首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Emerging evidence demonstrates that competing endogenous RNA (ceRNA) hypothesis has played a role in molecular biological mechanisms of cancer occurrence and development. But the effect of ceRNA network in bladder cancer (BC), especially lncRNA‐miRNA‐mRNA regulatory network of BC, was not completely expounded. By means of The Cancer Genome Atlas (TCGA) database, we compared the expression of RNA sequencing (RNA‐Seq) data between 19 normal bladder tissue and 414 primary bladder tumours. Then, weighted gene co‐expression network analysis (WGCNA) was conducted to analyse the correlation between two sets of genes with traits. Interactions between miRNAs, lncRNAs and target mRNAs were predicted by MiRcode, miRDB, starBase, miRTarBase and TargetScan. Next, by univariate Cox regression and LASSO regression analysis, the 86 mRNAs obtained by prediction were used to construct a prognostic model which contained 4 mRNAs (ACTC1 + FAM129A + OSBPL10 + EPHA2). Then, by the 4 mRNAs in the prognostic model, a ceRNA regulatory network with 48 lncRNAs, 14 miRNAs and 4 mRNAs was constructed. To sum up, the ceRNA network can further explore gene regulation and predict the prognosis of BC patients.  相似文献   

2.
Heart failure has become one of the top causes of death worldwide. It is increasing evidence that lncRNAs play important roles in the pathology processes of multiple cardiovascular diseases. Additionally, lncRNAs can function as ceRNAs by sponging miRNAs to affect the expression level of mRNAs, implicating in numerous biological processes. However, the functional roles and regulatory mechanisms of lncRNAs in heart failure are still unclear. In our study, we constructed a heart failure‐related lncRNA‐mRNA network by integrating probe re‐annotation pipeline and miRNA‐target interactions. Firstly, some lncRNAs that had the central topological features were found in the heart failure‐related lncRNA‐mRNA network. Then, the lncRNA‐associated functional modules were identified from the network, using bidirectional hierarchical clustering. Some lncRNAs that involved in modules were demonstrated to be enriched in many heart failure‐related pathways. To investigate the role of lncRNA‐associated ceRNA crosstalks in certain disease or physiological status, we further identified the lncRNA‐associated dysregulated ceRNA interactions. And we also performed a random walk algorithm to identify more heart failure‐related lncRNAs. All these lncRNAs were verified to show a strong diagnosis power for heart failure. These results will help us to understand the mechanism of lncRNAs in heart failure and provide novel lncRNAs as candidate diagnostic biomarkers or potential therapeutic targets.  相似文献   

3.
Long non‐coding RNAs (lncRNAs), which competitively bind miRNAs to regulate target mRNA expression in the competing endogenous RNAs (ceRNAs) network, have attracted increasing attention in breast cancer research. We aim to find more effective therapeutic targets and prognostic markers for breast cancer. LncRNA, mRNA and miRNA expression profiles of breast cancer were downloaded from TCGA database. We screened the top 5000 lncRNAs, top 5000 mRNAs and all miRNAs to perform weighted gene co‐expression network analysis. The correlation between modules and clinical information of breast cancer was identified by Pearson's correlation coefficient. Based on the most relevant modules, we constructed a ceRNA network of breast cancer. Additionally, the standard Kaplan‐Meier univariate curve analysis was adopted to identify the prognosis of lncRNAs. Ultimately, a total of 23 and 5 modules were generated in the lncRNAs/mRNAs and miRNAs co‐expression network, respectively. According to the Green module of lncRNAs/mRNAs and Blue module of miRNAs, our constructed ceRNA network consisted of 52 lncRNAs, 17miRNAs and 79 mRNAs. Through survival analysis, 5 lncRNAs (AL117190.1, COL4A2‐AS1, LINC00184, MEG3 and MIR22HG) were identified as crucial prognostic factors for patients with breast cancer. Taken together, we have identified five novel lncRNAs related to prognosis of breast cancer. Our study has contributed to the deeper understanding of the molecular mechanism of breast cancer and provided novel insights into the use of breast cancer drugs and prognosis.  相似文献   

4.
Long noncoding RNAs (lncRNAs) regulate gene expression by acting with microRNAs (miRNAs). However, the roles of cancer specific lncRNA and its related competitive endogenous RNAs (ceRNA) network in hepatocellular cell carcinoma (HCC) are not fully understood. The lncRNA profiles in 372 HCC patients, including 372 tumor and 48 adjacent non-tumor liver tissues, from The Cancer Genome Atlas (TCGA) and NCBI GEO omnibus (GSE65485) were analyzed. Cancer specific lncRNAs (or HCC related lncRNAs) were identified and correlated with clinical features. Based on bioinformatics generated from miRcode, starBase, and miRTarBase, we constructed an lncRNA-miRNA-mRNA network (ceRNA network) in HCC. We found 177 cancer specific lncRNAs in HCC (fold change ≥ 1.5, P < 0.01), 41 of them were also discriminatively expressed with gender, race, tumor grade, AJCC tumor stage, and AJCC TNM staging system. Six lncRNAs (CECR7, LINC00346, MAPKAPK5-AS1, LOC338651, FLJ90757, and LOC283663) were found to be significantly associated with overall survival (OS, log-rank P < 0.05). Collectively, our results showed the lncRNA expression patterns and a complex ceRNA network in HCC, and identified a complex cancer specific ceRNA network, which includes 14 lncRNAs and 17 miRNAs in HCC.  相似文献   

5.
The present study aimed to investigate the long noncoding RNAs (lncRNAs) and messenger RNAs (mRNAs) involved in the progression of gallbladder cancer and explore the potential physiopathologic mechanisms of gallbladder cancer in terms of competing endogenous RNAs (ceRNAs). The original lncRNA and mRNA expression profile data (nine gallbladder cancer tissues samples and nine normal gallbladder samples) in GSE76633 was downloaded from the Gene Expression Omnibus database. Differentially expressed mRNAs and lncRNAs between gallbladder cancer tissue and normal control were selected and the pathways in which they are involved were analyzed using bioinformatics analyses. MicroRNAs (miRNAs) were also predicted based on the differentially expressed mRNAs. Finally, the co-expression relation between lncRNA and mRNA was analyzed and the ceRNA network was constructed by combining the lncRNA-miRNA, miRNA-mRNA, and lncRNA-mRNA pairs. Overall, 373 significantly differentially expressed mRNAs and 47 lncRNAs were identified between cancer and normal tissue samples. The upregulated genes were significantly enriched in the extracellular matrix (ECM)-receptor interaction pathway, while the downregulated genes were involved in the complement and coagulation cascades. Altogether, 128 co-expression relations between lncRNA and mRNA were obtained. In addition, 196 miRNA-mRNA regulatory relations and 145 miRNA-lncRNA relation pairs were predicted. Finally, the lncRNA-miRNA-gene ceRNA network was constructed by combining the three types of relation pairs, such as XLOC_011309-miR-548c-3p-SPOCK1 and XLOC_012588-miR-765-CEACAM6. mRNAs and lncRNAs may be involved in gallbladder cancer progression via ECM-receptor interaction pathways and the complement and coagulation cascades. Moreover, ceRNAs such as XLOC_011309-miR-548c-3p-SPOCK1 and XLOC_012588-miR-765-CEACAM6 can also be implicated in the pathogenesis of gallbladder cancer.  相似文献   

6.
BackgroundLong noncoding RNAs (lncRNAs) have gain increasing attention in lung adenocarcinoma. In this study, we aimed at constructing and analyzing the lncRNAs and the related proteins based competitive endogenous RNA (ceRNA) network.MethodsRNA expression data of lung adenocarcinoma were extracted from the TCGA database. Differentially expressed (DE) lncRNAs, messenger RNAs (mRNAs) and microRNAs (miRNAs) were identified and then a DElncRNA-DEmiRNA-DEmRNA ceRNA network was constructed for lung adenocarcinoma. We also analyzed the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment of the DEgenes. Kaplan-Meier survival curves were also been further utilized for exploring the prognostic factors.ResultsAfter compared and calculated lncRNA, mRNA and miRNA expression profiles between lung adenocarcinoma and normal samples, 1709 differential expressed lncRNAs, 2554 differential expressed mRNAs and 116 differential expressed miRNAs were finally identified. Afterwards, a lncRNA mediated ceRNA network was constructed, according to the interactions among 544 pairs of DElncRNA-DEmiRNA relationships and 47 pairs of DEmiRNA-DEmRNA relationships. As for the survival analyses, we found 10 DElncRNAs, 25 DEmRNAs and 7 miRNAs have statistically prognostic significance for overall survival, respectively.ConclusionsThis study provides meaningful information for deeper understanding the underlying molecular mechanism of lung adenocarcinoma and for evaluating prognosis, which could monitor recurrence, guide clinical treatment drugs and subsequent related researches.  相似文献   

7.
The aberrant expression of long noncoding RNAs (lncRNAs) has drawn increasing attention in the field of hepatocellular carcinoma (HCC) biology. In the present study, we obtained the expression profiles of lncRNAs, microRNAs (miRNAs), and messenger RNAs (mRNAs) in 371 HCC tissues and 50 normal tissues from The Cancer Genome Atlas (TCGA) and identified hepatocarcinogenesis-specific differentially expressed genes (DEGs, log fold change ≥ 2, FDR < 0.01), including 753 lncRNAs, 97 miRNAs, and 1,535 mRNAs. Because the specific functions of lncRNAs are closely related to their intracellular localizations and because the cytoplasm is the main location for competitive endogenous RNA (ceRNA) action, we analyzed not only the interactions among these DEGs but also the distributions of lncRNAs (cytoplasmic, nuclear or both). Then, an HCC-associated deregulated ceRNA network consisting of 37 lncRNAs, 10 miRNAs, and 26 mRNAs was constructed after excluding those lncRNAs located only in the nucleus. Survival analysis of this network demonstrated that 15 lncRNAs, 3 miRNAs, and 16 mRNAs were significantly correlated with the overall survival of HCC patients (p < 0.01). Through multivariate Cox regression and lasso analysis, a risk score system based on 13 lncRNAs was constructed, which showed good discrimination and predictive ability for HCC patient survival time. This ceRNA network-construction approach, based on lncRNA distribution, not only narrowed the scope of target lncRNAs but also provided specific candidate molecular biomarkers for evaluating the prognosis of HCC, which will help expand our understanding of the ceRNA mechanisms involved in the early development of HCC.  相似文献   

8.
This study aims to reveal the regulatory mechanism of lncRNAs–miRNAs–mRNAs network during the proliferative phase of liver regeneration (LR). High-throughput sequencing technology was performed, and a total of 1,738 differentially expressed lncRNAs (DE lncRNAs), 167 known differentially expressed miRNAs (DE miRNAs), and 2,727 differentially expressed mRNAs were identified. Then, the target DE lncRNAs and DE mRNAs regulated by the same miRNAs were screened and a ceRNA regulatory network containing 32 miRNAs, 107 lncRNAs, and 270 mRNAs was constructed. Insulin signaling pathway, pyrimidine metabolism, axon guidance, carbohydrate digestion and absorption, and pyruvate metabolism were significantly enriched in the network. Through literature review and the regulatory relationship between lncRNAs and miRNAs, nine core lncRNAs were identified, which might play important roles during the proliferative phase of rat LR. This study analyzed lncRNA–miRNA–mRNA regulatory network for the first time during the proliferative phase of rat LR, providing clues for exploring the mechanism of LR and the treatment of liver diseases.  相似文献   

9.
Plenty of evidence has suggested that long noncoding RNAs (lncRNAs) play a vital role in competing endogenous RNA (ceRNA) networks. Poorly differentiated hepatocellular carcinoma (PDHCC) is a malignant phenotype. This paper aimed to explore the effect and the underlying regulatory mechanism of lncRNAs on PDHCC as a kind of ceRNA. Additionally, prognosis prediction was assessed. A total of 943 messenger RNAs (mRNAs), 86 miRNAs, and 468 lncRNAs that were differentially expressed between 137 PDHCCs and 235 well-differentiated HCCs were identified. Thereafter, a ceRNA network related to the dysregulated lncRNAs was established according to bioinformatic analysis and included 29 lncRNAs, 9 miRNAs, and 96 mRNAs. RNA-related overall survival (OS) curves were determined using the Kaplan-Meier method. The lncRNA ARHGEF7-AS2 was markedly correlated with OS in HCC (P = .041). Moreover, Cox regression analysis revealed that patients with low ARHGEF7-AS2 expression were associated with notably shorter survival time (P = .038). In addition, the area under the curve values of the lncRNA signature for 1-, 3-, and 5-year survival were 0.806, 0.741, and 0.701, respectively. Furthermore, a lncRNA nomogram was established, and the C-index of the internal validation was 0.717. In vitro experiments were performed to demonstrate that silencing ARHGEF7-AS2 expression significantly promoted HCC cell proliferation and migration. Taken together, our findings shed more light on the ceRNA network related to lncRNAs in PDHCC, and ARHGEF7-AS2 may be used as an independent biomarker to predict the prognosis of HCC.  相似文献   

10.
Growing evidence has revealed that long noncoding RNAs (lncRNAs) have an important impact on tumorigenesis and tumor progression via a mechanism involving competing endogenous RNAs (ceRNAs). However, their use in predicting the survival of a patient with hepatocellular carcinoma (HCC) remains unclear. The aim of this study was to develop a novel lncRNA expression–based risk score system to accurately predict the survival of patients with HCC. In our study, using expression profiles downloaded from The Cancer Genome Atlas database, the differentially expressed messenger RNAs (mRNAs), lncRNAs, and microRNAs (miRNAs) were explored in patients with HCC and normal liver tissues, and then a ceRNA network constructed. A risk score system was established between lncRNA expression of the ceRNA network and overall survival (OS) or recurrence-free survival (RFS); it was further analyzed for associations with the clinical features of patients with HCC. In HCC, 473 differentially expressed lncRNAs, 63 differentially expressed miRNAs, and 1417 differentially expressed mRNAs were detected. The ceRNA network comprised 41 lncRNA nodes, 12 miRNA nodes, 24 mRNA nodes, and 172 edges. The lncRNA expression–based risk score system for OS was constructed based on six lncRNAs (MYLK-AS1, AL359878.1, PART1, TSPEAR-AS1, C10orf91, and LINC00501), while the risk score system for RFS was based on four lncRNAs (WARS2-IT1, AL359878.1, AL357060.1, and PART1). Univariate and multivariate Cox analyses showed the risk score systems for OS or RFS were significant independent factors adjusted for clinical factors. Receiver operating characteristic curve analysis showed the area under the curve for the risk score system was 0.704 for OS, and 0.71 for RFS. Our result revealed a lncRNA expression–based risk score system for OS or RFS can effectively predict the survival of patients with HCC and aid in good clinical decision-making.  相似文献   

11.
More and more evidence indicate long noncoding RNAs (lncRNAs) as competing endogenous RNAs (ceRNAs) to indirectly regulate messenger RNAs (mRNAs) by acting as microRNA (miRNA) sponges, which represents a novel layer of gene regulation that plays a critical role in the development of cancers. However, functional roles and regulatory mechanisms of lncRNA-mediated ceRNAs network in osteosarcoma are still largely unknown. Here, we comprehensively compared the expression profiles of mRNAs, lncRNAs, and miRNAs between osteosarcoma and normal samples from the Gene Expression Omnibus (GEO) to elaborate related latent mechanisms. Two lncRNAs, ie, LINC01560 and MEG3, were identified to be aberrantly expressed. Importantly, MEG3 was considered as a promising diagnostic biomarker and therapeutic target for patients with osteosarcoma according to the Kaplan-Meier analysis of another independent osteosarcoma data set from the Cancer Genome Atlas (P = 0.05). Eventually, we successfully established a dysregulated lncRNA-related ceRNA network, including one osteosarcoma-specific lncRNA, three miRNAs and four mRNAs. In conclusion, this study should be beneficial for improving our understanding of the lncRNA-mediated ceRNA regulatory mechanisms in the pathogenesis of osteosarcoma and providing it with novel candidate diagnostic and therapeutic biomarkers.  相似文献   

12.
13.
Increasing epidemic of type 2 diabetes mellitus (T2DM) and its comorbidities makes it urgent to understand the pathogenesis and regulatory mechanism. However, little is known about the regulatory role of lncRNAs in diabetes. Here, we constructed a T2DM‐related competitive endogenous RNA (ceRNA) network (DMCN) to explore biological function of lncRNAs during the development of diabetes mellitus. This network contained 351 nodes including 98 mRNAs, 86 microRNAs and 167 lncRNAs. Functional analysis showed that the mRNAs in DMCN were annotated into some diabetes‐related pathways. Furthermore, mTOR‐centred subnetwork was extracted and ncRNA‐involved mTOR pathway was established. Finally, we validated that NEAT1 was potentially communicated with mTOR signalling target protein mLST8 via the association with miR‐181b. These findings provide significant insight into lncRNA regulatory network in T2DM.  相似文献   

14.
15.
LncRNA and miRNA are key molecules in mechanism of competing endogenous RNAs(ceRNA), and their interactions have been discovered with important roles in gene regulation. As supplementary to the identification of lncRNA‐miRNA interactions from CLIP‐seq experiments, in silico prediction can select the most potential candidates for experimental validation. Although developing computational tool for predicting lncRNA‐miRNA interaction is of great importance for deciphering the ceRNA mechanism, little effort has been made towards this direction. In this paper, we propose an approach based on linear neighbour representation to predict lncRNA‐miRNA interactions (LNRLMI). Specifically, we first constructed a bipartite network by combining the known interaction network and similarities based on expression profiles of lncRNAs and miRNAs. Based on such a data integration, linear neighbour representation method was introduced to construct a prediction model. To evaluate the prediction performance of the proposed model, k‐fold cross validations were implemented. As a result, LNRLMI yielded the average AUCs of 0.8475 ± 0.0032, 0.8960 ± 0.0015 and 0.9069 ± 0.0014 on 2‐fold, 5‐fold and 10‐fold cross validation, respectively. A series of comparison experiments with other methods were also conducted, and the results showed that our method was feasible and effective to predict lncRNA‐miRNA interactions via a combination of different types of useful side information. It is anticipated that LNRLMI could be a useful tool for predicting non‐coding RNA regulation network that lncRNA and miRNA are involved in.  相似文献   

16.
17.
Long non‐coding RNAs (lncRNAs) have potential applications in clinical diagnosis and targeted cancer therapies. However, the expression profile of lncRNAs in colorectal cancer (CRC) initiation is still unclear. In this study, the expression profiles of lncRNAs and mRNAs were determined by microarray at specific tumour stages in an AOM/DSS‐induced primary colon cancer model. The temporal expression of lncRNAs was analysed by K‐means clustering. Additionally, weighted correlation network analysis (WGCNA) and gene ontology analysis were performed to construct co‐expression networks and establish functions of the identified lncRNAs and mRNAs. Our results suggested that 4307 lncRNAs and 5798 mRNAs are deregulated during CRC initiation. These differential expression genes (DEGs) exhibited a clear correlation with the differential stage of tumour initiation. WGCNA results suggested that a series of hub lncRNAs are involved in regulating cell stemness, colon inflammation, oxidative stress response and cell death at each stage. Among them, lncRNA H19 was up‐regulated in colon tumours and correlated with poor patient prognosis. Collectively, we have been the first to demonstrate the temporal expression and function of lncRNAs in CRC initiation. These results provide novel diagnosis and therapy targets for CRC.  相似文献   

18.
The aim of our study is to construct the competing endogenous RNA (ceRNA) network of head and neck squamous cell carcinoma (HNSCC) and identify key long noncoding RNAs (lncRNAs) to predict prognosis. The genes whose expression were differentially in HNSCC and normal tissues were explored by the Cancer Genome Atlas database. The ceRNA network was constructed by the Cytoscape software. The lncRNAs which could estimate the overall survival were explored from Cox proportional hazards regression. There are 1997, 589, and 82 mRNAs, lncRNAs, and miRNAs whose expression were statistically significant different, respectively. Then, the network between miRNA and mRNA or miRNA and lncRNA was constructed by miRcode, miRDB, TargetScan, and miRanda. Five mRNAs, 10 lncRNAs, and 3 miRNAs were associated with overall survival. Then, 11-lncRNAs were found to be prognostic factors. Therefore, our research analyzed the potential signature of novel 11-lncRNA as candidate prognostic biomarker from the ceRNA network for patients with HNSCC.  相似文献   

19.
Long noncoding RNAs (lncRNAs) serve as competitive endogenous RNAs (ceRNAs) that play significant regulatory roles in the pathogenesis of tumors. However, the role of lncRNAs, especially the lncRNA-related ceRNA regulatory network, in glioblastoma (GBM) has not been fully elucidated. The goal of the current study was to construct lncRNA-microRNA-mRNA-related ceRNA networks for further investigation of their mechanism of action in GBM. We downloaded data from The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO) databases and identified differential lncRNAs, microRNAs (miRNAs), and messenger RNAs (mRNAs) associated with GBM. A ceRNA network was constructed and analyzed to examine the relationship between lncRNAs and patients’ overall survival. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGGs) were used to analyze the related mRNAs to indirectly explain the mechanism of action of lncRNAs. The potential effective drugs for the treatment of GBM were identified using the connectivity map (CMap). After integrated analysis, we obtained a total of 210 differentially expressed lncRNAs, 90 differentially expressed miRNAs, and 2508 differentially expressed mRNAs (DEmRNAs) from the TCGA and GEO databases. Using these differential genes, we constructed a lncRNA-associated ceRNA network. Six lncRNAs in the ceRNA network were associated with the overall survival of patients with GBM. Through KEGG analysis, it was found that the DEmRNAs involved in the network are related to cancer-associated pathways, for instance, mitogen-activated protein kinase and Ras signaling pathways. CMap analysis revealed four small-molecule compounds that could be used as drugs for the treatment of GBM. In this study, a multi-database joint analysis was used to construct a lncRNA-related ceRNA network to help identify the regulatory functions of lncRNAs in the pathogenesis of GBM.  相似文献   

20.
BackgroundIncreasing numbers of studies have elucidated the role of competitive endogenous RNA (ceRNA) networks in carcinogenesis. However, the potential role of the paclitaxel-related ceRNA network in the innate mechanism and prognosis of pancreatic cancer has not been identified.MethodsComprehensive bioinformatics analyses were performed to identify drug-related miRNAs (DRmiRNAs), drug-related mRNAs (DRmRNAs) and drug-related lncRNAs (DRlncRNAs) and construct a ceRNA network. The ssGSEA and CIBERSORT algorithms were utilized for immune cell infiltration analysis. Additionally, we validated our paclitaxel-related ceRNA regulatory axis at the gene expression level; functional experiments were conducted to explore the biological functions of the key genes.ResultsA total of 182 mRNAs, 13 miRNAs, and 53 lncRNAs were confirmed in the paclitaxel-related ceRNA network. In total, 6 mRNAs, 4 miRNAs, and 6 lncRNAs were identified to establish a risk signature and exhibited optimal prognostic effects. The mRNA signature can predict the abundance of immune cell infiltration and the sensitivity of different chemotherapeutic drugs and may also have a guiding effect in immune checkpoint therapy. A potential PART1/hsa-mir-21/SCRN1 axis was confirmed according to the ceRNA theory and was verified by qPCR. The results indicated that PART1 knockdown markedly increased hsa-mir-21 expression but inhibited SCRN1 expression, weakening the proliferation and migration abilities.ConclusionsWe hypothesized that the paclitaxel-related ceRNA network strongly influences the innate mechanism, prognosis, and immune infiltration of pancreatic cancer. Our risk signatures can accurately predict survival outcomes and provide a clinical basis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号