C. paradisi (“Citrumelo Swingle”) being the most resistant citrus genotype. Lack of host specificity suggests that their pathogen–host association could be attributed to ecological rather to co‐evolutionary factors. This work represents the first report, accompanied with pathogenicity tests, on botryosphaeriaceous and diaporthaceous pathogens associated with twig and shoot blight and branch canker of citrus in Greece.  相似文献   

19.
Beauveria bassiana has a high insecticidal potential to control the tarnished plant bug, Lygus lineolaris, a significant pest of strawberries. Screening experiments showed that L. lineolaris adults were susceptible to several B. bassiana isolates. Another screening test with Coleomegilla maculata, a natural enemy found in strawberries, was also performed in order to select the isolate having lower entomopathogenic impact on this insect. Based on data obtained from both insect species and on the ecozone origin of the B. bassiana isolates, INRS‐IP and INRS‐CFL isolates were selected for further experiments. The LC50 values of these two isolates against L. lineolaris adults were 7.8 × 105 and 5.3 × 105 conidia/ml, and average survival time (AST) values were 4.46 and 4.37 days at a concentration of 1 × 108 conidia/ml respectively. Results also indicated that L. lineolaris nymphs are susceptible to the selected isolates. During field experiments, using a randomized block design with four replicates, INRS‐IP and INRS‐CFL isolates were applied at two rates (1 × 1011 and 1 × 1013 conidia/ha) weekly during a period of 4 weeks. These multiple applications triggered a significant reduction of L. lineolaris nymphal populations in strawberries. Twenty‐four days after the first application, a significant difference was observed between the mean population densities of surviving nymphs in all B. bassiana‐treated plots (less than one insect per five plants) compared with those in control plots (four insects per five plants). During the field experiment, persistence of insecticidal activity and viability of B. bassiana conidia were also monitored. The results showed the presence of viable and infective conidia up to 6 days after each application on strawberry foliage. Moreover, the multiple applications of B. bassiana at the rate of 1 × 1013 conidia/ha triggered a significant reduction in strawberry fruit injuries induced by L. lineolaris feeding behaviour compared with the control plots.  相似文献   

20.
A preliminary virulence test of four fungal isolates, Beauveria bassiana IMI 382302, Beauveria bassiana IMI 386701, Trichoderma harzianum T24 and Aspergillus flavus Link against larvae of Spodoptera littoralis was performed. The most effective isolates against larvae of S. littoralis were B. bassiana 302 and T. harzianum T24, which also showed the lower percentage of pupation compared with the other two isolates under the same conditions of treatments. Three concentrations (1 × 106, 1 × 107 and 1 × 108 ml?1) of the aqueous conidial suspension of the four tested isolates were carried out against both larval and pupal stages of S. littoralis within five days post-treatment. T. harzianum T24 showed 80% larval mortality only when applied at the highest conidial concentration, while A. flavus showed 100% pupal mortality only, at all of its conidial concentrations. However, B. bassiana IMI 382302 showed relatively high dose-dependant larval and pupal mortalities, while strain IMI 386701 of B. bassiana showed a very weak mortality against pupae at higher concentrations, and no virulence against larvae was recorded. Enzymatic and antibiosis bioassays of the four fungal isolates showed relatively high activities against Fusarium spp. for most of the tested isolates. Clear zone of enzyme activity on agar plates proportionally increased with increasing the concentration of enzyme substrate and prolongation of the incubation period. Mtabolites produced in the agar culture inhibited the growth of Fusarium spp. and the productivity differed greatly among isolates or strains of the same isolate. Volatile and non-volatile compounds produced by A. flavus Link showed a higher inhibition activity against Fusarium spp. compared with the other fungal isolates. The humoral antifungal response of insect host is relatively high compared to the anti-bacterial one. Injection of larvae with the immune sensitive bacteria Micrococcus luteus (5 × 103 bacteria/larva) showed a detectable humoral response by 2 h, peaked around 12 h and became hardly detectable by 24 h post-injection. Injection of larvae with conidial suspension (5 × 103 conidia/larva) from each of the fungal isolates showed humoral antifungal activity against B. bassiana IMI 386701 and A. flavus only. This activity was detectable by 12 h, peaked around 36 h and became hardly detectable by 48 h post-injection. Although the humoral antifungal response was started slowly compared to the antibacterial one, it lasted for longer and enabled larvae to withstand the infection with these immune-sensitive fungal strains. No humoral activity was detected against B. bassiana IMI 382302, although however, weak activity was detected against T. harzianum T24 only at the low conidial concentration but not at the higher one (1 × 108 ml?1). Thus, this study concludes that larvae of S. littoralis showed immune-dependant sensitivity to T. harzianum T24 and B. bassiana IMI 382302. Therefore, this study may recommend these two fungal isolates as mycoinsecticides in the battle against cotton leaf worm in Egypt. Hence, they have been selected for future comprehensive bioassays in the laboratory under conditions similar to that in the field. This, in fact, may help for developing effective mycoinsecticides against this pest. Penetration mechanims of insect cuticle by entomopathogenic fungi will be discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号