首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Rats were fed a diet containing p-chlorophenoxyisobutyric acid (clofibric acid). Activity of microsomal 1-acylglycerophosphorylcholine (1-acyl-GPC) acyltransferase in liver was increased approx. 3-fold by the treatment with clofibric acid. The treatment of rats with clofibric acid did not increase activity of microsomal 2-acyl-GPC acyltransferase. Feeding a diet containing 2,2'-(decamethylenedithio)diethanol (tiadenol), di(2-ethylhexyl)phthalate or acetylsalicylic acid also resulted in a selective increase in the activity of 1-acyl-GPC acyltransferase in rat liver. Treatment with clofibric acid increased the activity of 1-acyl-GPC acyltransferase in liver of mouse as well as rat, but did not change the activity in liver of guinea-pig. The relative rate of acylation of 1-acyl-GPC with various acyl-CoAs by hepatic microsomes was not changed by the treatment of rats with clofibric acid.  相似文献   

2.
The influence of clofibrate and di(2-ethylhexyl)phthalate on mitochondrial acetyl-CoA acetyltransferase (acetyl-CoA: acetyl-CoA C-acetyltransferase, EC 2.3.1.9), the rate-limiting ketogenic enzyme, which can be modified and inactivated by CoA, was investigated. In fed rats, both compounds induced a doubling of ketone bodies in the blood and, moreover, an increase by about 13% in the hepatic relative amount of the unmodified, i.e., the most active form of the enzyme (immunoreactive protein). This shift would account for an elevation of overall enzyme activity by about 5% only. Thus, the CoA modification of mitochondrial acetyl-CoA acetyltransferase did not explain the entire augmentation of ketone bodies. However, clofibrate and di(2-ethylhexyl)phthalate also increased the immunospecific protein and enzyme activity by approx. 2- and 3-fold, respectively. These effects were observed in liver, but not in several extrahepatic tissues.  相似文献   

3.
Using dietary administration, mice were exposed to eight substances known to cause peroxisome proliferation (i.e. clofibrate clofibric acid, 2,4-dichlorophenoxyacetic acid, 2,4,5-trichlorophenoxyacetic acid, nafenopin, ICI-55.897, S-8527 and Wy-14.643) or the related substance p-chlorophenoxyacetic acid (group A). Other animals received di(2-ethylhexyl)phthalate, mono(2-ethylhexyl)phthalate, 2-ethylhexanoic acid, or one of 12 other metabolically and/or structurally related compounds (group B). The effects of these treatments on liver cytosolic and microsomal epoxide hydrolases, microsomal cytochrome P-450, cytosolic glutathione transferase activity, the liver-somatic index and the protein contents of the microsomal and cytosolic fractions prepared from liver were subsequently monitored. In general, peroxisome proliferation was accompanied by increases in cytosolic epoxide hydrolase activity. Many peroxisome proliferators also caused increases in microsomal epoxide hydrolase activity, although the correlation was poorer in this case. Immunochemical quantitation by radial immunodiffusion demonstrated that the increases observed in both of these enzyme activities reflected equivalent increases in enzyme protein, i.e. that induction truly occurred. Induction of total microsomal cytochrome P-450 was obtained after dietary exposure to clofibrate, clofibric acid, 2,4-dichlorophenoxyacetic acid, 2,4,5-trichlorophenoxyacetic acid, nafenopin, Wy-14.643, di(2-ethylhexyl)phthalate and di(2-ethylhexyl)phosphate. The most pronounced effects on cytosolic glutathione transferase activity were the decreases obtained after treatment with clofibrate, clofibric acid and Wy-14.643. Our results, together with those reported by others, suggest that the processes of peroxisome proliferation and induction of cytosolic epoxide hydrolase are intimately related. One possible explanation for this is presented.  相似文献   

4.
Biosynthesis and turnover of carnitine acetyltransferase in rat liver   总被引:2,自引:0,他引:2  
Male Wistar rats were fed on a diet with and without di(2-ethylhexyl)phthalate (DEHP) for 2 weeks. Carnitine acetyltransferase in the liver was increased about 100-fold by administration of DEHP. The results of in vivo experiments showed that the incorporation of L-[4,5-3H]leucine into the enzyme was 12-fold higher and the half-life of the labeled enzyme was elongated by a factor 4.6. The results of in vitro translation experiments with total hepatic RNA in a rabbit reticulocytelysate system and the results concerning the synthesis of the enzyme in isolated hepatocytes indicate that the translatable mRNA for the enzyme was increased upon administration of DEHP and that the enzyme is synthesized as a precursor (Mw = 69,000) larger than the mature enzyme (Mw = 67,500). RNA in the free polysomes directed the synthesis of the enzyme precursor five times more actively than RNA in membrane-bound polysomes.  相似文献   

5.
The activity of long-chain acyl-CoA hydrolase in rat liver was increased by the administration of peroxisome proliferators, such as ethyl p-chlorophenoxyisobutyrate, di(2-ethylhexyl)phthalate or acetylsalicylic acid. The induced activity was mainly confined in the soluble fluid after the subcellular fractionation. The enzyme was purified nearly to homogeneity from livers of rats treated with di(2-ethylhexyl)phthalate. The specific activity of the final preparation was 247 mumol palmitoyl-CoA hydrolyzed min-1 mg protein-1. The molecular weight of the native enzyme was estimated to be 150 000 by gel filtration and that of the subunits was 41 000 by sodium dodecyl sulfate/polyacrylamide gel electrophoresis. The activity of the enzyme was not increased but inhibited by bovine serum albumin or Triton X-100. The molecular and catalytic properties of the enzyme suggest that the induced enzyme was different from mitochondrial and microsomal long-chain acyl-CoA hydrolyses in liver.  相似文献   

6.
1. Activities of peroxisomal oxidases and catalase were assayed at neutral and alkaline pH in liver and kidney homogenates from male rats fed a diet with or without 2% di(2-ethylhexyl)phthalate (DEHP) for 12 days. 2. All enzyme activities were higher at alkaline than at neutral pH in both groups. 3. The effect of the DEHP-diet on the peroxisomal enzymes was different in kidney and liver. Acyl-CoA oxidase activity was raised three- and sixfold in kidney and liver homogenates, respectively. The activity of D-amino acid oxidase decrease in liver, but increased in kidney homogenates. In liver homogenates, urate oxidase activity was not affected by the DEHP diet. The catalase activity was twofold induced in liver, but not in kidney. 4. The differences suggest that the changes of peroxisomal enzyme activities by DEHP treatment are not directly related to peroxisome proliferation. 5. DEHP treatment caused a marked increase of total and peroxisomal fatty acid oxidation in rat liver homogenates. 6. In the control group the rate of peroxisomal fatty acid oxidation was higher at alkaline pH than at neutral pH. 7. This rate was equal at both pH values in the DEHP-fed group, in contrast to the acyl-CoA oxidase activity. These results indicate that after DEHP treatment other parameters than acyl-CoA oxidase activity become limiting for peroxisomal beta-oxidation.  相似文献   

7.
Male rats were fed a diet with or without 2% di(2-ethylhexyl)phthalate (DEHP) for 12 days. Total and peroxisomal oxidation rates of palmitic and arachidonic acid were increased in homogenates of liver and kidney after DEHP administration. The relative peroxisomal contribution to the total oxidation was only higher in liver. The activities of acyl-CoA oxidase and carnitine palmitoyltransferase were also higher in both tissues. Immunoblots showed that the increase of fatty acid oxidation was associated with a higher concentration of enzymes of peroxisomal and mitochondrial beta-oxidation. DEHP did not change total and peroxisomal fatty acid oxidation and activity of carnitine palmitoyltransferase of homogenates of heart and skeletal muscle. The cause for the tissue-specific response is discussed.  相似文献   

8.
Molecular cloning of cDNA for rat acyl-CoA oxidase   总被引:9,自引:0,他引:9  
Poly(A+) RNA was prepared from hepatic free polysomes of rats which had been fed di(2-ethylhexyl) phthalate for the induction of peroxisomal beta-oxidation enzymes. This preparation was enriched for the mRNAs of these enzymes by sucrose density gradient centrifugation, and used for the synthesis of double-stranded cDNA. Recombinant plasmids were constructed from the cDNA and pBR322 by dG X dC-tailing method and used for the transformation of an Escherichia coli strain, chi 1776. By differential colony hybridization using [32P]cDNA of partially purified liver poly(A+) RNA from induced and noninduced rats as probes, and then by hybridization-selected translation, we obtained two clones with cDNA inserts which specifically selected acyl-CoA oxidase mRNA. On Northern blotting, both cDNA inserts hybridized to 3.8-kilobase RNA which was increased about 10-fold by di(2-ethylhexyl) phthalate treatment of the rats. The cleavage maps of the cDNA inserts showed they overlap with each other. We conclude that the above two recombinant plasmid clones contain cDNA sequences for rat acyl-CoA oxidase.  相似文献   

9.
The abilities of the hepatic peroxisome proliferators (HPPs) clofibrate, di(2-ethylhexyl)phthalate (DEHP), mono(2-ethylhexyl)- phthalate (MEHP), 2,4-dichlorophenoxy acetic acid (2,4-D), 2,4,5-trichlorophenoxy acetic acid (2,4,5-T) and tiadenol to induce morphological transformation and to increase the catalase activity of Syrian hamster embryo (SHE) cells were studied. DEHP, MEHP, clofibrate and tiadenol induced morphological transformation of SHE cells and increased the catalase activity. DEHP was more potent than clofibrate and tiadenol in both inducing catalase and morphological transformation, while MEHP seemed more potent than DEHP in inducing catalase, but not morphological transformation, 2,4,5-T and 2,4-D did not induce morphological transformation, but 2,4,5-T was more potent than clofibrate in increasing the catalase activity. These results show that several HPPs induce morphological transformation of SHE cells and an increase in the catalase activity. There is, however, no direct connection between these two parameters, as seen from the results of 2,4,5-T. The tumor promoter TPA, and the metal salt nickel sulphate, induced morphological transformation of SHE cells without any appreciable increase in the catalase activity. These results further corroborate the dissociation between induction of morphological transformation and the increase in catalase activity.Abbreviations Clofibrate ethyl-2-(p-chlorophenox) isobutyrate - 2,4-D 2,4-dichlorophenoxy acetic acid - DEHP di(2-ethylhexyl)phthalate - HPP hepatic peroxisome proliferator - MEHP mono(2-ethylhexyl)phthalate - SHE Syrian hamster embryo - 2,4,5-T 2,4,5-trichlorophenoxy acetic acid - tiadenol di(hydroxyethylthio)-1,10-decane  相似文献   

10.
After force-feeding a protein-free diet to male rats for 5-7 days a substantial (2.4-fold) increase in the specific activity of the liver microsomal enzyme UDP-glucuronyltransferase (EC 2.4.1.17) was observed. A similar activation of the enzyme occurred when rats were fed on a low-protein (5%, w/w, casein) diet for 60 days. Although both the short- and long-term protein-deficient diets decreased the contents of microsomal protein and phospholipid in liver tissue they did not significantly alter the ratio of these major membrane components. Protein deficiency profoundly altered the phospholipid composition of microsomal membranes. The most striking difference in microsomal phospholipid composition between control and protein-deficient rats was their content of lysophosphatides. Whereas microsomal membranes from protein-deficient rats contained significant proportions of lysophosphatidylcholine and lysophosphatidylethanolamine very little or no lysophosphatides were detected in control preparations. Pretreatment of microsomal fractions from normal rats with phospholipase A markedly increased their UDP-glucuronyltransferase activity as did their pretreatment with lysophosphatidylcholine. It is concluded that the quantities of lysophosphatides present in microsomal membranes from protein-deficient rats were sufficient to have caused the increased UDP-glucuronyltransferase activities of these preparations. Evidence is presented suggesting that these changes in microsomal phospholipid composition and UDP-glucuronyltransferase activity caused by protein deficiency reflect changes that occur in vivo. The possible physiological significance of these findings is discussed.  相似文献   

11.
A new model system for the study of phosphatidylcholine biosynthesis is presented. Young rats were fed a diet that contained 5% cholesterol and 2% cholate. After 6 days there was a 2-fold increase in the concentration of plasma phospholipid (243 mg/dl compared to 132 mg/dl for control animals) and a 3-fold increase in the concentration of plasma phosphatidylcholine. The rate of phosphatidylcholine biosynthesis was measured after injection of [Me-3H]choline into the portal veins. The incorporation of tritium into choline, phosphocholine and betaine by liver was similar for experimental and control animals, whereas there was a 3-fold increased incorporation into phosphatidylcholine of the cholesterol/cholate-fed rats. The activities of the enzymes of phosphatidylcholine biosynthesis in cytosol and microsomes were assayed. The only change detected was in the cytosolic and microsomal activities of CTP: phosphocholine cytidylyltransferase which were increased more than 2-fold in specific activity. When total cytidylyltransferase activity per liver was determined, a dramatic translocation of the enzyme to microsomes was observed. The control livers had 24% of the cytidylyltransferase activity associated with microsomes, whereas this value was 61% in the livers from cholesterol/cholate-fed rats. When the cytosolic cytidylyltransferase was assayed in the presence of phospholipid, the enzyme was stimulated several-fold and the difference in specific activity between control and cholesterol/cholate-fed rats was abolished. The increased activity in cytosol appears to be the result of a 2-fold increase in the amount of phospholipid in the cytosol from cholesterol/cholate-fed rats. The data strongly support the hypothesis that the special diet stimulates phosphatidylcholine biosynthesis by causing a translocation of the cytidylyltransferase from cytosol to microsomes where it is activated.  相似文献   

12.
Administration of the widely used plasticizer di(2-ethylhexyl)phthalate (2% w/w) in the diet to the rat caused proliferation of mitochondria in the liver. The number of mitochondria as well as the amount of protein recovered in the organellar fraction was doubled. Mitochondria isolated from the livers of treated animals showed decreased (50%) respiratory activity. The content and activity of cytochrome oxidase were also decreased. The specific incorporation of amino acids into the proteins of whole liver and of mitochondria was not increased in plasticizer-treated animals. Isolated mitochondria also did not show any difference in the rate of incorporation of amino acids into proteins. The half-lives of whole liver proteins and of mitochondria were increased in plasticizer-fed animals. The half-life of cytochrome oxidase, however, was unaffected by the treatment. The pattern of double labeling of mitochondrial proteins confirmed decreased turnover in plasticizer-treated animals.  相似文献   

13.
Male Wistar rats were fed a diet with or without di(2-ethylhexyl)phthalate (DEHP) for 2 weeks. Carnitine octanoyltransferase (COT) in the liver was increased 23.5-fold in rats given DEHP. It was found by in vivo experiments using L-[4,5-3H]leucine and the immunoprecipitation technique that the rate of synthesis of COT was 14.1-fold higher and that of its degradation was 1.5-fold lower in the DEHP group. COT was translated much more effectively in free polysomes than in membrane-bound polysomes. The molecular size of the in vitro product was the same as that of the mature enzyme. The translation activity of mRNA coding for COT measured with total hepatic RNA was 16.6-fold higher in the DEHP group. Carnitine palmitoyltransferase (CPT) was increased 5.9-fold after administration of DEHP. The rate of synthesis of CPT measured in the in vivo experiment was 5.0-fold higher in the DEHP group. The rate of its degradation was the same in the two groups. CPT was also translated much more effectively in free polysomes. The size of the preenzyme was larger than that of the subunit of the mature enzyme by about 2,400 daltons. In contrast to COT, the increase in the translation activity of mRNA for CPT by administration of DEHP was markedly higher than the increase in the rate of its synthesis measured in the in vivo experiment.  相似文献   

14.
The feeding of 2% di(2-ethylhexyl)phthalate (DEHP) to rats increased the hepatic microsomal elongation of palmitoyl-CoA by about twofold, while those of palmitoleoyl-CoA and gamma-linolenoyl-CoA decreased to 83 and 63%, respectively, of the control values. When component reactions of the elongation pathway were measured, it was observed that only the activity of condensing enzyme was increased by twofold, while those of beta-ketostearoyl-CoA reductase, beta-hydroxypalmitoyl-CoA dehydrase, and trans-2-hexadecenoyl-CoA reductases were not affected. Furthermore, the time course for induction of both condensation and elongation of palmitoyl-CoA was similar. In vitro addition of DEHP had no effect on either condensation or elongation. Thus, these results indicate that the peroxisomal proliferator induces only the condensing enzyme which is the regulatory and rate-limiting step of elongation sequence. The DEHP treatment also markedly enhanced the cytosolic NADPH-generating activities of glucose-6-PO4 dehydrogenase (2.2-fold) and malic enzyme (7.3-fold). Unexpectedly, the activities of fatty acid synthetase and citrate cleavage enzyme were unaffected. These results are discussed in light of the fact that these lipogenic enzymes are coordinately induced by diet or hormones.  相似文献   

15.
1. Various aspects of triacylglycerol metabolism were compared in rats given phenobarbital at a dose of 100mg/kg body wt. per day by intraperitoneal injection; controls were injected with an equal volume of 0.15m-NaCl by the same route. Animals were killed after 5 days of treatment. 2. Rats injected with phenobarbital demonstrated increased liver weight, and increased microsomal protein per g of liver. Other evidence of microsomal enzyme induction was provided by increased activity of aminopyrine N-demethylase and cytochrome P-450 content. Increased hepatic activity of γ-glutamyltransferase (EC 2.3.2.2) occurred in male rats, but not in females, and was not accompanied by any detectable change in the activity of this enzyme in serum. 3. Phenobarbital treatment increased the hepatic content of triacylglycerol after 5 days in starved male and female rats, as well as in non-starved male rats; non-starved females were not tested in this regard. At 5 days after withdrawal of the drug, there was no difference in hepatic triacylglycerol content or in hepatic functions of microsomal enzyme induction between the treated and control rats. 4. After 5 days, phenobarbital increased the synthesis in vitro of glycerolipids in cell-free liver fractions fortified with optimal concentrations of substrates and co-substrates when results were expressed per whole liver. The drug caused a significant increment in the activity of hepatic diacylglycerol acyltransferase (EC 2.3.1.20), but did not affect the activity per liver of phosphatidate phosphohydrolase (EC 3.1.3.4) in cytosolic or washed microsomal fractions. A remarkable sex-dependent difference was observed for this latter enzyme. In female rats, the activity of the microsomal enzyme per liver was 10-fold greater than that of the cytosolic enzyme, whereas in males, the activities of phosphohydrolases per liver from both subcellular fractions were similar. 5. The phenobarbital-mediated increase in hepatic triacylglycerol content could not be explained by a decrease in the hepatic triacylglycerol secretion rate as measured by the Triton WR1339 technique. Since the hepatic triacylglycerol showed significant correlation with microsomal enzyme induction functions, with hepatic glycerolipid synthesis in vitro and with diacylglycerol acyltransferase activity, it is likely to be due to enhanced triacylglycerol synthesis consequent on hepatic microsomal enzyme induction. 6. In contrast with rabbits and guinea pigs, rats injected with phenobarbital showed a decrease in serum triacylglycerol concentration in the starved state; this decrease persisted for up to 5 days after drug administration stopped, and did not occur in non-starved animals. It seems to be independent of the microsomal enzyme-inducing properties of the drug, and may be due to the action of phenobarbital at an extrahepatic site.  相似文献   

16.
A high cholesterol diet induced a fatty liver and an increase in cholesterol oleate in spontaneously hypertensive rats. The activity of microsomal glycerophosphate acyltransferase in liver increased 2-3-fold to meet the increased supply of oleate, the synthesis of which was stimulated by a 10-fold increase in microsomal delta 9-desaturase activity. Hepatic fatty acid synthetase and diacylglycerol acyltransferase activities were decreased somewhat. These results, together with the fact that the large increases in hepatic cholesterol ester and triacylglycerol were not correspondingly reflected in plasma, indicated that the fatty liver resulted from decreased secretion of lipoprotein rather than increased lipogenesis. Endogenous cholesterol in liver microsomes increased 2-fold and hepatic acyl-CoA:cholesterol acyltransferase activity increased 3-fold, whereas plasma lecithin:cholesterol acyltransferase activity was unchanged. Thus, the increase in cholesterol oleate seen in spontaneously hypertensive rats fed a high cholesterol diet is due mainly to increases in acyl-CoA:cholesterol acyltransferase and delta 9-desaturase activities.  相似文献   

17.
Activity of enoyl-CoA hydratase in rat liver was elevated about 6-fold by the administration of di-(2-ethylhexyl)phthalate, a hepatic peroxisome proliferator. Almost all of the increased activity was the peroxisomal enzyme, which was distinguished by its heat-lability from mitochondrial one. Heat-labile enoyl-CoA hydratase was copurified with peroxisomal 3-hydroxyacyl-CoA dehydrogenase. The purified enzyme corresponded to a peroxisome specific peptide with a molecular weight of 80,000.  相似文献   

18.
The hypolipidaemic agents ciprofibrate and Wy-14,643 ([4-chloro-6-(2,3-xylidino)-2-pyrimidinylthio]acetic acid) and the phthalate-ester plasticizer di-(2-ethylhexyl)-phthalate (DEHP), like other peroxisome proliferators, produce a significant hepatomegaly and induce the peroxisomal fatty acid beta-oxidation enzyme system together with profound proliferation of peroxisomes in hepatic parenchymal cells. Changes in the profile of liver proteins in rats following induction of peroxisome proliferation by ciprofibrate, Wy-14,643 and DEHP have been analysed by high-resolution two-dimensional gel electrophoresis. The proteins of whole liver homogenates from normal and peroxisome-proliferator-treated rats were separated by two-dimensional gel electrophoresis using isoelectric focusing for acidic proteins and nonequilibrium pH gradient electrophoresis for basic proteins. In the whole liver homogenates, the quantities of six proteins in acidic gels and six proteins in the basic gels increased following induction of peroxisome proliferation. Peroxisome proliferator administration caused a repression of three acidic proteins in the liver homogenates. By the immunoblot method using polyspecific antiserum against soluble peroxisomal proteins and monospecific antiserum against peroxisome proliferation associated Mr 80000 polypeptide (polypeptide PPA-80), the majority of basic proteins induced by these peroxisome proliferators appeared to be peroxisomal proteins. Polypeptide PPA-80 becomes the most abundant protein in the total liver homogenates of peroxisome-proliferator-treated rats. These results indicate that ciprofibrate, DEHP and Wy-14,643 induce marked changes in the profile of specific hepatic proteins and that some of these changes should serve as a baseline to identify a set of gene products that may assist in defining the specific 'peroxisome proliferator domain'.  相似文献   

19.
Administration of clofibric acid, 2,2'-(decamethylenedithio)diethanol, di(2-ethylhexyl)phthalate or perfluorooctanoic acid to male rates increased markedly microsomal 1-acylglycerophosphocholine (a-acyl-GPC) acyltransferase in a dose-dependent manner in liver. Simultaneous administration of actinomycin D or cycloheximide completely abolished the increase in the enzyme activity. The treatment of rats with clofibric acid did not affect the rate of decay of 1-acyl-GPC acyltransferase. Regardless of a great difference in the chemical structures of the peroxisome proliferators, high correlation was observed between the induced activities of microsomal 1-acyl-GPC acyltransferase and peroxisomal beta-oxidation. Stearoyl-CoA desaturase was induced by peroxisome proliferators in a dose-dependent manner; nevertheless, high correlation was not seen between the induced activities of desaturase and peroxisomal beta-oxidation. Hormonal (adrenalectomy, diabetes, hyperthyroidism and hypothyroidism) and nutritional (starvation, starvation-refeeding, fat-free diet feeding and high-fat diet feeding) alterations hardly affected the activity of 1-acyl-GPC acyltransferase. The present results indicate that microsomal 1-acyl-GPC acyltransferase is a useful parameter responsive to the challenges by peroxisome proliferators and suggest that a similar regulatory mechanism operates for the inductions of microsomal 1-acyl-GPC acyltransferase and peroxisomal beta-oxidation.  相似文献   

20.
The effects of dietary casein level (5-40%) on the liver microsomal phospholipid profile, delta 6-desaturase activity and related variables were investigated in rats to examine whether the dietary protein level affected the delta 6-desaturase activity through an alteration of the liver microsomal phospholipid profile. The effects of supplementing a 10% casein diet with certain amino acids were also investigated. The concentration of hepatic S-adenosylmethionine (SAM), the ratio of phosphatidylcholine (PC) to phosphatidylethanolamine (PE) and the delta 6-desaturase activity in liver microsomes, and the ratio of arachidonate to linoleate of microsomal PC increased with increasing dietary casein level. There were significant correlations between the dietary methionine content and hepatic SAM concentration, hepatic SAM concentration and microsomal PE concentration, and microsomal PE concentration and delta 6-desaturase activity. Supplementation of the 10% casein diet with methionine significantly increased the hepatic SAM concentration, PC/PE ratio, delta 6-desaturase activity, and arachidonate/linoleate ratio, whereas cystine supplementation had no or little effect on these variables. These increases induced by methionine were significantly suppressed by additional glycine. The results obtained here, together with those in our previous report, suggest that quantity and type of dietary protein might affect the delta 6-desaturase activity through an alteration of the liver microsomal profile of phospholipids, especially PE, and that the alteration of phospholipid profile might be mediated by a hepatic SAM concentration that reflects the dietary methionine level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号