首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary In jejunal brush-border membrane vesicles, an outwardly directed OH gradient (in>out) stimulates DIDS-sensitive, saturable folate (F) uptake (Schron, C.M. 1985.J. Clin. Invest. 76:2030–2033), suggesting carrier-mediated folate: OH exchange (or phenomenologically indistinguishable H+: folate cotransport). In the present study, the precise role of pH in the transport process was elucidated by examining F uptake at varying pH. For pH gradients of identical magnitude, F uptake (0.1 M) was greater at lower (pHint/pHext: 5.5/4.5) compared with higher (6.5/5.5) pH ranges. In the absence of a pH gradient, internal Ftrans stimulated DIDS-sensitive3H-folate uptake only at pH6.0. Since stepwise increments ininternal pH (4.57.5; pHext=4.5) stimulated F uptake, an inhibitory effect of higherinternal pH was excluded. In contrast, with increasing external pH (4.356.5; pHint=7.8), a 50-fold decrement in F uptake was observed (H+ K m =12.8±1.2 M). Hill plots of these data suggest involvement of at least one H+ (OH) at low pH (monovalent F predominates) and at least 2 H+ (OH) at high pH (divalent F–2 predominates). Since an inside-negative electrical potential did not affect F uptake at either pHext 4.55 or 5.8, transport of F and F–2 is electroneutral. Kinetic parameters for F and F–2 were calculated from uptake data at pHext 4.55 and 5.0. Comparison of predictedvs. experimentally determined kinetic parameters at pHext5.8 (K m =1.33vs. 1.70 M;V max=123.8vs. 58.0 pmol/mg prot min) suggest that increasing external pH lowers theV max, but does not affect theK m for carrier-mediated F transport. These data are consistent with similarK i ' s for sulfasalazine (competitive inhibitor) at pHext 5.35 and 5.8 (64.7 and 58.5 M, respectively). In summary, the jejunal F carrier mediates electroneutral transport of mono- and divalent F and is sensitive to external pH with a H+ K m (or OH lC50) corresponding to pH 4.89. External pH effects theV max, but not theK m for carriermediated F uptake suggesting a reaction mechanism involving a ternary complex between the outward-facing conformation of the carrier and the transported ions (F and either OH or H+),rather than competitive binding that is mutually exclusive.  相似文献   

2.
Summary In jejunal brush-border membrane vesicles, an out-wardly directed OH gradient (in>out) stimulates DIDS-sensitive, saturable folate (F) uptake (Schron, C.M., 1985).J. Clin. Invest. 76:2030–2033), suggesting carrier-mediated folate: OH exchange (or phenomenologically indistiguishable H+: folate cotransport). In the present study, the precise role of pH in the transport process was elucidated by examinin F uptake at varying pH. For pH gradients of identical magnitude, F uptake (0.1 M) was geater at lower (pHint/pHext:5.5/4.5) compared with higher (6.5/5.5) pH ranges. In the absence of a pH gradient, internal Ftrans stimulated DIDS-sensitive3H-folate uptake only at pH6.0. Since setepwise increments ininternal pH (4.57.5; pHext=4.5) stimulated F uptake, an inhibitory effect of higherinternal pH was excluded. In contrast, with increasing external pH(4.356.5; pHint=7.8), a 50-fold decrement in F uptake was observed (H+ K m =12.8±1.2m). Hill plots of these data suggest involvement of at least one H+ (OH) at high pH (divalent F–2 predominates). Since an inside-negative electrical potential did not affect F uptake at either pHext 4.55 or 5.8, transport of F and F–2 is electroneutral. Kinetic parameters for F and F–2 were calculated from uptake data at pHext 4.55 and 5.0. Comparision of predictedvs. experimentally determined kinetic parameters at pHext 5.8 (K m =1.33vs. 1.70 m;V max=12.8vs. 58.0 pmol/mg prot min) suggest that increasing external pH lowers theV max, but does not affect thatK m, for carrier-mediated F transport. These data are consistent with similarK i's for sulfasalazine (competitive inhibitor) at pHext 5.35 and 5.8 (64.7 and 58.5 m, respectively). In summary, the jejunal F carrier mediates electroneutral transport of mono- and divalen F and is sensitive to extermal pH with a H+ K m (or OH IC50) corresponding to pH 4.89. External pH affects theV max, but not theK m for carriermediated F uptake suggesting a reaction mechanism involving a ternary complex between the outward-facing conformation of the carrier and the transported ions (F and either OH or H+) rather than competitive binding that is mutually exclusive.  相似文献   

3.
The green euryhaline flagellate Chlamydomonas pulsatilla Wollenweber, isolated from a coastal marine environment, was grown exponentially over the salinity range of 10 to 200% artificial seawater (ASW). The cellular volume and aqueous space of the alga, measured by [14C] mannitol and 3H2O tracer analyses of centrifuged cell pellets, ranged between 2.3 and 3.1 picoliters and between 1.5 and 2.1 picoliters, respectively. The nonaqueous space determined in those analyses (28-35%) was consistent with the cell composition of the alga. The glycerol content of the alga increased almost linearly with increasing salinity; its contribution to intracellular osmolality at 200% ASW was about 57%. The contribution of amino acids and soluble carbohydrates to the cell osmotic balance was small. Intracellular ion concentrations determined by analyzing centrifuged cell pellets of known [14C]mannitol space by atomic absorption spectrophotometry, and by neutron activation analyses of washed cells were similar. At 10% ASW, potassium and magnesium were the major cations, and chloride and phosphate were the major anions. The sodium and chloride content of the alga increased with increasing salinity; at 200% ASW the intracellular concentration of both sodium and chloride was about 400 millimolar. The intracellular osmolality (πint) matched closely the external osmolality (πext) over the entire salinity range except at 10% ASW where πint exceeded πext by 120 to 270 milliosmoles per kilogram H2O.  相似文献   

4.
Induction of the carbon concentrating mechanism (CCM) has been investigated during the acclimation of 5% CO2‐grown Chlamydomonas reinhardtii 2137 mt + cells to well‐defined dissolved inorganic carbon (Ci) limited conditions. The CCM components investigated were active HCO3? transport, active CO2 transport and extracellular carbonic anhydrase (CAext) activity. The CAext activity increased 10‐fold within 6 h of acclimation to 0·035% CO2 and there was a further slight increase over the next 18 h. The CAext activity also increased substantially after an 8 h lag period during acclimation to air in darkness. Active CO2 and HCO3? uptake by C. reinhardtii cells were induced within 2 h of acclimation to air, but active CO2 transport was induced prior to active HCO3? transport. Similar results were obtained during acclimation to air in darkness. The critical Ci concentrations effecting the induction of active Ci transport and CAext activity were determined by allowing cells to acclimate to various inflow CO2 concentrations in the range 0·035–0·84% at constant pH. The total Ci concentration eliciting the induction and repression of active Ci transport was higher during acclimation at pH 7·5 than at pH 5·5, but the external CO2 concentration was the same at both pHs of acclimation. The concentration of external CO2 required for the full induction and repression of Ci transport and CAext activity were 10 and 100 μM , respectively. The induction of CAext and active Ci transport are not correlated temporally, but are regulated by the same critical CO2 concentration in the medium.  相似文献   

5.
Summary The gastric (K,H)-ATPase has been shown to catalyze an electroneutral H+ for K+ exchange. Tl+ is able to substitute for K+ as an activating cation in the hydrolytic reaction with an apparent dissociation constant of 90 m as compared to about 870 m for K+. The ability of Tl+ to participate in transport is shown by the development of pH gradients in the presence of Tl+ following addition of ATP to gastric vesicles and by the ATP-dependent efflux of Tl+ from gastric vesicles. Inhibition of hydrolysis is observed at pH 7.4 with external Tl+ concentrations above 3.0mm. This inhibition of hydrolysis is correlated with inhibition of pH-gradient formation. The inhibition of transport activity is partially relieved by a decrease in medium pH. This inhibitory effect is attributed to Tl+ binding at an external, low affinity cation site. In contrast to rubidium chloride, at high Tl+ concentrations, following the initial Tl+ efflux, there is reuptake of the cation. This rapid uptake is attributed to lipid-dependent Tl+ entry pathways. The vesicles exhibit a high permeability to thallium nitrate demonstrating a half-time (t 1/2) for uptake of about 1.0 min in contrast to 46 min for rubidium chloride. In both gastric vesicles or liposomes, external Tl+ concentrations in excess of 1 to 4mm are able to dissipate intravesicular proton gradients by an electrically coupled H+ for Tl+ exchange. Thus, although Tl+ is able to activate the gastric ATPase by mimicking K+, the permeability of this cation in lipid bilayers tends to uncouple H+ transport at concentrations high enough to generate detectable proton gradients.  相似文献   

6.
Na+-ATPase of high-K+ and low-K+ sheep red cells was examined with respect to the sidedness of Na+ and K+ effects, using inside-out membrane vesicles and very low ATP concentrations (?2 μM). With varying amounts of Na+ in the medium, i.e., at the cytoplasmic surface, Nacyt+, the activation curves show that high-K+ Na+-ATPase has a higher affinity for Nacyt+ compared to low-K+. The apparent affinity for Nacyt+ is also increased by increasing the ATP concentrations in high-K+ but not low-K+. With Nacyt+ present, Na+-ATPase is stimulated by intravesicular Na+, i.e., Na+ at the originally external surface, Naext+, to a greater extent in low-K+ than high-K+. Intravesicular K+ (Kext+) activates Na+-ATPase in high-K+ but not in low-K+ vesicles and extravesicular K+ (Kcyt+) inhibits low-K+ but not high-K+ Na+-ATPase. Thus, the genetic difference between high-K+ and low-K+ is expressed as differences in apparent affinities for both Na+ and K+ and these differences are evident at both cytoplasmic and external membrane surfaces.  相似文献   

7.
Effects of sodium on mineral nutrition in rose plants   总被引:2,自引:0,他引:2  
The effects of sodium (Na+) ion concentration on shoot elongation, uptake of ammonium (NH4+) and nitrate (NO3?) and the activities of nitrate reductase (NR) and glutamine synthetase (GS) were studied in rose plants (Rosa hybrida cv. “Lambada”). The results showed that shoot elongation was negatively correlated with sodium concentration, although no external symptoms of toxicity were observed. Nitrate uptake decreased at high sodium levels, specifically at 30 meq litre4 of sodium. As flower development was normal under high saline conditions, this could suggest that nitrogen was being mobilised from shoot and leaf reserves. Ammonium uptake was not affected by any of the salt treatments applied probably because it diffuses through the cell membrane at low concentrations. Nitrate reductase activity was reduced by 50% at 30 meq litre 1 compared with control treatment, probably due to a decrease in the free nitrate related to nitrate uptake pattern. None of the salt treatments used affected total leaf GS activity (both chloroplastic and cytosolic isoforms) or leaf NPK mineral contents. Nitrate reductase activity in leaves increased at 10 meq litre?1 of sodium and GS activity in roots (cytosolic isoform only) followed the same pattern as NR. It is suggested that the activation of both enzymes at low salt level could be attributed to the beneficial effect of increased sulphur in the nutrient solutions.  相似文献   

8.
The sodium-dependent entry of proline and glycine into rat renal brushborder membrane vesicles was examined. The high Km system for proline shows no sodium dependence. The low Km system for glycine entry is strictly dependent on a Na+ gradient but shows no evidence of the carrier system having any affinity for Na+. The low Km system for proline and high Km system for glycine transport appear to be shared. Both systems are stimulated by a Na+ gradient and appear to have an affinity for the Na+. The effect of decreasing the Na+ concentration in the ionic gradient is to alter the Km for amino acid entry and, at low Na+ concentrations, to inhibit the V for glycine entry.  相似文献   

9.
Summary Measurements of the transepithelial potential (Vint-Vext) across the gills of Brown Trout,Salmo trutta, were made in solutions of a range of pH and calcium concentrations. The potential was strongly dependent on external pH, being negative in neutral solutions but positive in acid solutions. The addition of calcium to the external medium produced a positive shift in potential in all but very acid media (pH 4.0–3.5), where very little change was seen. The gill membrane appears to act as a hydrogen electrode having a very high permeability to H+ ions, and the potential behaves as a diffusion potential. The presence of calcium reduced the permeability to both H+ and Na+ ions but even at a calcium concentration of 8.0 mM/l the permeability ratio H+/Na+ was still more than 900. The transepithelial potential is shown to be diffusional in origin and is discussed in terms of the relative permeability of the gill to H+, Na+ and Cl ions. Sodium fluxes across the gills were measured and provide the basis for a theoretical consideration of Na+, Cl and H+ fluxes across the gills in neutral and acid solutions. The positive potential at low pH largely accounts for the increased loss of sodium from fish in these conditions.  相似文献   

10.
The kinetics and sodium dependence of adenosine transport were determined using an inhibitorstop method on dissociated cell body preparations obtained from mouse guinea-pig and rat brain. Transport affinity (KT) values for the high affinity adenosine transport systems (KT(H)) were significantly different between these three species; mean ±SEM values were 0.34 ±0.1 in mouse, 0.9 ±0.2 in rat, and 1.5±0.5 M in guinea-pig. The KT values for the low affinity transport system (KT(L)) were not different between the three species. Brain cells from rat displayed a significantly greater maximal capacity to accumulate [3H]adenosine (Vmax) than did mouse or guinea-pig for the high affinity system, or than did mouse for the low affinity system. When sodium chloride was replaced in the transport medium with choline chloride, the KT(H) values for guinea-pig and rat were both increased by approximately 100%; only in rat did the change reach statistical significance. The sodium-dependence of adenosine transport in mouse brain was clearly absent. The differences between KT(H) values in mouse and those in guinea-pig or rat were accentuated in the absence of sodium. The differences in kinetic values, ionic requirements, and pharmacological characteristics between adenosine transporters in CNS tissues of mouse guinea-pig and rat may help account for some of the variability noted among species in terms of their physiological responses to adenosine.  相似文献   

11.
Summary The countertransport of Ca2+ and Na+ across the membranes of the unicellular fresh-water algaChlamydomonas reinhardtii CW-15 and twoDunaliella species differing in salt tolerance was studied. All algae used are devoid of cell walls. The calcium uptake by twoDunaliella species depended markedly on the intracellular sodium concentration. This calcium uptake was accompanied by Na+ release. For 15 and 30 s after artificial gradient formation (Naint + greater than Naext +) the ratio of released Na+ to absorbed Ca2+ was 31 and 41, respectively. For the extremely halotolerantD. salina, the apparent Michaelis constant of the Ca2+ uptake was 33 M, and for the marine halotolerant algaD. maritima, it was equal to 400 M, presuming more efficient Na+-for-Ca2+ exchange inD. salina cells. Ouabain, an inhibitor of Na+/K+-ATPase, suppressed Na+ transfer by 25%, whereas the agents blocking Ca2+-channels did not affect the transport of Ca2+ and Na+. The oppositely directed transmembrane Ca2+ and Na+ transfer was shown to depend on the external concentrations of Na+ and H+. In the fresh-water algaC. reinhardtii CW-15 (Naext + greater than Naint +), the direction of Ca2+ and Na+ fluxes across the plasma membrane was opposite to those described for Dunaliella cells. The results obtained point to the ability of the Na+-Ca2+ exchanger function in plasma membranes of algal cells.  相似文献   

12.
Igor Kucera 《BBA》2005,1709(2):113-118
This study deals with the effects of the agents that dissipate the individual components of the proton motive force (short-chain fatty acids, nigericin, and valinomycin) upon the methyl viologen-coupled nitrate reductase activity in intact cells. Substitution of butyrate or acetate for chloride in Tris-buffered assay media resulted in a marked inhibition at pH 7. In a Tris-chloride buffer of neutral pH, the reaction was almost fully inhibitable by nigericin. Alkalinisation increased the IC50 value for nigericin and decreased the maximal inhibition attained. Both types of inhibitions could be reversed by the permeabilisation of cells or by the addition of nitrite, and that caused by nigericin disappeared at high extracellular concentrations of potassium. These data indicate that nitrate transport step relies heavily on the pH gradient at neutral pH. Since the affinity of cells for nitrate was strongly diminished by imposing an inside-positive potassium (or lithium) diffusion potential at alkaline external pH, a potential dependent step may be of significance in the transporter cycle under these conditions. Experiments with sodium-depleted media provided no hints for Na+ as a possible H+ substitute.  相似文献   

13.
Intracellular pH (pHint) and extracellular pH (pHext) of Escherichia coli were measured at 12-s time resolution by 31P-nuclear magnetic resonance: a sudden neutral-to-acid shift in pHext (e.g., from 7.0 to 5.6) caused a transient failure of homeostasis, with pHint decreasing by about 0.4 unit in ca. 30 s and then returning to its original value (ca. 7.5) over a period of several minutes. Membrane proton conductance was estimated to be 20 pmol s−1 cm−2 pH unit−1. Addition of the membrane-permeant weak acid benzoate at constant pHext also caused a lowering of pHint; at high concentrations it generated an inverted transmembrane pH gradient (ΔpH). The buffering capacity of the cells was estimated by such experiments to be ca. 50 mM per pH unit. Effects of pH-related stimuli on the methyl-accepting chemotaxis proteins (MCPs) were examined: the steady-state methylation of MCP I was found to decrease when pHint was lowered by weak acid addition or when pHext was lowered. The extent of demethylation in the latter case was too great to be explained by imperfect steady-state homeostasis; a small but reproducible undershoot in methylation level correlated with the observed short-term homeostatic failure. MCP II underwent smaller and more complex changes than MCP I, in response to pH-related stimuli. The methylation level of MCP I could not, by any condition tested, be driven below a limit of ca. 15% of the control level (unstimulated cells at pHext 7.0). The weak-acid concentration needed to reach that limit was dependent on pHext, as would be expected on the basis of ΔpH-driven concentrative effects. The potency ranking of weak acids was the same with respect to lowering pHint, demethylating MCP I, and causing repellent behavioral responses. The data are consistent with a model whereby MCP I and hence tactic behavior are sensitive to both pHint and pHext. Evidence is presented that pHint may also have a direct (non-MCP-related) effect on motor function. Comparison of methyl-3H- and 35S-labeled MCP I revealed that in both unstimulated and repellent-stimulated cells the major species did not carry methyl label, yet it had an electrophoretic mobility that indicated that it was more positively charged than the unmethylated form observed in methyltransferase mutants, and it was susceptible to base hydrolysis. This suggests that a substantial fraction of MCP I molecules is methylated or otherwise modified but neither exchanges methyl label nor undergoes reverse modification by repellent stimuli.  相似文献   

14.
The cell membrane (NCX) and mitochondrial (NCLX) Na+/Ca2+ exchangers control Ca2+ homeostasis. Eleven (out of twelve) ion-coordinating residues are highly conserved among eukaryotic and prokaryotic NCXs, whereas in NCLX, nine (out of twelve) ion-coordinating residues are different. Consequently, NCXs exhibit high selectivity for Na+ and Ca2+, whereas NCLX can exchange Ca2+ with either Na+ or Li+. However, the underlying molecular mechanisms and physiological relevance remain unresolved. Here, we analyzed the NCX_Mj-derived mutant NCLX_Mj (with nine substituted residues) imitating the ion selectivity of NCLX. Site-directed fluorescent labeling and ion flux assays revealed the nearly symmetric accessibility of ions to the extracellular and cytosolic vestibules in NCLX_Mj (Kint?=?0.8–1.4), whereas the extracellular vestibule is predominantly accessible to ions (Kint?=?0.1–0.2) in NCX_Mj. HDX-MS (hydrogen-deuterium exchange mass-spectrometry) identified symmetrically rigidified core helix segments in NCLX_Mj, whereas the matching structural elements are asymmetrically rigidified in NCX_Mj. The HDX-MS analyses of ion-induced conformational changes and the mutational effects on ion fluxes revealed that the “Ca2+-site” (SCa) of NCLX_Mj binds Na+, Li+, or Ca2+, whereas one or more additional Na+/Li+ sites of NCLX_Mj are incompatible with the Na+ sites (Sext and Sint) of NCX_Mj. Thus, the replacement of ion-coordinating residues in NCLX_Mj alters not only the ion selectivity of NCLX_Mj, but also the capacity and affinity for Na+/Li+ (but not for Ca2+) binding, bidirectional ion-accessibility, the response of the ion-exchange to membrane potential changes, and more. These structure-controlled functional features could be relevant for differential contributions of NCX and NCLX to Ca2+ homeostasis in distinct sub-cellular compartments.  相似文献   

15.
Summary Time courses of phlorizin binding to the outside of membrane vesicles from porcine renal outer cortex and outer medulla were measured and the obtained families of binding curves were fitted to different binding models. To fit the experimental data a model with two binding sites was required. Optimal fits were obtained if a ratio of low and high affinity phlorizin binding sites of 1:1 was assumed. Na+ increased the affinity of both binding sites. By an inside-negative membrane potential the affinity of the high affinity binding site (measured in the presence of 3 mM Na+) and of the low affinity binding site (measured in the presence of 3 or 90 mM Na+) was increased. Optimal fits were obtained when the rate constants of dissociation were not changed by the membrane potential. In the presence of 90 mM Na+ on both membrane sides and with a clamped membrane potential,K D values of 0.4 and 7.9 M were calculated for the low and high affinity phlorizin binding sites which were observed in outer cortex and in outer medulla. Apparent low and high affinity transport sites were detected by measuring the substrate dependence ofd-glucose uptake in membrane vesicles from outer cortex and outer medulla which is stimulated by an initial gradient of 90 mM Na+(out>in). Low and high affinity transport could be fitted with identicalK m values in outer cortex and outer medulla. An inside-negative membrane potential decreased the apparentK m ofhigh affinity transport whereas the apparentK m of low affinity transport was not changed. The data show that in outer cortex and outer medulla of pighigh and low affinity Na+-d-glucose cotransporters are present which containlow and high affinity phlorizin binding sites, respectively. It has to be elucidated from future experiments whether equal amounts of low and high affinity transporters are expressed in both kidney regions or whether the low and high affinity transporter are parts of the same glucose transport moleculc.  相似文献   

16.
Two filamentous, nitrogen fixing cyanobacteria were examined for their salt tolerance and sodium (Na+) transport.Anabaena torulosa, a saline form, grew efficiently and fixed nitrogen even at 150 mM salt (NaCl) concentration while,Anabaena L-31, a fresh water cyanobacterium, failed to grow beyond 35 mM NaCl.Anabaena torulosa showed a rapidly saturating kinetics of Na+ transport with a high affinity for Na+ (K m, 0.3 mM).Anabaena L-31 had a much lower affinity for Na+ (Km, 2.8 mM) thanAnabaena torulosa and the pattern of uptake was somewhat different. BothAnabaena spp. exhibited an active Na+ extrusion which seems to be mediated by a Na+-K+ ATPase and aided by oxidative phosphorylation.Anabaena L-31 was found to retain much more intracellular Na+ thanAnabaena torulosa. The results suggest that the saline form tolerates high Na+ concentrations by curtailing its influx and also by an efficient Na+ extrusion, although these alone may not entirely account for its success in saline environment.  相似文献   

17.
Rib bone biopsy samples are often used to estimate changes in skeletal mineral reserves in cattle but differences in sampling procedures and the bone measurements reported often make interpretation and comparisons among experiments difficult. ‘Full-core’ rib bone biopsy samples, which included the external cortical bone, internal cortical bone and trabecular bone (CBext, CBint and Trab, respectively), were obtained from cattle known to be in phosphorus (P) adequate (Padeq) or severely P-deficient (Pdefic) status. Experiments 1 and 2 examined growing steers and Experiment 3 mature breeder cows. The thickness of cortical bone, specific gravity (SG), and the amount and concentration of ash and P per unit fresh bone volume, differed among CBext, CBint and Trab bone. P concentration (mg/cc) was closely correlated with both SG and ash concentrations (pooled data, r=0.99). Thickness of external cortical bone (CBText) was correlated with full-core P concentration (FC-Pconc) (pooled data, r=0.87). However, an index, the amount of P in CBext per unit surface area of CBext (PSACB; mg P/mm2), was more closely correlated with the FC-Pconc (pooled data, FC-Pconc=37.0+146×PSACB; n=42, r=0.94, RSD=7.7). Results for measured or estimated FC-Pconc in 10 published studies with cattle in various physiological states and expected to be Padeq or in various degrees of Pdefic status were collated and the ranges of FC-Pconc indicative of P adequacy and P deficiency for various classes of cattle were evaluated. FC-Pconc was generally in the range 130 to 170 and 100 to 120 mg/cc fresh bone in Padeq mature cows and young growing cattle, respectively. In conclusion, the FC-Pconc could be estimated accurately from biopsy samples of CBext. This allows comparisons between studies where full-core or only CBext biopsy samples of rib bone have been obtained to estimate changes in the skeletal P status of cattle and facilitates evaluation of the P status of cattle.  相似文献   

18.
GltPh from Pyrococcus horikoshii is a homotrimeric Na+-coupled aspartate transporter. It belongs to the widespread family of glutamate transporters, which also includes the mammalian excitatory amino acid transporters that take up the neurotransmitter glutamate. Each protomer in GltPh consists of a trimerization domain involved in subunit interactions and a transport domain containing the substrate binding site. Here, we have studied the dynamics of Na+ and aspartate binding to GltPh. Tryptophan fluorescence measurements on the fully active single tryptophan mutant F273W revealed that Na+ binds with low affinity to the apoprotein (Kd 120 mm), with a particularly low kon value (5.1 m−1s−1). At least two sodium ions bind before aspartate. The binding of Na+ requires a very high activation energy (Ea 106.8 kJ mol−1) and consequently has a large Q10 value of 4.5, indicative of substantial conformational changes before or after the initial binding event. The apparent affinity for aspartate binding depended on the Na+ concentration present. Binding of aspartate was not observed in the absence of Na+, whereas in the presence of high Na+ concentrations (above the Kd for Na+) the dissociation constants for aspartate were in the nanomolar range, and the aspartate binding was fast (kon of 1.4 × 105 m−1s−1), with low Ea and Q10 values (42.6 kJ mol−1 and 1.8, respectively). We conclude that Na+ binding is most likely the rate-limiting step for substrate binding.  相似文献   

19.
Ammonium uptake rates and the mechanism for ammonium transport into the cells have been analysed in Zostera marina L. In the cells of this species, a proton pump is present in the plasmalemma, which maintains the membrane potential. However, this seagrass shows a high-affinity transport mechanism both for nitrate and phosphate which is dependent on sodium and is unique among angiosperms. We have then analysed if the transport of another N form, ammonium, is also dependent of sodium. First, we have studied ammonium transport at the cellular level by measurements of membrane potentials, both in epidermal root cells and mesophyll cells. And second, we have monitored uptake rates in whole leaves and roots by depletion experiments. The results showed that ammonium is taken up by a high-affinity transport system both in root and leaf cells, although two different of kinetics could be discerned in mesophyll cells (with affinity constants of 2.2 ± 1.1 μM NH4+, in the range 0.01-10 μM NH4+, and 23.2 ± 7.1 μM NH4+, at concentrations between 10 and 500 μM NH4+). However, only one kinetic could be observed in epidermal root cells, which showed a Km = 11.2 ± 1.0 μM NH4+, considering the whole ammonium concentration range assayed (0.01-500 μM NH4+). The higher affinity of leaf cells for ammonium was consistent with the higher uptake rates observed in leaves, with respect to roots, in depletion experiments at 10 μM NH4+ initial concentration. However, when an initial concentration of 100 μM was assayed, the difference between uptake rates was reduced, but still being higher in leaves. Variations in proton or sodium-electrochemical gradient did not affect ammonium uptake, suggesting that the transport of this nutrient is not driven by these ions and that the ammonium transport mechanism could be different to the transport of nitrate and phosphate in this species.  相似文献   

20.
Summary The effect of the loop diuretic furosemide (4-chloro-N-furfuryl-5-sulfamoyl-anthranilic acid) on the thiol-dependent, ouabain-insensitive K(Rb)/Cl transport in low K+ sheep red cells was studied at various concentrations of extracellular Rb+, Na+ and Cl. In Rb+-free NaCl media, 2×10–3 m furosemide inhibited only one-half of thiol-dependent K+ efflux. In the presence of 23mm RbCl, however, the concentration of furosemide to produce 50% K+ efflux inhibition (IC50) was 5×10–5 m. In Rb+ containing NaCl media, the inhibitory effect of 10–3 m furosemide was equal to that caused by NO 3 replacement of Cl in the medium. The apparent synergistic action of furosemide and external Rb+ on K+ efflux was also seen in the ouabain-insensitive Rb+ influx. A preliminary kinetic analysis suggests that furosemide binding alters both maximal K+(Rb+) transport and apparent external Rb+ affinity. In the presence of external Rb+, Na+ (as compared to choline) exerted a small but significant augmentation of the furosemide inhibition of K+(Rb+) fluxes. There was no effect of Cl on the IC50 value of furosemide. As there is no evidence for coupled Na+K+ cotransport in low K+ sheep red cells, furosemide may modify thiol-dependent K+(Rb+/Cl flux or Rb+ (and to a slight degree Na+) modulate the effect of furosemide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号