首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Growth and pigment concentrations of the, estuarine dinoflagellate, Prorocentrum mariae-lebouriae (Parke and Ballantine) comb. nov., were measured in cultures grown in white, blue, green and red radiation at three different irradiances. White irradiances (400–800 nm) were 13.4, 4.0 and 1.8 W · m?2 with photon flux densities of 58.7 ± 3.5, 17.4 ± 0.6 and 7.8 ± 0.3 μM quanta · m?2· s?1, respectively. All other spectral qualities had the same photon flux densities. Concentrations of chlorophyll a and chlorophyll c were inversely related to irradiance. A decrease of 7- to 8-fold in photon flux density resulted in a 2-fold increase in chlorophyll a and c and a 1.6- to 2.4-fold increase in both peridinin and total carotenoid concentrations. Cells grown in green light contained 22 to 32% more peridinin per cell and exhibited 10 to 16% higher peridinin to chlorophyll a ratios than cells grown in white light. Growth decreased as a function of irradiance in white, green and red light grown cells but was the same at all blue light irradiances. Maximum growth rates occurred at 8 μM quanta · m?2· s?1 in blue light, while in red and white light maximum growth rates occurred at considerably higher photon flux densities (24 to 32 μM quanta · m?2· s?1). The fastest growth rates occurred in blue and red radiation. White radiation producing maximum growth was only as effective as red and blue light when the photon flux density in either the red or blue portion of the white light spectrum was equivalent to that of a red or of blue light treatment which produced maximum growth rates. These differences in growth and pigmentation indicate that P. mariae-lebouriae responds to the spectral quality under which it is grown.  相似文献   

2.
Anacystis nidulans was grown at two different levels of white light, 7 and50 W.m?2. The cells were disrupted through French press treatment, and phycocyanin-free photosynthetic lamellae were obtained from the homogenate by fractionated centrifugation. Comparative absorption studies of the lamellae revealed that high intensity gave an increased carotenoid content relative to chlorophyll a. The spectral characteristics of the cell-free supernatants were also analysed. The high light intensity gave increased contents of both pteridines (410 nm) and allophycocyanin (655 nm) compared with the contents in algae grown at the low light level.  相似文献   

3.
Anacystis nidulans grown under high and low light, 100 and 10 μE m?2 s?1, respectively, was analyzed with respect to chlorophyll/P700, phycobiliproteins/P700, chlorophyll/cell, and oxygen evolution parameters. The photosynthetic unit sizes of this cyanobacterium, measured as the ratio of total chromophores (chlorophyll and bilin) to P700, were shown to be similar to those of higher plants and green algae. High light grown cells possessed a photosynthetic unit consisting of a core of 157 ± 6 chlorophyll a molecules per P700 associated with a light harvesting system of 95 ± 3.5 biliprotein chromophores. Low light grown cells had substantially more biliprotein chromophores per P700 (125 ± 3.1) than high light cells, but showed no significant difference in the numbers of chlorophyll a molecules per P700 (149 ± 4). Analyses of aqueous biliprotein extracts indicate that low light grown cells produce proportionately more phycocyanin relative to allophycocyanin than high light cells. Calculations of the molecular weight of biliproteins per P700 suggest that there is less than one phycobilisome per reaction center I under both growth conditions. Differences in chlorophyll/cell ratios and oxygen evolution characteristics were also observed. High light cells contain 6.3 × 10?12 mg chlorophyll cell?1, while low light grown cells contain 12.8 × 10?12 mg chlorophyll cell?1. Photosynthetic oxygen evolution rate vs. light intensity curves indicate that high light grown cells reach maximal levels of oxygen evolution at higher light intensity than low light grown cells. Maximal rates of oxygen evolution were 16.6 μmol oxygen min?1 (mg chlorophyll)?1 for high and 8.4 μmol oxygen min?1 (mg chlorophyll)?1 for low light cells. Maximal oxygen evolution rates per cell were equivalent for both cell types, although the amount of P700 per cell was lower in high light cells. High light grown cells are therefore capable of producing more oxygen per reaction center I than low light grown cells.  相似文献   

4.
Whole thallus absorptance spectra were recorded for Porphyra abbottae Krishnamurthy gametophytes grown in batch culture at combinations of temperature (8, 10, 12° C), irradiance (17.5, 70, 140 μmol photons·m?2·s?1), nutrients (f/4, f/2, f media) and water motion (0, 50, 100, 150 rpm). Light, nutrients, water motion and the interaction of nutrients with water motion all significance affected broadband (400-700 nm) absorptance and absorptance by phycoerythrin (566 nm), phycocyanin (624 nm) and chlorophyll a (680 nm). Absorptances increased in low light, low water motion and high nutrient levels. Shifts in phycoerythrin: chlorophyll a absorptance ratios closely paralleled changes of absorptance by the major pigments, whereas the phycoerythrin: phycocyanin ratio decreased only with increasing nutrient supply Absorptance ratios were significantly correlated with growth rate. Absorptance increased asymptotically with blade thickness or pigment content. Based on previously determined growth rates, nutrient saturated P. abbottae can synthesize photosynthetic pigments in excess of immediate needs. Allocation is given preferentially to the phycobiliproteins, with highest preference for phycocyanin.  相似文献   

5.
Three photosynthetic parameters of 7 species of marine diatoms were studied using Na214CO3 at 5–8 C using log phase axenic cultures. The cell volumes of the different species varied from 70 μm3 to 40 × 105μm3. The present experiment is consistent with the interpretation that the initial slope α (mg C · [mg chl a]?1· h?1· w?1· m2) of photosynthesis vs. light curves is controlled by self-shading of chlorophyll a in the cell. Pm, the rate of photosynthesis at light saturation (mg C · [mg cell, C]?1· h?1) and R, the intercept at zero light intensity (mg C · [mg cell C]?1· H?1) are both dependent on the ratio of surface area to volume of cell.  相似文献   

6.
The growth and photosynthesis of Alexandrium tamarense (Lebour) Balech in different nutrient conditions were investigated. Low nitrate level (0.0882 mmol/L) resulted in the highest average growth rate from day 0 to day 10 (4.58 × 102 cells mL?1 d?1), but the lowest cell yield (5420 cells mL?1) in three nitrate level cultures. High nitrate‐grown cells showed lower levels of chlorophyll a‐specific and cell‐specific light‐saturated photosynthetic rate (Pmchl a and Pmcell), dark respiration rate (Rdchla and Rdcell) and chlorophyll a‐specific apparent photosynthetic efficiency (αchla) than was seen for low nitrate‐grown cells; whereas the cells became light saturated at higher irradiance at low nitrate condition. When cultures at low nitrate were supplemented with nitrate at 0.7938 mmol/L in late exponential growth phase, or with nitrate at 0.7938 mmol/L and phosphate at 0.072 mmol/L in stationary growth phase, the cell yield was drastically enhanced, a 7–9 times increase compared with non‐supplemented control culture, achieving 43 540 cells mL?1 and 52 300 cells mL?1, respectively; however, supplementation with nitrate in the stationary growth phase or with nitrate and phosphate in the late exponential growth phase increased the cell yield by no more than 2 times. The results suggested that continuous low level of nitrate with sufficient supply of phosphate may facilitate the growth of A. tamarense.  相似文献   

7.
The effect of external glucose (51 mM) and acetate (13 mM) on growth and photosynthetic capacity of Ulva lactuca L. was tested in laboratory cultures over 41 days in the dark and in dim light (0.9 μmol photons·m?2·s?1) at 7–8° C. Glucose and acetate had a significant positive effect on growth rate, chlorophyll content, and quantum yield for discs grown in the dark and in dim light. The carbon gain from heterotrophic uptake was low and only allowed U. lactuca to maintain a specific uptake was low and only allowed U. lactuca to maintain a specific growth rate of 0.005 day?1 compared to 0.06–0.1 day?1 at higher light intensities. However, plants with added organic substrate maintained a normal chlorophyll content and were able to photosynthesize whereas control plants lost pigmentation and photosynthetic capability after 41 days in both dim light and darkness, probably because of disorganization of the photosynthetic apparatus. This suggest that the ecological significance of heterotrophic uptake is to allow U. lactuca to survive during prolonged low light conditions with an intact photosynthetic apparatus.  相似文献   

8.
We have examined the molecular and photosynthetic responses of a planktonic cyanobacterium to shifts in light intensity over periods up to one generation (7 h). Synechococcus sp. PCC 7942 possesses two functionally distinct forms of the D1 protein, D1∶1 and D1∶2. Photosystem II (PSII) centers containing D1∶1 are less efficient and more susceptible to photoinhibition than are centers containing D 1∶2. Under 50 μmol photons· m?2·s?1, PSII centers contain D1∶1, but upon shifts to higher light (200 to 1000 μmol photons·m?2·s?1), D1∶1 is rapidly replaced by D 1∶2, with the rate of interchange dependent on the magnitude of the light shift. This interchange is readily reversed when cells are returned to 50 μmol photons·m?2·s?1. If, however, incubation under 200 μmol photons·m?2·s?1 is extended, D1∶1 content recovers and by 3 h after the light shift D1∶1 once again predominates. Oxygen evolution and chlorophyll (Chl) fluorescence measurements spanning the light shift and D1 interchanges showed an initial inhibition of photosynthesis at 200 μmol photons·m?2·s?1, which correlates with a proportional loss of total D1 protein and a cessation of growth. This was followed by recovery in photosynthesis and growth as the maximum level of D 1∶2 is reached after 2 h at 200 μmol photons·m?2·s?1. Thereafter, photosynthesis steadily declines with the loss of D1∶2 and the return of the less-efficient D1∶1. During the D1∶1/D1∶2 interchanges, no significant change occurs in the level of phycocyanin (PC) and Chl a, nor of the phycobilisome rod linkers. Nevertheless, the initial PC/Chl a ratio strongly influences the magnitude of photo inhibition and recovery during the light shifts. In Synechococcus sp. PCC 7942, the PC/Chl a ratio responds only slowly to light intensity or quality, while the rapid but transient interchange between D1∶1 and D 1∶2 modulates PSII activity to limit damage upon exposure to excess light.  相似文献   

9.
Although sea‐ice represents a harsh physicochemical environment with steep gradients in temperature, light, and salinity, diverse microbial communities are present within the ice matrix. We describe here the photosynthetic responses of sea‐ice microalgae to varying irradiances. Rapid light curves (RLCs) were generated using pulse amplitude fluorometry and used to derive photosynthetic yield (ΦPSII), photosynthetic efficiency (α), and the irradiance (Ek) at which relative electron transport rate (rETR) saturates. Surface brine algae from near the surface and bottom‐ice algae were exposed to a range of irradiances from 7 to 262 μmol photons · m?2 · s?1. In surface brine algae, ΦPSII and α remained constant at all irradiances, and rETRmax peaked at 151 μmol photons · m?2 · s?1, indicating these algae are well acclimated to the irradiances to which they are normally exposed. In contrast, ΦPSII, α, and rETRmax in bottom‐ice algae reduced when exposed to irradiances >26 μmol photons · m?2 · s?1, indicating a high degree of shade acclimation. In addition, the previous light history had no significant effect on the photosynthetic capacity of bottom‐ice algae whether cells were gradually exposed to target irradiances over a 12 h period or were exposed immediately (light shocked). These findings indicate that bottom‐ice algae are photoinhibited in a dose‐dependent manner, while surface brine algae tolerate higher irradiances. Our study shows that sea‐ice algae are able to adjust to changes in irradiance rapidly, and this ability to acclimate may facilitate survival and subsequent long‐term acclimation to the postmelt light regime of the Southern Ocean.  相似文献   

10.
Growth of Chroomonas sp. increased with light intensity (100, 1800, and 2700 μW/cm2) with a fivefold increase from the lowest to the highest intensity. Chlorophyll and phycocyanin content per cell were greater in cells grown at low light intensity, but the ratio of chlorophyll a and c did not vary appreciably. Cells grown at low light intensity had 30% more phycocyanin than cells grown at high intensities of light. The chloroplast of cells with the higher phycocyanin content had average intrathyla-koidal widths of 300 Å, whereas those cells with the lower phycocyanin content had average intrathylakoidal widths of 200 Å. This result is compatible with the hypothesis that phycocyanin is located in the intrathylakoidal space in the cryptophyte algae. Of the various energy sources tested, only glycerol was able to support limited growth tinder nonphotosynthetic conditions. Under no condition was the chloroplast reduced to an elioplast or proplastid state. Starch accumulation was greatest in cells grown in continuous while light in glycerol. Eye-spots were commonest in cells grown in darkness and interrupted every 24 hr by a few seconds of white light. It was concluded that this organism is an obligate phototroph.  相似文献   

11.
Summary Whole cell absorption curves of the marine dinoflagellate Glenodinium sp., cultured at irradiances of 250W/cm2 (low light) and 2500W/cm2 (high light), were measured and their difference spectrum determined. Absorption by low light grown cells exceeded that of high light grown cells throughout the visible spectrum by a factor which ranged from 2 to 4. The difference spectrum supported the view that increased pigmentation, resulting from low light conditions, was largely due to an increase in cell content of a peridinin-chlorophyll a-protein (PCP) and an unidentified chlorophyll a component of the chloroplast membrane. Photosynthetic action spectrum measurements indicated that chlorophyll a, peridinin, and very likely chlorophyll c, were effective light-harvesting pigments for photosynthesis in both high and low light grown cultures of Glenodinium sp. Comparison of action spectra and absorption spectra suggested that low light grown cells selectively increased cellular absorption in the 480 nm to 560 nm region, and effectively utilized this spectral region for the promotion of oxygen evolution.Abbreviations PCP peridinin-chlorophyll a-protein - SIO (F.T. Haxo) Scripps Institution of Oceanography collection  相似文献   

12.
The effects of photon flux density (PFD) and spectral quality on biomass, pigment content and composition, and the photosynthetic activity of Oscillatoria agardhii Gomont were investigated in steady-state populations. For alterations of PFD, chemostat populations were exposed to 50, 130 and 230 μmol photons·m?2·s?1 of photosynthetic active radiation (PAR). Decreases in biomass, chlorophyll a (Chl a) and c-phycocyanin (CPC) contents, and CPC: Chl a and CPC: carotenoid content was not altered. Increases in the relative abundances of myxoxanthophyll and zeaxanthin and deceases in the relative abundances of echinenone and β-carotene within the carotenoid pigments coincided with increasing PFD. Increases in Chl a-specific photosynthetic rates and maxima and decreases in biomass-specific photosynthetic rates and maxima with increasing PFD were attributed to increased light harvesting by carotenoids per unit Chl a and reduction in total pigment content, respectively. Responses to spectral quality were tested by exposing chemostat populations to a gradient of spectral transmissions at 50 μmol photons·m?2·s?1 PAR. Biomass differences among populations were likely attributable to the distinct absorption of the PAR spectrum by Chl a, CPC, and carotenoids. Although pigment contents were not altered by spectral quality, relative abundances of zeaxanthin and echinenone in the carotenoid pigments increased in populations exposed to high-wavelength PAR. The population adapted to green light possessed a greater photosynthetic maximum than populations adapted to other spectral qualities.  相似文献   

13.
Phaeodactylum tricornutum Bohlin was maintained in exponential growth over a range of photon flux densities (PFD) from 7 to 230 μmol·m?2s?1. The chlorophyll a-specific light absorption coefficient, maximum quantum yield of photosynthesis, and C:N atom ratio were all independent of the PFD to which cells were acclimated. Carbon- and cell-specific, light-satuated, gross photosynthesis rates and dark respiration rates were largely independent of acclimation PFD. Decreases in the chlorophyll a-specific, gross photosynthesis rate and the carbon: chlorophyll ratio and increases of cell- or carbon-specific absorption coefficients were associated with an increase in cell chlorophyll a in cultures acclimated to low PFDs. The compensation PFD for growth was calculated to be 0.5 μmol·m?2s?1. The maintenance metabolic rate (2 × 10?7s?1), calculated on the basis of the compensation PFD, is an order of magnitude lower than the measured dark respiration rate(2.7 × 10?6mol O2·mol C?1s?1). Maintenance of high carbon-specific, light-saturated photosynthesis rates in cells acclimated to low PFDs may allow effective use of short exposures to high PFDs in a temporally variable light environment.  相似文献   

14.
The light-saturated rate of photosynthesis in blue light was 50-100% higher than that in red light for young sporophytes of Laminaria digitata (Huds.) Lamour., although photosynthetic rates were slightly higher in red than in blue light at low irradiances. Short exposures to low irradiances (e.g. 2 min at 20 μmol · m?2· s?1) of blue light also stimulated the subsequent photosynthesis of Laminaria sporophytes in saturating irradiances of red light but had little effect on photosynthesis in low irradiances of red light. The full stimulatory effect of short exposures to blue light was observed within 5 min of the blue treatment and persisted for at least 15 min in red light or in darkness. Thereafter, the effect began to decline, but some stimulation was still detectable 45 min after the blue treatment. The degree of stimulation was proportional to the logarithm of the photon exposure to blue light over the range 0.15-2.4 mmol · m?2, and the effectiveness of an exposure to 0.6 mmol · m?2at different wavelengths was high at 402-475 nm (with a peak at 460-475 nm) but declined sharply at 475-497 nm and was minimal at 544-701 nm. Blue light appears, therefore, to exert a direct effect on the dark reaction of photosynthesis in brown algae, possibly by activating carbon-fixing enzymes or by stimulating the uptake or transport of inorganic carbon in the plants.  相似文献   

15.
Dunaliella bardawil Ben-Amotz & Avron accumulates high concentrations of β-carotene when grown under high light intensity. The β-carotene is composed mainly of 9-cis and all-trans β-carotene. Accumulation of β-carotene and an increase in the ratio of the 9-cis to the all-trans isomer are strongly dependent on the light intensity under which the algae are cultivated but are independent of light quality within the photosynthetically active radiation range. Cells grown under continuous red (>645 nm) or white light of 500 W·m?2 reach a value of about 32 pg β-carotene·cell?1 and a ratio of 9-cis to all-trans β-carotene of around 2, whereas cells grown under low red or white light intensity of 25 W·m?2 contain about 3 pg·cell?1 and a ratio of isomers of around 0.3.  相似文献   

16.
A CO2 concentrating mechanism has been identified in the phycoerythrin-possessing Synechococcus sp. WH7803 and has been observed to be severely inhibited by short exposure to elevated light intensities. A light treatment of 300–2000 μmol quanta·m?2·s?1 resulted in a considerable decay in the variable fluorescence of PSII with time, suggesting decreased efficiency of energy transfer from the phycobilisomes, direct damage to the reaction center II, or both. Measurements of the activity of PSII and changes in fluorescence emission spectra during a light treatment of 1000 μmol quanta·m?2·s?1 indicated considerable reduction in the energy flow from the phycocyanin to the phycobilisome terminal acceptor and chlorophyll a. Consequently, whereas the maximal photosynthetic rate, at saturating light and Co2 concentration, was hardly affected by a light treatment of 1000 μmol quanta·m?2·s?1 for 2 h, the light intensity required to reach that maximum increased with the duration of the light treatment.  相似文献   

17.
18.
Continuous cultures of Merismopedia tenuissima Lemmerman, limited by phosphorus, nitrogen, sulfur, or carbon, were compared to non limited batch cultures by two methods. The cellular content of photosynthetic pigments (chlorophyll and phycocyanin) was found to decrease in all nutrient limited cultures, except for the carbon limited culture. The ratio of carbohydrate to protein was 4- to 7-fold higher in P, N or S limited cultures than in non-limited or C limited cultures. The macromolecular products of photosynthesis were determined in samples to which NaH14CO3 was added. Relative incorporation into protein decreased in P or N limited cultures, increased accumulation of low molecular weight compounds was found in S and P limited cultures, and little change was noted in C limited cultures as compared to non-limited cultures. Although relative incorporation into protein was significantly greater at 20μEin·m?2·s?1 light intensity than at 180 μEin·m?2.s?1 in non-limited cultures, this effect was abolished in all nutrient limited cultures. These results suggest that measurement of the cellular carbohydrate to protein ratio and the products of photosynthesis would be useful in the analysis of algal population dynamics in nature.  相似文献   

19.
The xanthophycean alga Pleurochloris meiringensis was homocontinuously cultured under high light (16 W/m2) and low light (2 W/m2) conditions. In low light cells, the chlorophyll a content and the dry weight on per cell basis is increased, the maximal photosynthetic capacity per chlorophyll is decreased. The content of chlorophyll c, vaucheriaxanthin-ester and heteroxanthin is similar in both cultures, whereas the content of diadinoxanthin and ß-carotene is twice as high in high light cultures. High light cells contain more photosystem I and cytochrome f per chlorophyll than low light cells, whereas the QB content is found to be unchanged. Therefore, the ratio reaction center II/reaction center I is twofold higher in low light cells than in high light ones. The regulation of energy distribution between the photosystems is examined by fluorescence emission spectra at 77 K scanned after different preillumination of the cells. No wavelength dependent state I/state II transition can be detected. However, P. meiringensis regulates the energy distribution in response to light intensity: The higher the irradiance of preillumination, the higher the energy transfer to photosystem I. The sensitivity of the regulation to light intensity is increased in low light cells.  相似文献   

20.
Scytonemin, the yellow-brown pigment of cyanobacterial (blue-green algal) extracellular sheaths, was found in species thriving in habitats exposed to intense solar radiation. Scytonemin occurred predominantly in sheaths of the outermost parts or top layers of cyanobacterial mats, crusts, or colonies. Scytonemin appears to be a single compound identified in more than 30 species of cyanobacteria from cultures and natural populations. It is lipid soluble and has a prominent absorption maximum in the near-ultraviolet region of the spectrum (384 nm in acetone; ca. 370 nm in vivo) with a long tail extending to the infrared region. Microspectrophotometric measurements of the transmittance of pigmented sheaths and the quenching of ultraviolet excitation of phycocyanin fluorescence demonstrate that the pigment was effective in shielding the cells from incoming near-ultraviolet-blue radiation, but not from green or red light. High light intensity (between 99 and 250 μmol photon · m?2· S?1, depending on species) promoted the synthesis of scytonemin in cultures of cyanobacteria. In cultures, high light intensity caused reduction in the specific content of Chl a and phycobilins, increase in the ratio of total carotenoids to Chl a, and scytonemin increase. UV-A (320–400 nm) radiation was very effective in eliciting scytonemin synthesis. Scytonemin production was physiological and not due to a mere photochemical conversion. These results strongly suggest that scytonemin production constitutes an adaptive strategy of photoprotection against short-wavelength solar irradiance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号