首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
Summary Patterns of prey size selectivity were quantified in the field for two species of marine microcarnivorous fish, Embiotoca jacksoni and Embiotoca lateralis (Embiotocidae) to test Scott and Murdoch's (1983) size spectrum hypothesis. Two mechanisms accounted for observed selectivity: the relative size of a fish in relation to its prey, and the type of foraging behavior used. Juvenile E. jacksoni were gape limited and newborn individuals achieved highest selectivity for the smallest prey size by using a visual picking foraging strategy. As young E. jacksoni grew, highest preference shifted to the next larger prey sizes. When E. jacksoni reached adulthood, the principal mode of foraging changed from visual picking to relatively indiscriminant winnowing behavior. The shift in foraging behavior by adults was accompanied by a decline in overall preference for prey size; sizes were taken nearly in proportion to their relative abundance. Adult E. lateralis retained a visual picking strategy and achieved highest selectivity for the largest class of prey. These differences in selectivity patterns by adult fish were not explained by gape-limination since adults of both species could ingest the largest prey items available to them. These results support Scott and Murdoch's (1983) hypothesis that the qualitative pattern of size selectivity depends largely on the range of available prey sizes relative to that a predator can effectively harvest.  相似文献   

2.
We carried out dietary analysis on five numerically abundant fishes, Sillago japonica, Ditremma temmincki, Tridentiger trigonocephalus, Hippocampus japonicus and Petroscirtes breviceps in an eelgrass bed in Kwangyang Bay, Korea. Comparisons between species demonstrated that the dietary composition of each fish species was significantly different from that of every other species. Although gammarid amphipods and caprellid amphipods were consumed by all species, their individual contributions to each species' diet varied. Furthermore, polychaetes contributed to the diets of S. japonica and T. trigonocephalusand crab larvae were consumed byD. temmincki. Algae and eelgrass were not consumed by four fish species and made only a minimal contribution to the diet of P. breviceps. The diet of each fish species except H. japonicus underwent size-related changes; smaller fishes consumed gammarid amphipods, mysids and copepods, while larger fishes ate polychaetes, gastropods, isopods and other fishes. Differences in the prey organisms consumed of each individual species could be often related to differences in mouth length and width. S. japonica, D. temmincki, T. trigonocephalus, and P. breviceps underwent also a significant diel changes that could be related to differences in foraging behavior and/or prey availability. Thus, use of vision to detect prey would account for the greater daytime consumption of copepods by S. japonica and of crab larvae by D. temmincki, whereas the nocturnal emergence of gammarid amphipods, polychaetes and isopods from the substrate explained their greater consumption by S. japonica, D. temmincki, T. trigonocephalusand P. breviceps at night. Dietary breadth was greater for species with larger mouth dimensions.  相似文献   

3.
During January and February of 2002 and 2003, we studied the diet of the Antarctic Tern Sterna vittata gaini at two colonies in Nelson Island, South Shetland Islands, by identifying the prey fed to chicks by breeders. The fish Notothenia coriiceps was the main prey in both seasons, followed by the myctophid Electrona antarctica, Antarctic krill Euphausia superba and gammarid amphipods. The contribution of fish to the diet increased as chicks grew older. Fish and amphipods were brought to chicks during the day, whereas adults brought Antarctic krill at sunrise and sunset. Both the duration of the feeding trips and the number of trips per foraging bout varied according to the type of prey caught. Preliminary information suggests that, among other causes, the foraging strategy is strongly influenced by the predation pressure of skuas on chicks. Results are compared with the only two previous study on the diet of the Antarctic Tern at the South Shetland Islands.  相似文献   

4.
Synopsis Black surfperch, Embiotoca jacksoni, and striped surfperch, Embiotoca lateralis, coexisted along steep sloping rocky habitats at Santa Cruz Island, California. The range of depths occupied (to 15 m) was characterized by a strong gradient in abundance of prey and a changing mosaic of substrate types from which surfperch harvested food. Availability of prey and diversity of benthic substrates were greatest in shallowest areas and both declined with increasing depth. Individuals of both surfperch species were residential within a narrow range of depths, with the result that different segments of their populations were consistently exposed to different foraging environments. These two phenomena (residential behavior combined with a gradient in availability of resources) resulted in variation in foraging behaviors and diets among individuals that resided at different depths. The pattern of within-population variation differed between the surfperch species. Black surfperch individuals achieved similar taxonomic diets and expended similar foraging effort at all depths, but deep-water foragers captured much less prey biomass per unit effort. The taxonomic composition of striped surfperch diets differed among depths, and although similar amounts of prey biomass were captured everywhere, individuals in deep areas expended much greater effort to obtain that level of food return. For both species, habitat profitability (food return to foraging effort) declined with depth. The difference in habitat profitability appeared to influence fitness components of both surfperches. Individuals occupying deep habitats were about 5% shorter in standard length than conspecifics of the same chronological age living in shallow areas; the disparity in body size resulted in an estimated difference in clutch size of 10–18%.  相似文献   

5.
A total of 45 juvenile [30.0–57.4 mm total length (TL)] slime flounder Microstomus achne were collected in the coastal area of southern Hokkaido from April to July in 2001 and April to June in 2002. Their diets were analyzed. Slime flounder juveniles of 30.0–39.9 mm TL fed predominantly on small crustaceans (gammarid amphipods, harpacticoids and cumaceans) and those of 40.0–57.4 mm TL on gammarid amphipods, cumaceans and polychaetes. The major prey items changed with growth from small crustaceans (e.g., harpacticoids) to polychaetes, although gammarid amphipods were the major prey items throughout the juvenile period (30.0–57.4 mm TL).  相似文献   

6.
Foraging behaviors of the piscivorous cornetfish Fistularia commersonii were observed at shallow reefs in Kuchierabu-jima Island, southern Japan. This fish foraged on two types of prey fishes: one was reef fish that typically dwell on or near substrata (e.g., Tripterygiidae and Labridae), and the other was pelagic fish that shoal in the water column (e.g., Clupeidae and Carangidae). The prey sizes, prey types and foraging behaviors changed as the predator size increased. Prey sizes were largely limited by gape size of the cornetfish, and small predators consumed small prey. The small cornetfish (10–30 cm in total length) fed only on reef fish captured after stalking (where the fish slowly approaches the prey and then suddenly attacks). The stalking was done either solitarily or in foraging association with conspecifics. Large fish (30–120 cm) fed on both types of fishes by stalking and/or chasing (where the fish chases the prey using its high mobility and attacks), either solitarily or in foraging association with con- or heterospecifics. Thus, chasing was only performed by the large cornetfish against pelagic prey fish in associative foraging with other con- and heterospecific predators. As their body sizes increased, F. commersonii began to show a diversification of foraging behaviors, which was strongly related not only to the habitat types and anti-predatory behaviors of the prey fishes but also to associative foraging with con- or heterospecifics, which improves their foraging success.  相似文献   

7.
Synopsis Feeding ecology was compared between sympatric greenling species, Hexagrammos otakii and H. agrammus in the eelgrass beds in Jindong Bay, Korea, from January to December. These two species had similar diets composed of crustaceans, polychaetes, gastropods and fishes; both species consumed primarily crustaceans throughout study periods. H. otakii, however, fed a greater proportion of polychaetes and fishes than H. agrammus. H. agrammus had a greater proportion of gastropods in their diets. The diet of both species underwent size-related changes; smaller individuals of H. otakii and H. agrammus consumed amphipods (gammarid amphipods and caprellid amphipods), while larger individuals of H. otakii ate polychaetes and fishes and those of H. agrammus fed mainly on gastropods and crabs. The diet of H. otakii underwent seasonal changes; H. otakii consumed mainly polychaetes and fishes during January and February 2002 but amphipods during March and May 2002. H. agrammus, however, ate mainly gastropods and crabs all seasons. H. otakii underwent also a significant diel changes that could be related to difference of prey availability. Thus the nocturnal emergence of gammarid amphipods, polychaetes and fishes explained their greater consumption by H. otakii. Dietary breadth of both species was lower in the smallest individuals (<5 cm SL) and in March and April 2002. This was due to the disproportionate dry mass attributable to the consumption of amphipods by both H. otakii and H. agrammus. Dietary overlap of both species was relatively moderate to high, in particular in <9.9 cm SL (0.62 – 0.71) from May to July 2002 (0.63 – 0.71). This is coincident with higher abundances of crabs, caridean shrimps and polychaetes in the study area, and it was assumed that these prey species were not limited resources. Higher dietary overlap was correlated with an abundance of a shared resource and did not indicate the interspecific competition between H. otakii and H. agrammus.  相似文献   

8.
Predators select prey so as to maximize energy and minimize manipulation time. In order to reduce prey detection and handling time, individuals must actively select their foraging space (microhabitat) and populations exhibit morphologies that are best suited for capturing locally available prey. We explored how variation in diet correlates with habitat type, and how these factors influence key morphological structures (mouth gape, eye diameter, fin length, fin area, and pectoral fin ratio) in a common microcarnivorous cryptic reef fish species, the triplefin Helcogrammoides cunninghami. In a mensurative experiment carried out at six kelp‐dominated sites, we observed considerable differences in diet along 400 km of the Chilean coast coincident with variation in habitat availability and prey distributions. Triplefins preferred a single prey type (bivalves or barnacles) at northern sites, coincident with a low diversity of foraging habitats. In contrast, southern sites presented varied and heterogeneous habitats, where triplefin diets were more diverse and included amphipods, decapods, and cumaceans. Allometry‐corrected results indicated that some morphological structures were consistently correlated with different prey items. Specifically, large mouth gape was associated with the capture of highly mobile prey such as decapods, while small mouth gape was more associated with cumaceans and copepods. In contrast, triplefins that capture sessile prey such as hydroids tend to have larger eyes. Therefore, morphological structures co‐vary with habitat selection and prey usage in this species. Our study shows how an abundant generalist reef fish exhibits variable feeding morphologies in response to the distribution of potential habitats and prey throughout its range.  相似文献   

9.
The dynamics of microhabitat use by foraging adult and juvenile black surfperch (Embiotocajacksoni Agazzi) were explored. Detailed observations of black surfperch feeding at Santa Catalina Island, California, revealed that adults and young-of-year juveniles co-occurred in the same habitat but used different algal substrata as foraging sites. Juveniles selected invertebrate prey almost exclusively from the surface of foliose algae. The occurrence of young E. jacksoni was highly correlated with that of foliose algae. Adults tended to bite most frequently from turf, a low-growing matrix of plants, colonial animals, and debris covering the rocky substratum. The abundance of adults was negatively correlated with the occurrence of foliose algae. Adults and juveniles showed marked, but different, preferences in their utilization of taxa of algae as foraging substrata. Certain algae (e.g., Zonaria farlowii Setchell & Gardner) were preferred while other taxa (e.g., Sargassum palmeri Grun) were avoided by both age groups. However, most types of algae were preferred by one group but not the other. To test the hypothesis that knowledge of algal substratum composition allows prediction of fish occurrence and foraging behavior in a patch, algal cover on 2 × 2 m2 areas of bottom was manipulated creating plots dominated by turf, Zonaria farlowii, or Sargassum palmeri. Fish occurrence could be accurately predicted on the basis of abundance of foliose algae, but foraging activity of fish was highly dependent on the algal taxon that dominated the patch. Differential prey availabilities among foraging substrata provided some insight into the patterns of foraging patch preferences displayed by adult and juvenile Embiotoca jacksoni.  相似文献   

10.

Poleward range extensions of coral reef species can reshuffle temperate communities by generating competitive interactions that did not exist previously. However, novel environmental conditions and locally adapted native temperate species may slow tropical invasions by reducing the ability of invaders to access local resources (e.g. food and shelter). We test this hypothesis on wild marine fish in a climate warming hotspot using a field experiment encompassing artificial prey release. We evaluated seven behaviours associated with foraging and aggressive interactions in a common range-extending coral reef fish (Abudefduf vaigiensis) and a co-shoaling temperate fish (Microcanthus strigatus) along a latitudinal temperature gradient (730 km) in SE Australia. We found that the coral reef fish had reduced foraging performance (i.e. slower prey perception, slower prey inspection, decreased prey intake, increased distance to prey) in their novel temperate range than in their subtropical range. Furthermore, higher abundance of temperate fishes was associated with increased retreat behaviour by coral reef fish (i.e. withdrawal from foraging on released prey), independent of latitude. Where their ranges overlapped, temperate fish showed higher foraging and aggression than coral reef fish. Our findings suggest that lower foraging performance of tropical fish at their leading range edge is driven by the combined effect of environmental factors (e.g. lower seawater temperature and/or unfamiliarity with novel conditions in their extended temperate ranges) and biological factors (e.g. increased abundance and larger body sizes of local temperate fishes). Whilst a future increase in ocean warming is expected to alleviate current foraging limitations in coral reef fishes at leading range edges, under current warming native temperate fishes at their trailing edges appear able to slow the range extension of coral reef fishes into temperate ecosystems by limiting their access to resources.

  相似文献   

11.
Recent decline in the lesser scaup Aythya affinis population has been linked to changes in wetland conditions along their spring migration routes. In particular, the use of amphipod prey by lesser scaup has declined in many regions of the upper Midwest U.S.A. and has been linked to expanded fisheries, although empirical data on diet overlap are lacking. To explore patterns of prey use by lesser scaup and diet overlap with fishes, we quantified diets of scaup and fishes during the 2003 and 2004 spring migration in eastern South Dakota, U.S.A. We compared diet overlap between lesser scaup and fishes collected from Twin Lakes, South Dakota—an important stopover location for spring-migrating scaup. Plant seeds occurred in >95% of lesser scaup diets (n = 118) and represented an appreciable amount of consumed biomass (>70%). Gastropods, amphipods, and chironomids were the most abundant invertebrate prey taxa and occurred in 29–34% of lesser scaup diets. Although relatively frequent, these taxa each contributed only 4–27% of the diet by weight. Percent dry mass of amphipods, a preferred prey by lesser scaup, was low (4%) indicating that amphipod availability may be reduced during spring migration. Analysis of fish diets showed that black bullhead Ameiurus melas and yellow perch Perca flavescens had the highest diet overlap with lesser scaup at 94% and 92%, respectively. Moreover, mean size of amphipods and chironomids found in fish diets were significantly larger than that consumed by lesser scaup. Our findings support the notion that amphipod use by spring-migrating lesser scaup has declined and that size-selective predation by fishes may influence prey availability for lesser scaup. Handling editor: K. Martens  相似文献   

12.
The diets of the most conspicuous reef‐fish species from northern Patagonia, the carnivorous species Pseudopercis semifasciata, Acanthistius patachonicus, Pinguipes brasilianus and Sebastes oculatus were studied. Pinguipes brasilianus had the narrowest diet and most specialized feeding strategy, preying mostly on reef‐dwelling organisms such as sea urchins, limpets, bivalves, crabs and polychaetes. The diet of A. patachonicus was characterized by the presence of reef and soft‐bottom benthic organisms, mainly polychaetes, crabs and fishes. Pseudopercis semifasciata showed the broadest spectrum of prey items, preying upon reef, soft‐bottom and transient organism (mainly fishes, cephalopods and crabs). All S. oculatus guts were empty, but stable‐isotope analyses suggested that this species consumed small fishes and crabs. In general, P. brasilianus depended on local prey populations and ate different reef‐dwelling prey than the other species. Pseudopercis semifasciata, A. patachonicus and probably S. oculatus, however, had overlapping trophic niches and consumed resources from adjacent environments. The latter probably reduces the importance of food as a limiting resource for these reef‐fish populations, facilitating their coexistence in spite of their high trophic overlap.  相似文献   

13.
Summary A model of individual foraging in social insects as presented that formalises the dynamics of foraging and concentrates on the collective rather than the individual benefit, quantifying the relationships between a colony's foraging area, number of foragers and foraging energy budget and the food sources' rate of arrival, disappearance and capture. A series of experiments, in which a number of prey were offered to colonies of the individually foraging antPachycondyla (ex-Neoponera) apicalis confirm the hypotheses implicit in the model and measured the rates of capture and competition. 60 days observation of 3P. apicalis colonies' foraging activity are summarised and used in conjunction with the model to obtain estimations of the density and rate of arrival of available prey in the foraging area. We examine how a colony's foraging benefit may be influenced by its foraging area, the number of foragers, and the forager/non-forager ratio and show that a colony's jocial structure strongly limits its potential foraging benefit. Within these limits,P. apicalis does not appear to be an optimal forager.  相似文献   

14.
To study the effects of short-term experience on prey size-selection ten-spined sticklebacks (Pungitius pungitius) were fed 7–13 days with five differing diets of novel prey, Daphnia magna. The diets consisted either of a mixture of two prey size classes (1.7 and 2.2 mm) or of single-sized (1.7 and 2.2 mm) prey. Before and after the diets, the sticklebacks' prey size selection was tested with a 1:1 ratio of 1.7 and 2.2 mm D. magna. Sticklebacks made more attempts to capture large than small prey, but their foraging success was better for small than for large prey. Sticklebacks fed with a diet of both prey sizes chose significantly more large prey on the 13th day than on the 7th day or at the beginning of the experiment. Handling times for both Daphnia size classes decreased slightly with increasing foraging experience. Inexperienced sticklebacks made more unsuccessful strikes on large prey than did experienced fish. Foraging success on large prey improved somewhat with increasing experience in all but one diet group. The results indicate that experience affected ten-spined sticklebacks' prey selection.  相似文献   

15.
The effects of bottom trawling on benthic invertebrates include reductions of biomass, diversity and body size. These changes may negatively affect prey availability for demersal fishes, potentially leading to reduced food intake, body condition and yield of fishes in chronically trawled areas. Here, the effect of trawling on the prey availability and diet of two commercially important flatfish species, plaice (Pleuronectes platessa) and dab (Limanda limanda), was investigated over a trawling intensity gradient in the Irish Sea. Previous work in this area has shown that trawling negatively affects the condition of plaice but not of dab. This study showed that reductions in local prey availability did not result in reduced feeding of fish. As trawling frequency increased, both fish and prey biomass declined, such that the ratio of fish to prey remained unchanged. Consequently, even at frequently trawled sites with low prey biomass, both plaice and dab maintained constant levels of stomach fullness and gut energy contents. However, dietary shifts in plaice towards energy-poor prey items were evident when prey species were analysed individually. This, together with a potential decrease in foraging efficiency due to low prey densities, was seen as the most plausible cause for the reduced body condition observed. Understanding the relationship between trawling, benthic impacts, fish foraging and resultant body condition is an important step in designing successful mitigation measures for future management strategies in bottom trawl fisheries.  相似文献   

16.
Synopsis The foraging ecology of two temperate marine gobies (Pisces: Gobiidae) was studied in rocky subtidal habitats off Santa Catalina Island, California. The bluebanded goby, Lythrypnus dalli, foraged from exposed ledges and fed on planktonic and benthic prey, although planktonic prey were more important in diets by number and weight. The more cryptic zebra goby, Lythrypnus zebra, remained hidden under rocks and in crevices feeding on benthic prey almost exclusively. The active selection of particular prey taxa from the two prey sources (water column and substratum), mediated by species-specific differences in foraging behavior, resulted in interspecific differences in type, number, size and weight of prey consumed. Interspecific differences in foraging ecology reflect the selection of prey most readily available to these fishes that occupy specific and fixed microhabitats within rocky reefs.  相似文献   

17.
The results of two experiments showed that observation of a trained conspecific Atlantic salmon Salmo salar significantly increased the rate at which naïve hatchery-reared fish accepted novel, live prey items, whereas the presence of an untrained conspecific actually decreased learning rates due to social inhibition. Pre-release training involving exposure of hatchery-reared fish to live prey items in the presence of pre-trained demonstrators would result in a significant enhancement in their foraging success on release and help prevent starvation, which is thought to be one of the principal causes of post-release mortality in hatchery-reared fishes.  相似文献   

18.
Synopsis The distribution patterns, diets, and substratum (refuge) requirements of early juveniles of two sympatric stichaeid fishesCebidichthys violaceus andXiphister mucosus, were investigated in a rocky intertidal habitat at Diablo Canyon, California. Monthly investigations were conducted at low tide for four consecutive months, to assess ontogenetic differences in distribution, diet, and refuge requirements within and between the two species. Distinct differences in vertical zonation were exhibited by both stichaeids throughout the study. Interspecific zonation patterns were similar to those recorded for adults of both species. Diet analyses showed that early juveniles of both stichaeids were zooplanktivorous, differing markedly from the primarily herbivorous diets of adults. Changes in diet were largely due to the selection of larger prey taxa as both fishes, and their mouth size, grew over the study period. Predation by both fishes on water-column planktors (calanoid copepods, zoea and polychaete larvae) was greatest following initial intertidal settlement and habitat establishment by early juvenile fishes. Greater dependence on substrate-oriented and/or benthic prey (harpacticoid copepods, gammarid amphipods and mysid shrimp) was exhibited by both fishes as they grew in size. Affinities for sand, gravel, and pebbles during monthly field surveys were similar for both species throughout the study. As the fishes grew, their substratum preferences changed in relation to the substrata which provided the best refuge. Results from laboratory experiments indicated that young stichaeids select very specific substrata based on fish age (size) and substratum suitability (i.e. adequate refuge). Similarities in diet and substratum preferences, and changes in those preferences over time, appear to be the result of morphological similarities (body size and shape and mouth gape) for both species at a given age.  相似文献   

19.
The important contribution of terrestrial invertebrates to the energy budget of drift-foraging fishes has been well documented in many forested headwater streams. However, relatively little attention has been focused on the behavioral mechanisms behind such intensive exploitation. We tested for the hypothesis that active prey selection by fishes would be an important determinant of terrestrial invertebrates contribution to fish diets in a forested headwater stream in northern Japan. Rainbow trout, Oncorhynchus mykiss, were estimated to consume 57.12 mg m–2 day–1 (dry mass) terrestrial invertebrates, 77% of their total input (73.89 mg m–2 day–1), there being high selectivity for the former from stream drift. Both the falling input and drift of terrestrial invertebrates peaked at around dusk, decreasing dramatically toward midnight. In contrast, both aquatic insect adults and benthic invertebrates showed pronounced nocturnal drift. Because the prey consumption rates of rainbow trout were high at dawn and dusk, decreasing around midnight, the greater contribution of terrestrial invertebrates to trout diet was regarded as being partly influenced by the difference in diel periodicity of availability among prey categories. In addition, selectivity also depended upon differences in individual prey size among aquatic insect adults, and benthic and terrestrial invertebrates, the last category being largest in both the stream drift and the trout diets. We concluded that differences in both the timing of supplies and prey size among the three prey categories were the primary factors behind the selective foraging on terrestrial invertebrates by rainbow trout.  相似文献   

20.
 Several patterns of feeding behaviors have been documented in benthophagous fishes. The foraging behavior of the maiden goby, Pterogobius virgo, was studied at Kurahashi Island in the Seto Inland Sea, Japan. Pterogobius virgo foraged mostly on polychaetes by volume from among several available prey items by digging in the sandy bottom. The digging behavior comprised swing of only pectoral fins or of both pectoral fins and body. Pectoral fin swing exposed the cryptic prey within the bottom, and fins and body swing exposed the prey and washed the sediment away. The swings were repeatedly and continuously conducted at a site during the daytime, making a pit several centimeters deep in which the fish was located. After the prey was exposed, the fish immediately and rapidly picked up the prey. Polychaetes were abundant prey in the sediment, occurring in the layer 3–5 cm deep from the bottom surface in the study area. In this goby, spot-fixed fin digging, the first documentation of feeding habits in gobies, may be effective for feeding on the most valuable prey, i.e., polychaetes, which may be otherwise unavailable for this fish. Received: April 24, 2001 / Revised: April 26, 2002 / Accepted: May 7, 2002  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号