首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
2.
The role of long non‐coding RNAs (lncRNAs) in thyroid carcinoma (TC), the most frequent endocrine malignancy, has been extensively examined. This study investigated effect of interaction among lncRNA TNRC6C‐AS1, serine/threonine‐protein kinase 4 (STK4) and Hippo signalling pathway on TC. Initially, lncRNA TNRC6C‐AS1 expression in TC tissues was detected. To explore roles of lncRNA TNRC6C‐AS1, STK4 and Hippo signalling pathway in TC progression, their expressions were altered. Interaction between lncRNA TNRC6C‐AS1 and STK4, STK4 promoter methylation, or Hippo signalling pathway was verified. After that, a series of experiments were employed to evaluate in vitro ability of apoptosis, proliferation and autophagy of TC cells and in vivo tumorigenicity, and tumour growth of TC cells. lncRNA TNRC6C‐AS1 was highly expressed while STK4 was poorly expressed in TC tissues. LncRNA TNRC6C‐AS1 promoted the STK4 methylation and down‐regulated STK4 expression, which further activated the Hippo signalling pathway. STK4 silencing was observed to promote the proliferation ability of TC cells, inhibit the apoptosis and autophagy abilities, as well as enhance the tumorigenicity and tumour growth. Moreover, the in vitro proliferation ability as well as the in vivo tumorigenicity and tumour growth of TC cells were inhibited after the blockade of Hippo signalling pathway, while the apoptosis and autophagy abilities were promoted. The results demonstrate that the lncRNA TNRC6C‐AS1 increases STK4 promoter methylation to down‐regulate STK4 expression, thereby promoting the development of TC through activation of Hippo signalling pathway. It highlights that lncRNA TNRC6C‐AS1 may be a novel therapeutic target for the treatment of TC.  相似文献   

3.
4.
Bladder cancer (BC) is one of the most common cancers worldwide with a high progression rate and poor prognosis. The Hippo signalling pathway is a conserved pathway that plays a crucial role in cellular proliferation, differentiation and apoptosis. Furthermore, dysregulation and/or malfunction of the Hippo pathway is common in various human tumours, including BC. In this review, an overview of the Hippo pathway in BC and other cancers is presented. We focus on recent data regarding the Hippo pathway, its network and the regulation of the downstream co‐effectors YAP1/TAZ. The core components of the Hippo pathway, which induce BC stemness acquisition, metastasis and chemoresistance, will be emphasized. Additional research on the Hippo pathway will advance our understanding of the mechanism of BC as well as the development and progression of other cancers and may be exploited therapeutically.  相似文献   

5.
Filling out the Hippo pathway   总被引:4,自引:0,他引:4  
How cell numbers are controlled during organ development is a problem that is still in need of answers. Recent studies in Drosophila melanogaster have delineated a novel signalling pathway, the Hippo pathway, which has an important role in restraining cell proliferation and promoting apoptosis in differentiating epithelial cells. Much like cancer cells, cells that contain mutations for components of the Hippo pathway proliferate inappropriately and have a competitive edge in genetically mosaic tissues. Although poorly characterized in mammals, several components of the Hippo pathway seem to be tumour suppressors in humans.  相似文献   

6.
It is an increasing evidence that long non‐coding RNAs (lncRNAs) are involved in tumour initiation and progression. Here, we analysed RNA‐sequencing data from the Cancer Genome Atlas (TCGA) datasets. Totally, 1176lncRNAs, 245miRNAs and 2081mRNAs were identified to be differentially expressed (DE) in colon cancer tissues compared with normal tissues. CASC21, a novel lncRNA located in 8q24.21 locus, was significantly overexpressed in 30 colon cancer tissues compared with matched normal tissues by qRT‐PCR assay. CASC21 tended to higher expression as the increase of the tumour‐node‐metastasis (TNM) classification. Functionally, CASC21 promoted cell proliferation by regulating cell cycle and enhanced tumour metastasis by epithelial‐mesenchymal transition (EMT) in colon cancer. Mechanism study indicated that CASC21 might be involved in activating WNT/β‐catenin pathway in colon cancer. In addition, we also built a competing endogenous RNA (ceRNNA) network by bioinformatic analysis using TCGA datasets. Together, our results not only provide novel lncRNAs as potential candidates for further study but also prove that CASC21 is an oncogenic regulator through activating WNT/β‐catenin signalling in colon cancer.  相似文献   

7.
Emerging evidence has classified the aberrant expression of long non‐coding RNAs (lncRNAs) as a basic signature of various malignancies including gastric cancer (GC). LINC01225 has been shown to act as a hepatocellular carcinoma‐related gene, with its expression pattern and biological function not clarified in GC. Here, we verified that LINC01225 was up‐regulated in tumour tissues and plasma of GC. Analysis with clinicopathological information suggested that up‐regulation of LINC01225 was associated with advanced disease and poorer overall survival. Receiver operating characteristic (ROC) analysis showed that plasma LINC01225 had a moderate accuracy for diagnosis of GC. In addition, knockdown of LINC01225 led to retardation of cell proliferation, invasion and migration, and overexpression of LINC01225 showed the opposite effects. Mechanistic investigations showed that LINC01225 silencing inhibited epithelial‐mesenchymal transition (EMT) process and attenuated Wnt/β‐catenin signalling of GC. Furthermore, ectopic expression of Wnt1 or suppression of GSK‐3β abolished the si‐LINC01225‐mediated suppression against EMT, thereby promoting cell proliferation, invasion and migration of GC. In conclusion, LINC01225 promotes the progression of GC through Wnt/β‐catenin signalling pathway, and it may serve as a potential target or strategy for diagnosis or treatment of GC.  相似文献   

8.
Long non‐coding RNAs (lncRNAs) recently emerge as a novel class of non‐coding RNAs (ncRNAs) with larger than 200 nucleotides in length. Due to lack an obvious open reading frame, lncRNAs have no or limited protein‐coding potential. To date, accumulating evidence indicates the vital regulatory function of lncRNAs in pathological processes of human diseases, especially in carcinogenesis and development. Deregulation of lncRNAs not only alters cellular biological behavior, such as proliferation, migration and invasion, but also represents the poor clinical outcomes. Zinc finger E‐box binding homeobox 1 antisense 1 (ZEB1‐AS1), an outstanding cancer‐related lncRNA, is identified as an oncogenic regulator in diverse malignancies. Dysregulation of ZEB1‐AS1 has been demonstrated to exhibit a pivotal role in tumorigenesis and progression, suggesting its potential clinical value as a promising biomarker or therapeutic target for cancers. In this review, we make a summary on the current findings regarding the biological functions, underlying mechanisms and clinical significance of ZEB1‐AS1 in cancer progression.  相似文献   

9.
哺乳动物Hippo信号通路:肿瘤治疗的新标靶   总被引:1,自引:0,他引:1  
Xu CM  Wan FS 《遗传》2012,34(3):269-280
Hippo信号通路是首次在果蝇中发现具有调节细胞增殖与凋亡作用的信号通路。最近发现果蝇Hippo信号通路的组成、分子作用机制和生物学功能在进化过程中高度保守。Hippo信号通路在胚胎发育中对细胞的生长分化、组织器官形成以及成体干细胞的维持和自稳态的保持等方面具有重要作用。同时,Hippo信号通路与Wnt信号通路、Notch信号通路等相互作用、密切联系,在肿瘤的发生、发展过程中也起到关键作用。文章综述了哺乳动物Hippo信号通路的作用机理、与其他信号通路和蛋白质因子的相互联系及与肿瘤的关系,对于肿瘤的诊断、预防和治疗具有一定的参考价值。  相似文献   

10.
Recent evidence supports a role for EphB receptor tyrosine kinases as tumour suppressors in colorectal and prostate cancer. However, it is unclear how these receptors inhibit cancer cell tumorigenicity - an activity that is highly unusual for a family of receptor tyrosine kinases. Here, we report that the EphB4 receptor can behave as a tumour suppressor in a mouse xenograft model of breast cancer when stimulated by its ligand, ephrin-B2. In breast cancer cells, EphB4 activates an antioncogenic pathway involving Abl family tyrosine kinases and the Crk adaptor protein. This Abl-Crk pathway inhibits breast cancer cell viability and proliferation in addition to motility and invasion, and also downregulates the pro-invasive matrix metalloprotease, MMP-2. Consistent with these effects, EphB4 and the Abl-Crk pathway are constitutively active in non-transformed mammary epithelial cells. These findings identify a novel Eph receptor signalling pathway with tumour-suppressor activity and predict that therapeutic intervention to activate EphB4 signalling will inhibit tumour progression.  相似文献   

11.
12.
Hippo signalling pathway plays a crucial role in tumorigenesis and cancer progression. In this work, we identified an N-aryl sulphonamide-quinazoline derivative, compound 9i as an anti-gastric cancer agent, which exhibited potent antiproliferative ability with IC50 values of 0.36 μM (MGC-803 cells), 0.70 μM (HCT-116 cells), 1.04 μM (PC-3 cells), and 0.81 μM (MCF-7 cells), respectively and inhibited YAP activity by the activation of p-LATS. Compound 9i was effective in suppressing MGC-803 xenograft tumour growth in nude mice without obvious toxicity and significantly down-regulated the expression of YAP in vivo. Compound 9i arrested cells in the G2/M phase, induced intrinsic apoptosis, and inhibited cell colony formation in MGC-803 and SGC-7901 cells. Therefore, compound 9i is to be reported as an anti-gastric cancer agent via activating the Hippo signalling pathway and might help foster a new strategy for the cancer treatment by activating the Hippo signalling pathway regulatory function to inhibit the activity of YAP.  相似文献   

13.
14.
Long non‐coding RNAs (lncRNAs) take various effects in cancer mostly through sponging with microRNAs (miRNAs). lncRNA NR2F1‐AS1 is found to promote tumour progression in hepatocellular carcinoma, endometrial cancer and thyroid cancer. However, the role of lncRNA NR2F1‐AS1 in breast cancer angiogenesis remains unknown. In this study, we found lncRNA NR2F1‐AS1 was positively related with CD31 and CD34 in breast cancer through Pearson's correlation analysis, while lncRNA NR2F1‐AS1 transfection promoted human umbilical vascular endothelial cell (HUVEC) tube formation. In breast cancer cells, lncRNA NR2F1‐AS1 enhanced the HUVEC proliferation, tube formation and migration ability through tumour‐conditioned medium (TCM). In zebrafish model, lncRNA NR2F1‐AS1 increased the breast cancer cell‐related neo‐vasculature and subsequently promoted the breast cancer cell metastasis. In mouse model, lncRNA NR2F1‐AS1 promoted the tumour vessel formation, increased the micro vessel density (MVD) and then induced the growth of primary tumour. Mechanically, lncRNA NR2F1‐AS1 increased insulin‐like growth factor‐1 (IGF‐1) expression through sponging miRNA‐338‐3p in breast cancer cells and then activated the receptor of IGF‐1 (IGF‐1R) and extracellular signal‐regulated kinase (ERK) pathway in HUVECs. These results indicated that lncRNA NR2F1‐AS1 could promote breast cancer angiogenesis through IGF‐1/IGF‐1R/ERK pathway.  相似文献   

15.
Merlin, the protein product of the Neurofibromatosis type-2 gene, acts as a tumour suppressor in mice and humans. Merlin is an adaptor protein with a FERM domain and it is thought to transduce a growth-regulatory signal. However, the pathway through which Merlin acts as a tumour suppressor is poorly understood. Merlin, and its function as a negative regulator of growth, is conserved in Drosophila, where it functions with Expanded, a related FERM domain protein. Here, we show that Drosophila Merlin and Expanded are components of the Hippo signalling pathway, an emerging tumour-suppressor pathway. We find that Merlin and Expanded, similar to other components of the Hippo pathway, are required for proliferation arrest and apoptosis in developing imaginal discs. Our genetic and biochemical data place Merlin and Expanded upstream of Hippo and identify a pathway through which they act as tumour-suppressor genes.  相似文献   

16.
17.
顾远  张雷  余发星 《遗传》2017,39(7):588-596
肠道是人体最重要的消化器官之一,急慢性肠炎、肠道肿瘤等肠道疾病严重威胁着人类的健康,因此对肠道生理及病理机制的研究具有重要的科学意义及临床价值。Hippo信号通路在细胞增殖与分化、组织损伤再生、肿瘤发生和发展过程中起重要作用,参与肠道中众多生理及病理进程的调控。本文结合近年来肠道相关Hippo信号通路的研究进展,对该领域的前沿信息进行概括总结,重点阐述了Hippo信号在肠稳态、再生与癌变过程中的作用,并在此基础上展望了肠道中Hippo信号通路研究的前景及潜在的临床价值。  相似文献   

18.
Genetic and biochemical studies have defined the Hippo pathway as a central mediator of developmental and pathogenic signals. By directing intracellular signaling events, the Hippo pathway fine-tunes cell proliferation, cell death, and cell-fate decisions, and coordinates these cues to specify animal organ size. Recent studies have revealed that Hippo pathway-mediated processes are interconnected with those of other key signaling cascades, such as those mediated by TGF-β and Wnt growth factors. Moreover, several reports have described a role for cell contact-mediated polarity proteins in Hippo pathway regulation. Emerging details suggest that crosstalk between these signals drives fundamental developmental processes, and deregulated intercellular communication influences disease progression, such as cancer. We review recent data with a focus on how the Hippo pathway integrates its activity with other signaling pathways.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号