首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT

We tested the auditory sensitivity of red-billed firefinches Lagonosticta senegal0061 and Spanish timbrado canaries Serinus canaria. Both these species produce songs and calls that are narrowband and relatively high in frequency, with spectral energy falling predominantly in the region of 3–6 kHz. Hearing thresholds were measured in these two species and compared to the auditory sensitivity of closely related species: the well studied zebra finch Taeniopygia guttata, and other strains of canary bred for song. Auditory thresholds were similar in both groups of birds, with firefinches having an audiogram typical for that of small birds. Timbrado canaries exhibited an audiogram with its greatest sensitivity in the relatively high region of 4–6 kHz, corresponding to the peak frequency of its calls. Critical ratios measured over a range of several octaves increased in a monotonie fashion at a rate of 2–3 dB per octave for both firefinches and timbrado canaries. Critical ratios in these two species are similar to what has been found in most other small passerine species, suggesting spectral resolving abilities similar to most small birds tested to date.  相似文献   

2.
Absolute hearing thresholds in the spear-nosed bat Phyllostomus discolor have been determined both with psychophysical and neurophysiological methods. Neurophysiological data have been obtained from two different structures of the ascending auditory pathway, the inferior colliculus and the auditory cortex. Minimum auditory thresholds of neurons are very similar in both structures. Lowest absolute thresholds of 0 dB SPL are reached at frequencies from about 35 to 55 kHz in both cases. Overall behavioural sensitivity is roughly 20 dB better than neural sensitivity. The behavioural audiogram shows a first threshold dip around 23 kHz but threshold was lowest at 80 kHz (−10 dB SPL). This high sensitivity at 80 kHz is not reflected in the neural data. The data suggest that P. discolor has considerably better absolute auditory thresholds than estimated previously. The psychophysical and neurophysiological data are compared to other phyllostomid bats and differences are discussed. S. Hoffmann, L. Baier, F. Borina contributed equally to this work.  相似文献   

3.
Summary Cochlear microphonic (CM) and evoked neural potentials (N1) were recorded from the cochlear aqueduct of awakePteronotus parnellii. The CM audiograms obtained with continuous sounds had more or less uniform thresholds except for a sharp threshold notch at about 60 kHz (Fig. 1). When brief tone bursts were presented, the envelopes of the CM responses were always similar to the envelopes of the applied signals except when tone bursts having frequencies at or close to the frequency of the tuned sensitivity notch were presented (i.e., 59–63 kHz). The CM rise-decay times for frequencies around 60kHz were much longer than those of the presented signals (Fig. 2). The prolonged decay times are thought to be due to the ringing of the basilar membrane resulting from a mechanical resonance in the cochlea.The evoked neural potential audiograms (N1-on and N1-off responses) differed considerably from the CM audiogram. Of particular importance is the N1-off audiogram which exhibited very sharp tuning in four frequency regions: 31–33 kHz, 60–63 kHz, 71–73 kHz, and 91–92 kHz (Fig. 5). The frequencies evoking the lowest thresholds of the CM and N1-off (in the 60 kHz region) were either identical or differed by only 100–400 Hz.The sharp tuning in the 60 kHz region of both the CM and N1 audiograms could be eliminated by presenting 90–100 dB continuous sounds for one min but only if the signal frequency was equal to the tuned frequency of the CM audiogram (Figs. 8–13). Presenting intense sounds having frequencies above or below the tuned 60kHz region had no effect on the audiogram. The overstimulation procedure had remarkably specific effects on the CM and N1-off audiograms causing the greatest threshold increases at the 60 kHz tuned frequency and progressively smaller threshold changes on the slopes of the tuned notch.Assuming that the sharp changes of the N1-off thresholds reflect some important underlying mechanism, the N1-off audiograms demonstrate multiple specializations in the peripheral auditory system ofPteronotus with the bat possessing at least three and possibly four sharply tuned regions. With regard to mechanism, the tuned notch in the CM audiogram, the curious CM rise-decay times evoked by tone bursts, and the ease with which the 60 kHz sensitivity notch can be eliminated all argue strongly in favor of a mechanical resonance in the cochlea which is responsible for the sharp tuning around 60 kHz. On the other hand, the absence of tuned notches in the 30 kHz and 90 kHz regions of the CM audiogram together with the absence of any discernable ringing of the CM potentials evoked by 30 kHz and 90 kHz tone bursts both argue against a resonance mechanism for the tuning at these harmonically related frequency regions. Finally, the fact that overstimulating the 60 kHz region had no discernable effect on the N1-off tuning at 30 kHz and 90 kHz demonstrates that the mechanism responsible for the tuned regions at 30 kHz and 90 kHz are independent of the resonance feature of the cochlea at 60 kHz.Abbreviations BF best frequency - CF constant frequency - CM cochlear microphonics - CM-aft after-response of the CM - FM frequency modulated - N 1 evoked neural potentials We thank Professor Alvin Novick for the generous support provided during the conduct of these experiments. We also thank Professor Gerhard Neuweiler and Dr. Gerd Schuller for their helpful comments and suggestions. Supported by PHS Grant NB7616 11.  相似文献   

4.
Thresholds for pure tone detection were examined in the common mole-rat, Cryptomys sp. (Bathyergidae, Rodentia) using a positive reinforcement procedure. To bypass the problems connected with testing isolated individuals of this extremely social species, a collective behavioural audiogram was determined for a family group of seven mole-rats. Within the tested frequency range of 225 to 18 kHz, the lowest thresholds (as low as 7.5 dB SPL, on average 24 dB SPL) were found at 800 Hz, the upper limit of hearing (at the level of 60 dB SPL) was at 18 kHz. The behavioural audiogram combines the results of previous studies on hearing in this species. It resembles the distortion threshold curve but differs from neurophysiological data as far as the high frequency cutoff is concerned. On the other hand, the region of the best hearing sensitivity is narrow in behavioural audiogram and neurophysiological curves but rather broad in the distortion threshold curve. In general, the behavioural audiogram of Cryptomys is in many aspects comparable with the available audiograms of other subterranean rodents. Accepted: 18 February 1997  相似文献   

5.
We investigated the relationship between auditory sensitivity, frequency selectivity, and the vocal repertoire of greater spear-nosed bats (Phyllostomus hastatus). P. hastatus commonly emit three types of vocalizations: group-specific foraging calls that range from 6 to 11 kHz, low amplitude echolocation calls that sweep from 80 to 40 kHz, and infant isolation calls from 15 to 100 kHz. To determine if hearing in P. hastatus is differentially sensitive or selective to frequencies in these calls, we determined absolute thresholds and masked thresholds using an operant conditioning procedure. Both absolute and masked thresholds were lowest at 15 kHz, which corresponds with the peak energy of isolation calls. Auditory and masked thresholds were higher at sound frequencies used for group-specific foraging calls and echolocation calls. Isolation calls meet the requirements of individual signatures and facilitate parent-offspring recognition. Many bat species produce isolation calls with peak energy between 10 and 25 kHz, which corresponds with the frequency region of highest sensitivity in those species for which audiogram data are available. These findings suggest that selection for accurate offspring recognition exerts a strong influence on the sensory system of P. hastatus and likely on other species of group-living bats.  相似文献   

6.
1. The maximum acoustic gain of the external ear in Macroderma gigas was found to be 25-30 dB between 5-8 kHz and in Nyctophilus gouldi it reached 15-23 dB between 7-22 kHz. Pinna gain reached a peak of 16 dB near 4.5-6 kHz in M. gigas and 12-17 dB between 7-12 kHz in N. gouldi, with average gain of 6-10 dB up to 100 kHz. Pinna gain curves resemble that of a finite conical horn, including resonance. 2. The directional properties of the external ear in both species result from sound diffraction at the pinna face, as it approximates a circular aperture. The frequency dependent movement of the acoustic axis in azimuth and elevation is attributed to the asymmetrical structure of the pinnae. 3. Evoked potentials and neuronal responses were studied in the inferior colliculus. In M. gigas, the neural audiogram has sensitivity peaks at 10-20 kHz and 35-43 kHz, with extremely low thresholds (-18 dB SPL) in the low frequency region. In N. gouldi, the neural audiogram has sensitivity peaks at 8-14 kHz (lowest threshold 5 dB SPL) and 22-45 kHz. Removal of the contralateral pinna causes a frequency dependent loss in neural threshold sensitivity of up to 10-15 dB in both species. 4. The high frequency peak in the audiogram coincides with the sonar energy band in both species, whereas the low frequency region is used for social communication. Highly sensitive low frequency hearing is discussed in relation to hunting in bats by passive listening.  相似文献   

7.
Summary The tonotopic organization of the inferior colliculus (IC) in two echolocating bats,Hipposideros speoris andMegaderma lyra, was studied by multiunit recordings.InHipposideros speoris frequencies below the range of the echolocation signals (i.e. below 120 kHz) are compressed into a dorsolateral cap about 400–600 m thick. Within this region, neuronal sheets of about 4–5 m thickness represent a 1 kHz-band.In contrast, the frequencies of the echolocation signals (120–140 kHz) are overrepresented and occupy the central and ventral parts of the IC (Fig. 3). In this region, neuronal sheets of about 80 m thickness represent a 1 kHz-band. The largest 1 kHz-slabs (400–600 m) represent frequencies of the pure tone components of the echolocation signals (130–140 kHz).The frequency of the pure tone echolocation component is specific for any given individual and always part of the overrepresented frequency range but did not necessarily coincide with the BF of the thickest isofrequency slab. Thus hipposiderid bats have an auditory fovea (Fig. 10).In the IC ofMegaderma lyra the complete range of audible frequencies, from a few kHz to 110 kHz, is represented in fairly equal proportions (Fig. 7). On the average, a neuronal sheet of 30 m thickness is dedicated to a 1 kHz-band, however, frequencies below 20 kHz, i.e. below the range of the echolocation signals, are overrepresented.Audiograms based on thresholds determined from multiunit recordings demonstrate the specific sensitivities of the two bat species. InHipposideros speoris the audiogram shows two sensitivity peaks, one in the nonecholocating frequency range (10–60 kHz) and one within the auditory fovea for echolocation (130–140 kHz).Megaderma lyra has extreme sensitivity between 15–20 kHz, with thresholds as low as –24 dB SPL, and a second sensitivity peak at 50 kHz (Fig. 8).InMegaderma lyra, as in common laboratory mammals, Q10dB-values of single units do not exceed 30, whereas inHipposideros speoris units with BFs within the auditory fovea reach Q10dB-values of up to 130.InMegaderma lyra, many single units and multiunit clusters with BFs below 30 kHz show upper thresholds of 40–50 dB SPL and respond most vigorously to sound intensities below 30 dB SPL (Fig. 9). Many of these units respond preferentially or exclusively to noise. These features are interpreted as adaptations to detection of prey-generated noises.The two different tonotopic arrangements (compare Figs. 3 and 7) in the ICs of the two species are correlated with their different foraging behaviours. It is suggested that pure tone echolocation and auditory foveae are primarily adaptations to echo clutter rejection for species foraging on the wing close to vegetation.Abbreviations BF Best frequency - CF constant frequency - FM frequency modulated - IC inferior colliculus - HS Hipposideros speoris  相似文献   

8.
Zusammenfassung Für 3 Wachteln war, abgesehen von der individuellen Variabilität, die hohe Verhaltens-Hörschwelle im Bereich der Bestfrequenzen von 1.5 kHz (34 dB) und der allmähliche Abfall der Empfindlichkeit bei hohen Frequenzen charakteristisch.
On auditory thresholds of Japanese Quail (Coturnix c. japonica)
Summary The audiogram of 3 individuals clearly differed from those of other birds by higher thresholds (34 dB) at the best frequencies around 1.5 kHz and a more gradual decrease in sensitivity at higher frequencies.


Herrn Prof. Dr. Johann Schwartzkopff zum 70. Geburtstag  相似文献   

9.
The song of the male bushcricket Ancistrura nigrovittata consists of a sequence of verses. Each verse comprises a syllable group, plus, after about 400 ms a single syllable serving as a trigger for the female response song. The carrier frequency of the male song spectrum peaks at around 15 kHz, while the female song peaks at around 27 kHz. The thresholds of female responses to models of male songs are lowest for song frequencies between 12 and 16 kHz and therefore correspond to the male song spectrum. The threshold curve of the female response to the trigger syllable at different frequencies has the same shape as the tuning for the syllable group. Phonotactic thresholds of male Ancistrura nigrovittata to synthetic female responses at different frequencies are lowest between 24 and 28 kHz and thereby correspond to the female song spectrum and clearly differ from female response thresholds. Activity of the tympanic fibre bundle of both sexes is most sensitive between 15 and 35 kHz and therefore not specifically tuned to the partner's song. Individual behavioural thresholds have their minimum within 10 dB of the values of tympanic thresholds.  相似文献   

10.
Summary Single unit recordings of primary auditory fibers ofTeleogryllus oceanicus show responses to frequencies over the range 0.5 kHz to 42 kHz. The characteristic frequencies (ChFs) of units were distributed over much of the bandwidth investigated although few units were recorded with ChFs below 4 kHz or in the region 7 kHz to 10 kHz. Some units showed more than one peak of sensitivity and others were broad-banded with no tuning to a particular frequency. Units whose ChFs approximated to the carrier frequency (CF) of the proclamation song were the most highly tuned. The majority of units had a tonic response pattern and were not spontaneously active. The implications of these findings are discussed.Abbreviations ChF characteristic frequency - CF carrier frequency We thank Mr. P. Foster for techninical help.  相似文献   

11.
1.  Within the tonotopic organization of the inferior colliculus two frequency ranges are well represented: a frequency range within that of the echolocation signals from 50 to 100 kHz, and a frequency band below that of the echolocation sounds, from 10 to 35 kHz. The frequency range between these two bands, from about 40 to 50 kHz is distinctly underrepresented (Fig. 3B).
2.  Units with BFs in the lower frequency range (10–25 kHz) were most sensitive with thresholds of -5 to -11 dB SPL, and units with BFs within the frequency range of the echolocation signals had minimal thresholds around 0 dB SPL (Fig. 1).
3.  In the medial part of the rostral inferior colliculus units were encountered which preferentially or exclusively responded to noise stimuli. — Seven neurons were found which were only excited by human breathing noises and not by pure tones, frequency modulated signals or various noise bands. These neurons were considered as a subspeciality of the larger sample of noise-sensitive neurons. — The maximal auditory sensitivity in the frequency range below that of echolocation, and the conspicuous existence of noise and breathing-noise sensitive units in the inferior colliculus are discussed in context with the foraging behavior of vampire bats.
  相似文献   

12.
Summary Physiological recordings were made of the compound action potential from the round window and single neurons in the cochlear ganglion of normal adult chickens (Gallus domesticus). The compound action potential threshold to tone bursts decreased from approximately 42 dB at 0.25 kHz to 30 dB between 1 and 2 kHz and then increased to 51 dB at 4 kHz. Most of the cochlear ganglion cells had characteristic frequencies below 2 kHz and the thresholds of most neurons were roughly 30–35 dB lower than the compound action potential thresholds. At any given characteristic frequency, thresholds varied by as much as 60 dB and units with the highest thresholds tended to have the lowest spontaneous rates. Spontaneous discharge rates ranged from 0 to 200 spikes/s with a mean rate of 86 spikes/s. Interspike interval histograms of spontaneous activity often contained regular peaks with the time interval between peaks approximately equal to 1/(characteristic frequency). Tuning curves were sharply tuned and V-shaped with approximately equal slopes to the curves above and below characteristic frequency. Q10dB and Q30dB values for the tuning curves increased with characteristic frequency. Post stimulus time histograms showed sustained firing during the stimulus and were characterized by a slight-to-moderate peak at stimulus onset. Most units showed vigorous phase-locking to tones at characteristic frequency although the degree of phase-locking declined sharply with increasing characteristic frequency. Discharge rate-level functions at characteristic frequency had a mean dynamic range of 42 dB and a mean saturation firing rate of 327 spikes/s. In general, the firing patterns of cochlear ganglion neurons are similar in most respects to those reported in other avians, but differ in several important respects from those seen in mammals.Abbreviations CF characteristic frequency - CAP compound action potential  相似文献   

13.
The auditory sensitivity of the lemur   总被引:1,自引:0,他引:1  
  相似文献   

14.
Thresholds for evoked vocal responses and thresholds of multiunit midbrain auditory responses to pure tones and synthetic calls were investigated in males of Pleurodema thaul, as behavioral thresholds well above auditory sensitivity have been reported for other anurans. Thresholds for evoked vocal responses to synthetic advertisement calls played back at increasing intensity averaged 43 dB RMS SPL (range 31–52 dB RMS SPL), measured at the subjects’ position. Number of pulses increased with stimulus intensities, reaching a plateau at about 18–39 dB above threshold and decreased at higher intensities. Latency to call followed inverse trends relative to number of pulses. Neural audiograms yielded an average best threshold in the high frequency range of 46.6 dB RMS SPL (range 41–51 dB RMS SPL) and a center frequency of 1.9 kHz (range 1.7–2.6 kHz). Auditory thresholds for a synthetic call having a carrier frequency of 2.1 kHz averaged 44 dB RMS SPL (range 39–47 dB RMS SPL). The similarity between thresholds for advertisement calling and auditory thresholds for the advertisement call indicates that male P. thaul use the full extent of their auditory sensitivity in acoustic interactions, likely an evolutionary adaptation allowing chorusing activity in low-density aggregations.  相似文献   

15.
Primates depend on acoustic signals and cues to avoid predators, locate food, and share information. Accordingly, the structure and function of acoustic stimuli have long been emphasized in studies of primate behavioral and cognitive ecology. Yet, few studies have addressed how well primates hear such stimuli; indeed, the auditory thresholds of most primate species are unknown. This empirical void is due in part to the logistic and economic challenges attendant on traditional behavioral testing methods. Technological advances have produced a safe and cost‐effective alternative—the auditory brainstem response (ABR) method, which can be utilized in field conditions, on virtually any animal species, and without subject training. Here we used the ABR and four methods of threshold determination to construct audiograms for two strepsirrhine primates: the ring‐tailed lemur (Lemur catta) and slow loris (Nycticebus coucang). Next, to verify the general efficacy of the ABR method, we compared our results to published behaviorally‐derived audiograms. We found that the four ABR threshold detection methods produced similar results, including relatively elevated thresholds but similarly shaped audiograms compared to those derived behaviorally. The ABR and behavioral absolute thresholds were significantly correlated, and the frequencies of best sensitivity and high‐frequency limits were comparable. However, at frequencies ≤2 kHz, ABR thresholds were especially elevated, resulting in decreased agreement with behavioral thresholds and, in Lemur, the ABR 10‐dB range starting points were more than 2 octaves higher than the behavioral points. Finally, a comparison of ABR‐ and behaviorally‐derived audiograms from various animal taxa demonstrates the widespread efficacy of the ABR for estimating frequency of best sensitivity, but otherwise suggests caution; factors such as stimulus properties and threshold definition affect results. We conclude that the ABR method is a promising technique for estimating primate hearing sensitivity, but that additional data are required to explore its efficacy for estimating low‐frequency thresholds. Am. J. Primatol. 72:217–233, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

16.
The parasitoid tachinid fly Homotrixa alleni detects its hosts by their acoustic signals. The tympanal organ of the fly is located at the prothorax and contains scolopidial sensory units of different size and orientation. The tympanal membrane vibrates in the frequency range of approximately 4–35 kHz, which is also reflected in the hearing threshold measured at the neck connective. The auditory organ is not tuned to the peak frequency (5 kHz) of the main host, the bush cricket Sciarasaga quadrata. Auditory afferents project in the three thoracic neuromeres. Most of the ascending interneurons branch in all thoracic neuromeres and terminate in the deutocerebrum of the brain. The interneurons do not differ considerably in frequency tuning, but in their sensitivity with lowest thresholds around 30 dB SPL. Suprathreshold responses of most neurons depend on frequency and intensity, indicating inhibitory influence at higher intensities. Some neurons respond particularly well at low frequency sounds (around 5 kHz) and high intensities (80–90 dB SPL), and thus may be involved in detection of the primary host, S. quadrata. The auditory system of H. alleni contains auditory interneurons reacting in a wide range of temporal patterns from strictly phasic to tonic and with clear differences in frequency responses.  相似文献   

17.
Behavioral auditory thresholds of Phyllostomus discolor are characterized by two threshold minima separated by an insensitive region at about 55 kHz (Esser and Daucher 1996). To investigate whether these characteristics are due to cochlear properties, we recorded distortion product otoacoustic emissions (DPOAEs) and calculated relative DPOAE threshold curves, which proved to be a good measure of cochlear sensitivity. Our results indicate that in P. discolor, cochlear sensitivity, as assessed by DPOAE recordings, does not show a threshold maximum at 55 kHz. The DPOAE threshold curves display an absolute minimum at approximately 30 kHz, and from that frequency region, the threshold continuously increases without any pronounced irregularities. The frequency tuning properties of the cochlea, as assessed by DPOAE suppression tuning curves (STCs) reveal broad filter bandwidths with Q10dB values between 3.4 and 10.7. There are no frequency-specific specializations of cochlear tuning. The characteristic pattern of subsequent threshold maxima and minima at high frequencies observed in behavioral studies seems to be shaped by transfer characteristics of the outer ear and/or neuronal processing in the ascending auditory pathway rather than by cochlear mechanics.  相似文献   

18.
Unlike most praying mantises that have a single region of auditory sensitivity, species in the genus Creobroter have equally sensitive hearing at 2–4 and at 25–50 kHz and and are relatively insensitivity at 10–15 kHz — they have a W-shaped audiogram. Ultrasonic sensitivity originates from an auditory organ in the ventral midline of the metathorax that closely resembles the ear of other mantises. Ablation experiments demonstrate that low frequency sensitivity derives from a serially homologous mesothoracic auditory organ. Extracellular recordings suggest that these two ears operate largely, if not entirely, independently of one another in the thorax. The low frequency response has a longer latency, more action potentials per stimulus, and different patterns of change with increasing SPL than the high frequency response. Separate interneurons mediate responses in the two frequency ranges, but our evidence suggests that they are two serially homologous sets of cells. Neither auditory organ shows any physiological evidence of directional sensitivity. Ultrasound triggers a set of behaviors in flying hymenopodid mantises much like those in other mantises, but the behavioral significance of low frequency hearing in these animals is still unknown.Abbreviations SPL sound pressure level - dB SPL sound pressure level re: 20 Pa - HF high frequency - LF low frequency  相似文献   

19.
Tone-tone masking was used to determine auditory brain-stem response tuning curves in dolphins (Tursiops truncatus) in a simultaneous-masking paradigm. The Q 10 of the curves was as large as 16–19 in the frequency range 64–128 kHz. In the range 45–16 kHz, Q 10 decreased proportionally to the frequency with the bandwidth of the curves being constant, about 3.5–4 kHz at the 10-dB level. Tuning curves below 45 kHz are supposed to reflect broad spectral bandwidth of the probe's effective part which is no longer than 0.5 ms, irrespective of actual probe duration. Tuning curves above 64 kHz are supposed to reflect the real frequency tuning of the dolphin's auditory system.Abbreviations ABR auditory brain stem response - AP action potential  相似文献   

20.
Summary The cochlea of the mustache bat, Pteronotus parnellii, is very sensitive and sharply tuned to the frequency range of the dominant second harmonic of the echolocation call around 61 kHz. About 900 Hz above this frequency the cochlear microphonic potential (CM) reaches its maximum amplitude and lowest threshold. At exactly the same frequency, pronounced evoked otoacoustic emissions (OAE) can be measured in the outer ear canal, indicating mechanical resonance. The CM amplitude maximum and the OAE are most severely masked by simultaneous exposure to tones within the range from about 61–62 kHz up to about 70 kHz. The data suggest that the mechanism of mechanical resonance involves cochlear loci basal to the 61 kHz position.The resonance contributes to auditory sensitivity and sharp tuning: At the frequency of the OAE, single unit responses in the cochlear nucleus have the lowest thresholds. Maximum tuning sharpness occurs at frequencies about 300 Hz below the OAE-frequency, where the threshold is about 10 dB less sensitive than at the OAE-frequency. In addition, in the frequency range around the OAE-frequency several specialized neuronal response features can be related to mechanical resonance: Long lasting excitation after the end of the stimulus, asymmetrical tuning curves with a shallow high frequency slope and phasic on-off neuronal response patterns. In particular the latter phenomenon indicates the occurrence of local mechanical cancellations in the cochlea.Abbreviations CF constant frequency component of echolocation calls - CM cochlear microphonic potential - FM frequency modulated component of echolocation calls - N1 compound action potential of the auditory nerve - OAE octoacoustic emission - SEOAE synchronous evoked OAE  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号