首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
The fecal and mucosal microbiota of infants with rectal bleeding and the fecal microbiota of healthy age-matched controls were investigated by fluorescent in situ hybridization. Bifidobacteria were the main genus in both the feces and mucosa. The other genera tested, Bacteroides, Clostridium, Escherichia coli and lactobacilli/enterococci, represented only minor constituents. No differences in fecal microbiota were observed between patients and controls. In the patients, however, four times greater numbers of bifidobacteria were observed in the feces when compared to the mucosa. Notwithstanding this difference, a strong positive correlation prevailed for bifidobacteria in feces and mucosal samples. The genera assessed accounted for 16% of total bacterial counts on mucosal samples and for 47% of total bacterial counts in feces. This indicates that the unidentified part of the microbiota, especially on the mucosa, deserves more attention.  相似文献   

2.
Li  Guiding  Jiang  Yi  Li  Qinyuan  An  Defeng  Bao  Mingwei  Lang  Lei  Han  Li  Huang  Xueshi  Jiang  Chenglin 《Antonie van Leeuwenhoek》2022,115(9):1187-1202

Asian elephant is large herbivorous animal with elongated hindgut. To explore fecal microbial community composition with various ages, sex and diets, and their role in plant biomass degrading and nutrition conversation. We generated 119 Gb by metagenome sequencing from 10 different individual feces and identified 5.3 million non-redundant genes. The comprehensive analysis established that the Bacteroidetes, Firmicutes and Proteobacteria constituted the most dominant phyla in overall fecal samples. In different individuals, the alpha diversity of the fecal microbiota in female was lower than male, and the alpha diversity of the fecal microbiota in older was higher than younger, and the fecal microbial diversity was the most complex in wild elephant. But the predominant population compositions were similar to each other. Moreover, the newborn infant elephant feces assembled and maintained a diverse but host-specific fecal microbial population. The discovery speculated that Asian elephant maybe have start to building microbial populations before birth. Meanwhile, these results illustrated that host phylogeny, diets, ages and sex are significant factors for fecal microbial community composition. Therefore, we put forward the process of Asian elephant fecal microbial community composition that the dominant populations were built first under the guidance of phylogeny, and then shaped gradually a unique and flexible gut microbial community structure under the influences of diet, age and sex. This study found also that the Bacteroidetes were presumably the main drivers of plant fiber-degradation. A large of secondary metabolite biosynthetic gene clusters, and genes related to enediyne biosynthesis were found and showed that the Asian elephant fecal microbiome harbored a diverse and abundant genetic resource. A picture of antibiotic resistance genes (ARGs) reservoirs of fecal microbiota in Asian elephants was provided. Surprisingly, there was such wide range of ARGs in newborn infant elephant. Further strengthening our speculation that the fetus of Asian elephant has colonized prototypical fecal microbiota before birth. However, it is necessary to point out that the data give a first inside into the gut microbiota of Asian elephants but too few individuals were studied to draw general conclusions for differences among wild and captured elephants, female and male or different ages. Further studies are required. Additionally, the cultured actinomycetes from Asian elephant feces also were investigated, which the feces of Asian elephants could be an important source of actinomycetes.

  相似文献   

3.
Significance of microflora in proteolysis in the colon   总被引:1,自引:0,他引:1  
Protease activities in human ileal effluent and feces were compared by using a variety of native and diazotized protein substrates. In many cases the diazotized proteins had altered susceptibilities to hydrolysis compared with the native proteins. Proteolytic activity was significantly greater than (P less than 0.001) in small intestinal effluent than in feces (319 +/- 45 and 11 +/- 6 mg of azocasein hydrolyzed per h per g, respectively). Moreover, fecal proteolysis was qualitatively different in that ileal effluent did not hydrolyze the highly globular protein bovine serum albumin, whereas all fecal samples tested degraded this substrate. Inhibition experiments provided further evidence that fecal protease activity differed from that in the small intestine. Physical disruption of fecal bacteria released large quantities of proteases, indicating that the lysis of bacteria in the colon may contribute to the extracellular proteolytic activity in feces. Protease inhibition studies with washed fecal bacteria showed that they produced serine, cystine, and metalloproteases, and experiments with synthetic p-nitroanilide substrates indicated that low levels of trypsin- and chymotrypsin-like activities were associated with whole cells. An elastase-like enzyme was bound to the outer membranes of some fecal bacteria.  相似文献   

4.
The composition of the intestinal microbiota depends on gut physiology and diet. Ursidae possess a simple gastrointestinal system composed of a stomach, small intestine, and indistinct hindgut. This study determined the composition and stability of fecal microbiota of 3 captive polar bears by group-specific quantitative PCR and PCR-DGGE (denaturing gradient gel electrophoresis) using the 16S rRNA gene as target. Intestinal metabolic activity was determined by analysis of short-chain fatty acids in feces. For comparison, other Carnivora and mammals were included in this study. Total bacterial abundance was approximately log 8.5 DNA gene copies·(g feces)-1 in all 3 polar bears. Fecal polar bear microbiota was dominated by the facultative anaerobes Enterobacteriaceae and enterococci, and the Clostridium cluster I. The detection of the Clostridium perfringens α-toxin gene verified the presence of C.?perfringens. Composition of the fecal bacterial population was stable on a genus level; according to results obtained by PCR-DGGE, dominant bacterial species fluctuated. The total short-chain fatty acid content of Carnivora and other mammals analysed was comparable; lactate was detected in feces of all carnivora but present only in trace amounts in other mammals. In comparison, the fecal microbiota and metabolic activity of captive polar bears mostly resembled the closely related grizzly and black bears.  相似文献   

5.
Significance of microflora in proteolysis in the colon.   总被引:5,自引:3,他引:2       下载免费PDF全文
Protease activities in human ileal effluent and feces were compared by using a variety of native and diazotized protein substrates. In many cases the diazotized proteins had altered susceptibilities to hydrolysis compared with the native proteins. Proteolytic activity was significantly greater than (P less than 0.001) in small intestinal effluent than in feces (319 +/- 45 and 11 +/- 6 mg of azocasein hydrolyzed per h per g, respectively). Moreover, fecal proteolysis was qualitatively different in that ileal effluent did not hydrolyze the highly globular protein bovine serum albumin, whereas all fecal samples tested degraded this substrate. Inhibition experiments provided further evidence that fecal protease activity differed from that in the small intestine. Physical disruption of fecal bacteria released large quantities of proteases, indicating that the lysis of bacteria in the colon may contribute to the extracellular proteolytic activity in feces. Protease inhibition studies with washed fecal bacteria showed that they produced serine, cystine, and metalloproteases, and experiments with synthetic p-nitroanilide substrates indicated that low levels of trypsin- and chymotrypsin-like activities were associated with whole cells. An elastase-like enzyme was bound to the outer membranes of some fecal bacteria.  相似文献   

6.
In vitro gut fermentation modeling offers a useful platform for ecological studies of the intestinal microbiota. In this study we describe a novel Polyfermentor Intestinal Model (PolyFermS) designed to compare the effects of different treatments on the same complex gut microbiota. The model operated in conditions of the proximal colon is composed of a first reactor containing fecal microbiota immobilized in gel beads, and used to continuously inoculate a set of parallel second-stage reactors. The PolyFermS model was validated with three independent intestinal fermentations conducted for 38 days with immobilized human fecal microbiota obtained from three child donors. The microbial diversity of reactor effluents was compared to donor feces using the HITChip, a high-density phylogenetic microarray targeting small subunit rRNA sequences of over 1100 phylotypes of the human gastrointestinal tract. Furthermore, the metabolic response to a decrease of pH from 5.7 to 5.5, applied to balance the high fermentative activity in inoculum reactors, was studied. We observed a reproducible development of stable intestinal communities representing major taxonomic bacterial groups at ratios similar to these in feces of healthy donors, a high similarity of microbiota composition produced in second-stage reactors within a model, and a high time stability of microbiota composition and metabolic activity over 38 day culture. For all tested models, the pH-drop of 0.2 units in inoculum reactors enhanced butyrate production at the expense of acetate, but was accompanied by a donor-specific reorganization of the reactor community, suggesting a concerted metabolic adaptation and trigger of community-specific lactate or acetate cross-feeding pathways in response to varying pH. Our data showed that the PolyFermS model allows the stable cultivation of complex intestinal microbiota akin to the fecal donor and can be developed for the direct comparison of different experimental conditions in parallel reactors continuously inoculated with the exact same microbiota.  相似文献   

7.
This study examined the ability of (i) pure nisin, (ii) nisin-producing Lactococcus lactis strain CHCC5826, and (iii) the non-nisin-producing L. lactis strain CHCH2862 to affect the composition of the intestinal microbiota of human flora-associated rats. The presence of both the nisin-producing and the non-nisin-producing L. lactis strains significantly increased the number of Bifidobacterium cells in fecal samples during the first 8 days but decreased the number of enterococci/streptococci in duodenum, ileum, cecum, and colon samples as detected by selective cultivation. No significant changes in the rat fecal microbiota were observed after dosage with nisin. Pearson cluster analysis of denaturing gradient gel electrophoresis profiles of the 16S rRNA genes present in the fecal microbial population revealed that the microbiota of animals dosed with either of the two L. lactis strains were different from that of control animals dosed with saline. However, profiles of the microbiota from animals dosed with nisin did not differ from the controls. The concentrations of nisin estimated by competitive enzyme-linked immunosorbent assay (ELISA) were approximately 10-fold higher in the small intestine and 200-fold higher in feces than the corresponding concentrations estimated by a biological assay. This indicates that nisin was degraded or inactivated in the gastrointestinal tract, since fragments of this bacteriocin are detected by ELISA while an intact molecule is needed to retain biological activity.  相似文献   

8.
A T4‐like coliphage cocktail was given with different oral doses to healthy Bangladeshi children in a placebo‐controlled randomized phase I safety trial. Fecal phage detection was oral dose dependent suggesting passive gut transit of coliphages through the gut. No adverse effects of phage application were seen clinically and by clinical chemistry. Similar results were obtained for a commercial phage preparation (Coliproteus from Microgen/Russia). By 16S rRNA gene sequencing, only a low degree of fecal microbiota conservation was seen in healthy children from Bangladesh who were sampled over a time interval of 7 days suggesting a substantial temporal fluctuation of the fecal microbiota composition. Microbiota variability was not associated with the age of the children or the presence of phage in the stool. Stool microbiota composition of Bangladeshi children resembled that found in children of other regions of the world. Marked variability in fecal microbiota composition was also seen in 71 pediatric diarrhea patients receiving only oral rehydration therapy and in 38 patients receiving coliphage preparations or placebo when sampled 1.2 or 4 days apart respectively. Temporal stability of the gut microbiota should be assessed in case‐control studies involving children before associating fecal microbiota composition with health or disease phenotypes.  相似文献   

9.
《Translational oncology》2020,13(5):100772
OBJECTIVE: Intestinal microbiota plays a vital role in the pathogenesis of colorectal cancer (CRC), which is crucial for assessing the risk and prognosis of CRC. Most studies regarding human gut microbiota mainly based on the feces, but the exact composition of microbiota vary significantly due to fecal composition is easily affected by many factors. We aim to evaluate whether intestinal lavage fluid (IVF) is a better substitution mirroring the gut microbiota. METHODS: We performed 16S rRNA gene analysis on fecal and IVF samples from 30 CRC patients and 25 healthy individuals, comparison in luminal (feces) / mucosal (IVF) adherent bacterial community profiles were analyzed. RESULTS: The difference between feces and IVF were observed, including the diversity and abundance of pathogenic bacteria (either in single strain or in co-occurrence pattern). IVF group shared 605 OTUs with the fecal group, but there was 94 OTUs only observed in fecal samples, while 247 OTUs were mainly existing in the IVF group. Among them, 27 vital bacterial species detected in IVF, while 10 critical species detected in fecal samples. The co-occurrence bacteria Fusobacteria Cluster and Proteobacteria Cluster 2 significantly increased in IVF than in control (P < .01), while Firmicutes Cluster 1, Firmicutes Cluster 2 and Proteobacteria Cluster 1 were markedly lower in IVF than in control (P < .001). In CRC feces, Fusobacteria Cluster was higher than in control (P < .05), but Firmicutes Cluster 1 was of substantially less abundance than in control (P < .001). Proteobacteria Cluster 2 was increased dramatically in IVF than in feces (P < .05), Firmicutes Cluster 1 were of substantially less abundance than in feces (P < .05). CONCLUSION: Pathogenic microbiota is more abundant in IVF than in feces. Microbiota of IVF may closely be related to the mucosal-associated microbial communities, which benefit from elucidating the relationship of the intestinal microbiota and CRC carcinogenesis.  相似文献   

10.
The role of dietary fiber in supporting healthy gut microbiota and overall well-being of the host has been revealed in several studies. Here, we show the effect of a bacterial polyfructan levan on the growth dynamics and metabolism of fecal microbiota in vitro by using isothermal microcalorimetry. Eleven fecal samples from healthy donors were incubated in phosphate-buffered defined medium with or without levan supplementation and varying presence of amino acids. The generation of heat, changes in pH and microbiota composition, concentrations of produced and consumed metabolites during the growth were determined. The composition of fecal microbiota and profile of metabolites changed in response to substrate (levan and amino acids) availability. The main products of levan metabolism were acetic, lactic, butyric, propionic and succinic acids and carbon dioxide. Associated growth of levan-degrading (e.g. Bacteroides) and butyric acid-producing (e.g. Faecalibacterium) taxa was observed in levan-supplemented media. The study shows that the capacity of levan and possibly also other dietary fibers/prebiotics to modulate the composition and function of colon microbiota can be predicted by using isothermal microcalorimetry of fecal samples linked to metabolite and consortia analyses.  相似文献   

11.
This study aimed to investigate the association between microbiota found in the maternal gut and placenta, and whether ceftriaxone exposure during pregnancy could alter these microbiota, and consequently affect the immunity of the mothers and their offspring. The microbiota in the feces and placenta of the dams were comprehensively analyzed using16S rRNA sequencing. Furthermore, viable bacteria in the placentas and blood of pups were also isolated by plate cultivation then taxonomically identified in detail by clone sequencing. Serum cytokines collected from dams and pups were quantitatively profiled using Luminex. The spleen organ index of dams was significantly lower and the offspring serum interleukin-6 levels were significantly higher in ceftriaxone-treated mice compared with the control group. The maternal fecal microbiota community was drastically altered in ceftriaxone-treated mice with significantly decreased diversity, depletion of Bacteroidetes and the blooming of Tenericutes. However, the placenta microbiota was dominated by Proteobacteria especially characteristically by Ralstonia, which was distinct from the maternal gut microbiota, regardless of whether ceftriaxone treatment or not. Viable bacteria have been found in placenta and blood cultures. These results indicated that ceftriaxone exposure in pregnancy could dramatically alter maternal intestinal microbiota, which affected the immunity of the mothers and their offspring at least partly, characteristically by enhanced pro-inflammatory responses. This study also indicated that the placenta might harbor its own microbes and the microbes were distinct from maternal gut microbiota, which may not be affected by oral administration of ceftriaxone during pregnancy.  相似文献   

12.
早期灌喂母源粪菌对新生仔猪肠道菌群发育的影响   总被引:1,自引:0,他引:1  
陈雪  任二都  苏勇 《微生物学报》2018,58(7):1224-1232
【目的】粪菌移植(fecal microbiota transplantation,FMT)作为一种治疗手段,已在人类肠道疾病治疗中有较多应用,但在干预新生仔猪肠道菌群上的研究未见报道。本文旨在研究早期母源粪菌移植对新生仔猪肠道菌群发育的影响。【方法】选取一窝12头杜长大新生仔猪,随机分为粪菌处理组(feces treatment,FT)和对照组(control,CO)。FT组仔猪出生后1–5 d每日灌注母源粪菌接种液,CO组灌注等量生理盐水。于1、3、5、7、10、14、18和22日龄采集仔猪粪样,Miseq高通量测序分析仔猪粪便菌群。【结果】灌喂母源粪菌有增加仔猪肠道菌群丰富度的趋势;主坐标分析显示,两组仔猪粪样菌群结构簇并未分开,并在18和22日龄时靠近母猪粪样菌群结构簇;随日龄增加,两组仔猪肠道中的变形菌门丰度均显著降低,而厚壁菌门的丰度显著增加,且从10日龄起拟杆菌门和厚壁菌门之和约为90%;与对照组相比,灌喂母源粪菌增加了10日龄时Escherichia-Shigella的丰度,而降低了18日龄时该菌属的丰富度,18日龄时肠球菌属和普氏菌属的丰度则显著增加。【结论】1–3日龄口服灌喂母源粪菌液并不能影响仔猪肠道菌群的定殖,这一阶段主要受母体微生物结构的影响;灌喂粪菌液对仔猪肠道菌群定殖的影响最多持续10–14 d;而且仔猪在22 d左右,肠道菌群结构逐渐趋同于母猪肠道菌群。  相似文献   

13.
Voluntary training and food modulate the fecal microbiota in humans and mice. Although there are some reports of the timing effects of voluntary training and feeding on metabolism, the timing effects of these factors on microbiota have not been investigated. Therefore, we investigated the effects of the timing of voluntary training and feeding on the gut microbiota.The ICR mice were housed under conditions with an early (in the morning) or late (evening) active phase of increased physical activity. Furthermore, to investigate why voluntary training affects the gut microbiota, mice were housed in a cold environment and received propranolol administration with increased physical activity. After that, we collected cecal contents and feces and measured cecal pH. Short-chain fatty acids (SCFA) were measured from cecal contents. Microbiota was determined using sequencing of the V3-V4 region of the 16S rDNA gene.This study found that increased evening physical activity rather than morning activity decreases cecal pH, increases SCFA, and changes the microbiota. It is especially important that increased evening physical activity is induced under the post-prandial voluntary training condition. Also, we found that cold room housing, sympathetic blockade, or both suppressed the increased physical activity-induced changes in cecal pH, SCFA, and microbiota. Allobaculum responded to increased physical activity through body temperature increases and sympathetic activation.Post-prandial increased physical activity, rather than pre-prandial increased physical activity by evening voluntary wheel training, altered the microbiota composition, which may be related to the increase in body temperature and sympathetic nervous system activation.  相似文献   

14.
This study examined the ability of (i) pure nisin, (ii) nisin-producing Lactococcus lactis strain CHCC5826, and (iii) the non-nisin-producing L. lactis strain CHCH2862 to affect the composition of the intestinal microbiota of human flora-associated rats. The presence of both the nisin-producing and the non-nisin-producing L. lactis strains significantly increased the number of Bifidobacterium cells in fecal samples during the first 8 days but decreased the number of enterococci/streptococci in duodenum, ileum, cecum, and colon samples as detected by selective cultivation. No significant changes in the rat fecal microbiota were observed after dosage with nisin. Pearson cluster analysis of denaturing gradient gel electrophoresis profiles of the 16S rRNA genes present in the fecal microbial population revealed that the microbiota of animals dosed with either of the two L. lactis strains were different from that of control animals dosed with saline. However, profiles of the microbiota from animals dosed with nisin did not differ from the controls. The concentrations of nisin estimated by competitive enzyme-linked immunosorbent assay (ELISA) were approximately 10-fold higher in the small intestine and 200-fold higher in feces than the corresponding concentrations estimated by a biological assay. This indicates that nisin was degraded or inactivated in the gastrointestinal tract, since fragments of this bacteriocin are detected by ELISA while an intact molecule is needed to retain biological activity.  相似文献   

15.
The development and validation of a new three-stage culture system with immobilized fecal microbiota to simulate infant colonic ecosystem is described. Two continuous cultures with different fecal inocula were used to assess the validity and stability of the intestinal model. The total anaerobe populations measured in beads and effluent fermentations reached high concentrations similar to infant feces. Fluorescence in situ hybridization analyses and denaturing gradient gel electrophoresis profiles of effluent samples from the three reactors revealed complex patterns similar to that observed in the inoculum, indicating that fecal bacterial diversity was well-preserved and that dominant bacterial populations showed good stability among reactors. For both experiments, the bacterial populations and fermentation product concentrations were in the range of published data for infant feces. These results demonstrate that this new three-stage continuous culture with immobilized cells provides a useful tool for studying the infant colon ecosystem.  相似文献   

16.
Recent studies have illustrated the importance of the microbiota in maintaining a healthy state, as well as promoting disease states. The intestinal microbiota exerts its effects primarily through its metabolites, and metabolomics investigations have begun to evaluate the diagnostic and health implications of volatile organic compounds (VOCs) isolated from human feces, enabled by specialized sampling methods such as headspace solid-phase microextraction (hSPME). The approach to stool sample collection is an important consideration that could potentially introduce bias and affect the outcome of a fecal metagenomic and metabolomic investigation. To address this concern, a comparison of endoscopically collected (in vivo) and home collected (ex vivo) fecal samples was performed, revealing slight variability in the derived microbiomes. In contrast, the VOC metabolomes differ widely between the home collected and endoscopy collected samples. Additionally, as the VOC extraction profile is hyperbolic, with short extraction durations more vulnerable to variation than extractions continued to equilibrium, a second goal of our investigation was to ascertain if hSPME-based fecal metabolomics studies might be biased by the extraction duration employed. As anticipated, prolonged extraction (18 hours) results in the identification of considerably more metabolites than short (20 minute) extractions. A comparison of the metabolomes reveals several analytes deemed unique to a cohort with the 20 minute extraction, but found common to both cohorts when the VOC extraction was performed for 18 hours. Moreover, numerous analytes perceived to have significant fold change with a 20 minute extraction were found insignificant in fold change with the prolonged extraction, underscoring the potential for bias associated with a 20 minute hSPME.  相似文献   

17.
One of the main challenges in understanding the composition of fecal microbiota is that it can consist of microbial mixtures originating from different gastrointestinal (GI) segments. Here, we addressed this challenge for broiler chicken feces using a direct 16S rRNA gene-sequencing approach combined with multivariate statistical analyses. Broiler feces were chosen because of easy sampling and the importance for pathogen transmission to the human food chain. Feces were sampled daily for 16 days from chickens with and without a feed structure-induced stimulation of the gastric barrier function. Overall, we found four dominant microbial phylogroups in the feces. Two of the phylogroups were related to clostridia, one to lactobacilli, and one to Escherichia/Shigella. The relative composition of these phylogroups showed apparent stochastic temporal fluctuations in feces. Analyses of dissected chickens at the end of the experiment, however, showed that the two clostridial phylogroups were correlated to the microbiota in the cecum/colon and the small intestine, while the upper gut (crop and gizzard) microbiota was correlated to the lactobacillus phylogroup. In addition, chickens with a stimulated gizzard also showed less of the proximate GI dominating bacterial group in the feces, supporting the importance of the gastric barrier function. In conclusion, our results suggest that GI origin is a main determinant for the chicken fecal microbiota composition. This knowledge will be important for future understanding of factors affecting shedding of both harmful and beneficial gastrointestinal bacteria through feces.  相似文献   

18.
目的:探究高脂饮食中添加短链菊粉对小鼠肠道菌群的影响。方法:选择8周龄雄性小鼠,5只喂食高脂饲料,5只喂食10%菊粉复合型高脂饲料,喂食8周后收集小鼠粪便,检测小鼠粪便中三种主要的短链脂肪酸。同时,提取小鼠粪便中的细菌基因组,对菌群基因组16S rRNA基因V4高变区进行测序,对数据进行PCoA分析、Alpha多样性分析、LEfSe分析和16S功能预测。结果:菊粉添加后,小鼠粪便中含有的细菌DNA量增多,短链脂肪酸增加。菊粉组和对照组PCoA图可以看到明显聚类。菊粉组物种多样性低于对照组。菊粉组小鼠粪便中S24_7菌科丰度上升;Lachnospiraceae(毛螺菌科),Ruminococcaceae(瘤胃菌科)和Deferribacteraceae(脱铁杆菌科)丰度下降。16S基因功能预测发现22个第二层级的KEGG通路发生变化。结论:高脂饮食情况下短链菊粉的添加会改变小鼠肠道菌群,继而影响肠道菌群的功能。  相似文献   

19.
Using murine macrophage-like J774.1 cells and fecal precipitates prepared from the feces of elderly volunteers whose acute inflammation had been inhibited by LKM512 yogurt consumption, we investigated the likelihood that immunostimulation by altered intestinal bacterial cell components contribute to the anti-inflammatory benefits of this yogurt. Tumor necrosis factor-alpha production due to stimulation by fecal precipitates obtained during LKM512 yogurt consumption tended to be higher than due to stimulation by precipitates obtained from preconsumption (P=0.0827), although acute phase response was suppressed by LKM512 yogurt consumption. We suggest that the anti-inflammatory benefits of LKM512 yogurt on elderly volunteers are independent of direct immunostimulation by the bacterial cell components derived from altered intestinal microbiota.  相似文献   

20.
目的挖掘肠道微生物在舜皇山土猪耐粗饲及抗病等方面的作用,为舜皇山土猪的饲养与保护以及益生菌的开发提供理论依据。方法采集3个生长阶段的舜皇山土猪粪便样品,各4~5组,进行16S rDNA V3-V4区基因高通量测序,分析其微生物的组成及多样性。结果舜皇山土猪肠道微生物主要由拟杆菌门(Bacteroides)、厚壁菌门(Firmicutes)组成,但这两个主要门类的丰富度在各生长阶段有较大差异,且哺乳猪肠道的变形菌门(Proteobacteria)丰富度明显高于其他生长阶段。舜皇山土猪肠道内的Firmicutes/Bacteroides(F/B)比例较低,具有较高的瘦肉率的潜力,但并未表现出很高的瘦肉率,推测与其自身生长缓慢有关。不同生长阶段舜皇山土猪肠道微生物中的优势菌属有所不同,但普氏菌、考拉杆菌属、瘤胃菌科是它们的共性菌,这与商品化猪肠道的优势属(主要是乳杆菌、链球菌等)存在明显差异。考拉杆菌属在肠道微生态的动态平衡方面起着至关重要的作用,并且在含致病菌较少的保育猪中丰富度较高,推测其在舜皇山土猪抗病特性方面具有重要作用。与其他两个生长阶段的猪相比,哺乳猪丰富度差异显著的细菌菌属有23种,保育猪12种,育肥猪27种,但它们含有较多的益生菌,如SCFAs产生菌、木聚糖降解菌、纤维降解菌等,推测与其耐粗饲料特性相关。结论舜皇山土猪的发育状态以及饮食习惯影响其肠道微生物的组成。舜皇山土猪的瘦肉率受肠道内F/B比例的影响,同时其自身生长速率也有可能影响其瘦肉率。考拉菌属可能在舜皇山土猪抗病特性方面具有重要作用。舜皇山土猪肠道内的木聚糖降解菌、纤维降解菌等微生物是其耐粗饲的主要原因。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号