首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Release ponds are used as part of a multifacet effort to restore American shad ( Alosa sapidissima ) in the upper Susquehanna River basin. Little information exists, however, on the feeding ecology of young shad in small ponds. Consequently, we examined feeding ecology and prey selection of 299 larval and 299 juvenile American shad in a small pond during spring and summer. Larval shad mainly consumed copepods (37.7%) and cladocerans (37.4%) whereas juvenile shad ate chironomids (43.1%) and ostracods (28.4%). Larval and juvenile shad exhibited diel variation in diet composition and feeding periodicity. Food consumption by shad was minimal at night; feeding activity was highest during the day, peaking at 2000 h for both larvae and juveniles. Electivity values of shad larvae for prey taxa were highest for cladocerans (+0.27) and lowest for ostracods (−0.07). Electivity values of juvenile shad were highest for chironomids (+ 0.21) and ostracods (+ 0.09), and lowest for copepods (− 0.08) and baetids (− 0.14). Our data indicate differences in diet composition, prey preference and, to a lesser extent, feeding patterns between larval and juvenile American shad in small pond environments.  相似文献   

2.
Previous research suggested larval fishes do not exhibit a diel drift cycle in turbid rivers (transparency <30 cm). We evaluated this hypothesis in the turbid, lower Missouri River, Missouri. We also reviewed diel patterns of larval drift over a range of transparencies in rivers worldwide. Larval fishes were collected from the Missouri River primary channel every 4 h per 24‐h period during spring‐summer 2002. Water transparency was measured during this period and summarized for previous years. Diel drift patterns were analyzed at the assemblage level and lower taxonomic levels for abundant groups. Day and night larval fish catch‐per‐unit‐effort (CPUE) was compared for the entire May through August sampling period and spring (May – June) and summer (July – August) seasons separately. There were no significant differences between day and night CPUE at the assemblage level for the entire sampling period or for the spring and summer seasons. However, Hiodon alosoides, Carpiodes/Ictiobus spp. and Macrhybopsis spp. exhibited a diel cycle of abundance within the drift. This pattern was evident although mean Secchi depth (transparency) ranged from 4 to 25 cm during the study and was <30 cm from May through August over the previous nine years. Larval diel drift studies from 48 rivers excluding the Missouri River indicated the primary drift period for larval fishes was at night in 38 rivers and during the day for five, with the remaining rivers showing no pattern. Water transparency was reported for 10 rivers with six being <30 cm or ‘low’. Two of these six turbid rivers exhibited significant diel drift patterns. The effect of water transparency on diel drift of larval fishes appears taxa‐specific and patterns of abundant taxa could mask patterns of rare taxa when analyzed only at the assemblage level.  相似文献   

3.
Summary Ten species of fish made up more than 95 percent of the standing crop of the total fish assemblage of a shallow-water eelgrass meadow in southeastern Australia. The relative abundance of each species remained fairly constant from year to year during a four and a half year period. Four species were permanent residents, three moved over the meadow at high tide, and the juveniles of three species changed residence status as they grew. Most species exhibited distinct diel patterns of activity, four species were diurnal and five were nocturnal. Species foraged in different microhabitats and dietary overlap was very low amongst all but two species which had overlapping habitat, prey and prey size preferences, but had different diel activity periods. Data on production by prey and consumption of prey by these two fish species indicated that competition for food was probably responsible for the temporal separation of feeding niches. Predation by birds and fish appeared to be the major influence on the diel activity period of one fish species. The maintenance of the patterns of resource allocation among the remaining species is discussed and the organization of different seagrass fish faunas is compared.This is publication number 265 in the Ministry for Conservation, Victoria publication series. — Present address: Department of Biology, Dalhousie University, Halifax, Nova Scotia B3H 4J1, Canada  相似文献   

4.
Prey size spectra and prey availability of larval and small juvenile cod   总被引:4,自引:0,他引:4  
The aim of the present study is to describe the prey preference characteristics of cod larvae and assess preference variability in relation to species and size composition of copepod prey. A further aim is to examine the hypothesis that dietary prey size spectra remain the same during the larval stage when viewed on a relative predator/prey size scale. The study is based on stomach analysis of larval/juvenile cod in the size range 10–35 mm from nursery grounds in the North Sea. Stomach contents (species, size) were compared to environmental composition and preference indices were calculated. Prey size spectra had the expected relationship to larval cod size, and preference for given copepod species could be ascribed to their relative size. Additional species-specific preferences were evident, for example the larger Pseudocalanus and the larger Calanus spp. were highly preferred. Available prey biomass was highest in the areas of a hydrographic front, where larvae have been shown to concentrate. Changes in prey availability with larval growth depend strongly on specific prey biomass spectra at a given location. Both increasing and decreasing prey availability at increasing larval size were indicated, dependent on location. The findings illustrate the usefulness of coupling dietary prey size spectra and biomass spectra of available prey sizes during studies of ichthyoplankton feeding ecology.  相似文献   

5.
Predation shapes many fundamental aspects of ecology. Uncertainty remains, however, about whether predators can influence patterns of temporal niche construction at ecologically relevant timescales. Partitioning of time is an important mechanism by which prey avoid interactions with predators. However, the traits that control a prey organism's capacity to operate during a particular portion of the diel cycle are diverse and complex. Thus, diel prey niches are often assumed to be relatively unlikely to respond to changes in predation risk at short timescales. Here we present evidence to the contrary. We report results that suggest that the anthropogenic depletion of daytime active predators (species that are either diurnal or cathemeral) in a coral reef ecosystem is associated with rapid temporal niche expansions in a multi-species assemblage of nocturnal prey fishes. Diurnal comparisons of nocturnal prey fish abundance in predator rich and predator depleted reefs at two atolls revealed that nocturnal fish were approximately six (biomass) and eight (density) times more common during the day on predator depleted reefs. Amongst these, the prey species that likely were the most specialized for nocturnal living, and thus the most vulnerable to predation (i.e. those with greatest eye size to body length ratio), showed the strongest diurnal increases at sites where daytime active predators were rare. While we were unable to determine whether these observed increases in diurnal abundance by nocturnal prey were the result of a numerical or behavioral response, either effect could be ecologically significant. These results raise the possibility that predation may play an important role in regulating the partitioning of time by prey and that anthropogenic depletions of predators may be capable of causing rapid changes to key properties of temporal community architecture.  相似文献   

6.
The foraging ecology of larval and juvenile fishes   总被引:1,自引:0,他引:1  
Knowledge of the foraging ecology of fishes is fundamental both to understanding the processes that function at the individual, population and community levels, and for the management and conservation of their populations and habitats. Furthermore, the factors that influence the acquisition and assimilation of food can have significant consequences for the condition, growth, survival and recruitment of fishes. The majority of marine and freshwater fish species are planktivorous at the onset of exogenous nutrition and have a limited ability to detect, capture, ingest and digest prey. Improvements in vision, development of fins and associated improvements in swimming performance, increases in gape size and development of the alimentary tract during ontogeny often lead to shifts in diet composition. Prey size, morphology, behaviour and abundance can all influence the prey selection of larval and juvenile fishes. Differences in feeding behaviour between fish species, individuals or during ontogeny can also be important, as can inter- and intraspecific interactions (competition, predation risk). Temporal (diel, seasonal, annual) and spatial (microhabitat, mesohabitat, macrohabitat, regional) variations in prey availability can have important implications for the prey selection, diet composition, growth, survival, condition and, ultimately, recruitment success of fishes. For fish populations to persist, habitat must be available in sufficient quality and quantity for the range of activities undertaken during all periods of development. Habitats that enhance the diversity, size ranges and abundance of zooplankton should ensure that sufficient food resources are available to larval and juvenile fishes.  相似文献   

7.
Diel activity of resident and immigrant waterbirds at Lake Turkana, Kenya   总被引:1,自引:0,他引:1  
M. FASOLA  L. CANOVA 《Ibis》1993,135(4):442-450
Of the 42 dominant species of waterbirds at Lake Turkana, Kenya, 14 foraged uniformly throughout the day and night, five foraged mostly during the night, five foraged during both the night and day but with diurnal peaks, 17 were exclusively diurnal and only one was exclusively nocturnal. Species with uniform feeding activity usually captured small prey, using tactile or visual plus tactile cues; most diurnal species captured large prey, using visual cues. However, some species which fed mostly at night, or uniformly, relied exclusively on visual cues. We found support from only one species that moonlight influenced foraging activities. Palaearctic immigrants spent significantly more time foraging than partial migrants and residents; they were also smaller and mainly microphagous. Only gulls and terns were restricted to diurnal feeding, presumably by their need to see and capture prey while flying. The other groups were formed by species which foraged uniformly over 24 h or partially by day or night. These patterns indicate that in most waterbirds feeding activities are not basically tied to any phase of the diel cycle. Since most waterbirds display some degree of nocturnal activity, time budget studies based only on diurnal observations are likely to be misleading.  相似文献   

8.
Most animals have well established diel activity patterns (e.g., diurnal, crepuscular, or nocturnal), and changes in behavior from diurnal to nocturnal are rare in single species. We radio tracked 50 keelback snakes in a single population, locating them up to four times a day, over five periods of the year in the Australian dry tropics to describe temporal variation in diel movement patterns. Snake body temperatures were also recorded to determine the relationship between activity patterns and body temperatures. Season influenced diel activity patterns significantly. Keelbacks were more likely to move, and moved further in the daytime in the mid‐dry (June–July), and late dry (Aug–Sep) seasons. In the mid‐dry season, 87 percent of movements were diurnal, whereas in the mid‐wet (Feb–March) season, although snakes were much more likely to move, only 43 percent of movements were diurnal. In the late dry season, snakes were slightly more likely to move at night than at any other time of day, and so at this time of the year, snakes could be classified as nocturnal. Thus, overall increased movements in the mid‐wet season (austral summer) were associated with more crepuscular and nocturnal movement. There was a significant relationship between individual snake body temperatures and movement rates in all seasons. Changes in movement patterns may be related to body temperature, and this diurnal species becomes cathemeral in the tropics in summer, when it is possible to maintain high body temperatures both day and night.  相似文献   

9.
马鞍列岛多种生境中鱼类群聚的昼夜变化   总被引:4,自引:0,他引:4  
汪振华  王凯  章守宇 《生态学报》2011,31(22):6912-6925
为了解岛礁水域鱼类群聚的昼夜变化特征,以便更全面地设计采样方法和掌握采样的时间尺度,于2009年9月对马鞍列岛7种生境进行了共计24网次的刺网昼夜采样,结合排序和聚类方法,从种类组成、相对生物量和丰度、种类丰富度、多样性和相似性等方面对研究海域鱼类群聚特征的昼夜变化作了探讨.在采获的55种鱼类中,昼夜出现的分别为41和46种,数量差别不大,但其昼夜组成却随栖息水层的变化而不同,底层鱼类更趋向于夜间在硬相生境集群活动;近底层鱼类的昼夜集群随生境变化而变化,在同一生境中既有偏向白天也有趋向夜间的;中上层鱼类更多地出现在白天的人工生境(AH).AH白天的丰度渔获率显著大于晚上,而天然生境(NH)昼夜差别不大;生物量渔获率无论NH还是AH皆无显著昼夜差异.具体到种类,仅有小黄鱼Larimichthys polyactis和赤鼻棱鳗Thryssa kammalensis等少数种类的数量在AH有显著的昼夜差别,其他多数种类虽然昼夜的出现率大多有别,但渔获率昼夜差异皆不明显.多样性差异更多的表现在不同生境之间,而同一生境的昼夜差异往往不甚显著.各个生境中鱼类的昼夜种类交替现象非常明显,形成了以褐菖(鲐)Sebastiscus marmoratus和鳗鲇Plotosus anguillaris为代表的夜间优势类群为主的硬相生境群聚格局、以丝背细鳞鲀Stephanolepis cirrhifer和细刺鱼Microcanthus strigatus为代表的白天优势类群为主的硬相生境群聚格局以及缺乏底层优势类群、以石首鱼科鱼类为代表的近底层鱼类为绝对优势类群的软相生境群聚格局.因此,采用被动性渔具在近岸典型生境进行鱼类等相关生物调查时,应使采样时间覆盖昼夜两个时段,且至少保证24h.  相似文献   

10.
Predation and food consumption of five deep‐sea fish species living below 1000 m depth in the western Mediterranean Sea were analysed to identify the feeding patterns and food requirements of a deep‐sea fish assemblage. A feeding rhythm was observed for Risso's smooth‐head Alepocephalus rostratus, Mediterranean grenadier Coryphaenoides mediterraeus and Mediterranean codling Lepidion lepidion. Differences in the patterns of the prey consumed suggest that feeding rhythms at such depths are linked with prey availability. The diets of those predators with feeding rhythms are based principally on active‐swimmer prey, including pelagic prey known to perform vertical migrations. The diets of Günther's grenadier Coryphaenoides guentheri and smallmouth spiny eel Polyacanthonotus rissoanus, which did not show any rhythm in their feeding patterns, are based mainly on benthic prey. Food consumption estimates were low (<1% of body wet mass day?1). Pelagic feeding species showing diel feeding rhythms consumed more food than benthic feeding species with no feeding rhythms.  相似文献   

11.
Synopsis Diel and spring/summer space-use and feeding patterns were investigated in an assemblage dominated by five fish species occupying the offshore waters of Lake Opinicon, a shallow mesotrophic lake in southeastern Ontario. We assessed fish distribution and diel movement in May and July through the use of gill nets set at various depths in 1.5–7.0 m depth contour zones, supplemented by observations of fish reaction to the nets. Golden shiners and alewives occupied the upper part of the water column, with the former concentrated at the littoral zone-open water interface, and the latter in the open water. Yellow perch occupied the lower part of the water column in all depth contours. Bluegills were abundant in the upper to midwater depths in all contour zones; black crappies were concentrated in the 2.5–3.5 m zones. All of these species showed either a diel or a spring-summer change in distribution pattern. Bluegills were more abundant in offshore locations in July, whereas golden shiners and yellow perch were more abundant onshore in May. Alewives and black crappies showed distinct diel movements in July, as they were largely absent from the study area during the day, but returned at night to feed. In general, there was more spatial separation among the five species in July than in May.Patterns of spatial distribution among the species generally corresponded with the type and variety of prey consumed, and with diel movement of prey in the case of water column feeders. Other factors that apparently affected spatial distribution and seasonal shifts in this assemblage were risk of predation (golden shiner), spawning activity (alewife), and a decline in prey abundance from spring to summer (bluegill and yellow perch).  相似文献   

12.
Very few demersal fish assemblage studies using otter trawls in estuaries have been done in South Africa and none of these have tested for the effects of diel period. This study aimed to test whether diel period affects otter trawl catches in the clear, permanently open Kariega Estuary in terms of both species composition and abundance. Fish were sampled by day and night from 30 October to 1 November 2007 at 15 sites using an otter trawl. More species were collected at night, when there were higher catch rates for all key species, with the exception of Rhabdosargus holubi, which was more abundant during the day. Overall assemblages collected by day and by night were similar, with six species accounting for over 90% of the catch in both day and night samples. Both day and night samples reflected differences related to region, with the highest mean CPUE during day and night sampling being recorded in the head region.  相似文献   

13.
Day–night shifts in the nearshore fish fauna of a temperate microtidal estuary were assessed using a holistic suite of structural and functional community attributes. Mean fish species richness and diversity (taxonomic distinctness) were higher at night across all regions of the estuary and seasons, concurring with the findings of numerous comparable studies reviewed worldwide, while the diel period in which mean abundance was higher varied among seasons. Likewise, species and functional guild compositions (the latter based on feeding modes and habitat use) both differed significantly between day and night, with the extent of the diel shift again varying seasonally. Daytime fish communities were characterized by higher abundances of Atherinidae, Sillaginidae and Mugilidae, while Gobiidae were far more abundant at night. Marked shifts in size composition were also evident, with smaller fishes (<100 mm total length, LT) being more prevalent during the day and larger fishes (≥200 mm LT) proportionally more abundant at night. The above diel shifts were feasibly related to a range of predator–prey interactions and feeding‐related movements, namely a nocturnal decrease in top‐order avian piscivory coupled with an increase in invertebrate prey availability, resulting in changes in the presence and catchability of certain fish species in shallow estuarine waters.  相似文献   

14.
1. Predator–prey interactions, especially those involving herbivorous insects, are of great importance in maintaining biodiversity. Predation pressure varies temporally in response to prey availability and activity. However, little is known about the patterns and drivers of fluctuations in predation pressure at fine temporal scales. 2. Artificial caterpillars (placed on plant leaves at breast height) were used to assess changes in predation pressure across four time intervals of the day in a monsoonal tropical rainforest in south-west China. The study examined how assemblage composition of arboreal ants, the dominant predators, changed across the same time intervals. The potential linkages between biotic (arboreal ants) and abiotic (temperature and light intensity) factors with predation rate were evaluated. 3. Predation rate on caterpillars during the early part of the night (19.00–01.00 hours) was significantly higher than in the morning, afternoon, or late night. Ant assemblage composition, rather than species richness or total abundance, best explained the variations in predation rate on artificial caterpillars. 4. The results help to strengthen understanding of trophic interactions by demonstrating that predation pressure fluctuates at finer timescales than previously tested, and that a particular set of ant species may play major roles in predation on caterpillars and possibly other organisms.  相似文献   

15.
1. Most animals are active by day or by night, but not both; juvenile salmonids are unusual in that they switch from being predominantly diurnal for most of the year to being nocturnal in winter. They are visual foragers, and adaptations for high visual acuity at daytime light intensities are generally incompatible with sensitive night vision. Here we test whether juvenile Atlantic Salmon Salmo salar are able to maintain their efficiency of prey capture when switching between diurnal and nocturnal foraging.
2. By testing the ability of the fish to acquire drifting food items under a range of manipulated light intensities, we show that the foraging efficiency of juvenile salmon is high at light intensities down to those equivalent to dawn or dusk, but drops markedly at lower levels of illumination: even under the best night condition (full moon and clear sky), the feeding efficiency is only 35% of their diurnal efficiency, and fish will usually be feeding at less than 10% (whenever the moon is not full, skies are overcast or when in the shade of bankside trees). Fish were unable to feed on drifting prey when in complete darkness.
3. The ability of juvenile salmon to detect prey under different light intensities is similar to that of other planktivorous or drift-feeding species of fish; they thus appear to have no special adaptations for nocturnal foraging.
4. While winter drift abundance is slightly higher by night than by day, the difference is not enough to compensate for the loss in foraging efficiency. We suggest that juvenile salmon can nonetheless switch to nocturnal foraging in winter because their food requirements are low, many individuals adopting a strategy in which intake is suppressed to the minimum that ensures survival.  相似文献   

16.
The feeding ecology of southern garfish, Hyporhamphus melanochir, in South Australia was investigated to determine the dietary composition and diurnal feeding patterns, especially in relation to a hypothesised relationship between prey availability and feeding patterns. Samples of H. melanochir were collected at different times of the day and night during autumn and winter, and assigned to 3-hourly intervals. The dietary composition and feeding patterns were determined from gut contents analysis. The main food items were seagrasses (Zosteraceae) and hyperbenthic crustaceans, mainly amphipods. Polychaetes and insects were also consumed. A clear diurnal trophic shift was evident: seagrass was consumed in large volumes during the day, whilst hyperbenthic invertebrates dominated the diet during the night. Plankton samples indicated that this trophic shift reflected the higher abundances of hyperbenthic invertebrates in the water column at night. Less time was spent consuming seagrass during winter, coinciding with shorter day-lengths. H. melanochir has a strong trophic association with seagrass beds, which may account for the high garfish abundance in northern Gulf St. Vincent where extensive Zosteracean seagrass beds occur. This may be useful fundamental information for future environmentally-based fishery management decisions to help ensure the sustainability of southern garfish population and the ecosystem of which it is a part.  相似文献   

17.
Susan C. Walls 《Oecologia》1995,101(1):86-93
The aquatic larvae of two species of salamanders coexist as a result of differences in their competitive abilities: Ambystoma talpoideum is a superior aggressor, whereas A. maculatum is a superior forager. I examined the behavioral mechanisms that permit these species to coexist with their predatory congener, A. opacum. I asked whether the two prey species differ in their vulnerability to predation and in their use of structural and spatial refugia when under the risk of predation; such inter-specific variation may allow predation to contribute indirectly to prey coexistence. Larval A. maculatum (the superior forager) was more vulnerable to predation by A. opacum than was A. talpoideum, and only the latter species significantly increased its use of structural refugia (leaf litter) in the presence of the predator. In pond enclosures, both species of prey exhibited diel patterns of microhabitat use; significantly more larvae occupied shallow regions of enclosures during the day and migrated to deeper water (a spatial refugium) at night. However, when considered separately, neither (1) the presence of a predatory larval A. opacum nor (2) an increased density of intra- and interspecific competitors significantly altered this habitat shift for either prey species. Rather, diel microhabitat usage in A. talpoideum was significantly affected by an interaction between predator presence and competitor density. My results demonstrate the importance of refugia to coexistence in this predator-prey assemblage. Furthermore, predation by A. opacum may mediate prey competition; that is, preferential consumption of A. maculatum may reduce the competitive impact of this superior forager on A. talpoideum, thus enhancing their coexistence.  相似文献   

18.
The diel feeding periodicity, daily ration and prey selection of juvenile chinook salmon, Oncorhynchus tshawytscha , were studied in relation to the available prey. Maximum dry weight of food intake occurred about dawn, when mayflies were the major prey, but the greatest number of freshly eaten prey occurred during the afternoon, when chironomids and terrestrial dipterans predominated. Feeding activity at night was low, with smaller mayflies comprising up to 50% of the prey. During the day the young salmon fed selectively on chironomids and the larger mayflies, while trichopterans and terrestrial taxa were under-represented in the diet. Food consumption over the 24-h period averaged 8.3% of the fish dry body weight. Prey abundance in the drift explained about 50% of the composition of the diet. Although the fish selected larger mayflies, size apparently was not a main criterion for selection because chironomids, although smaller than mayflies, were also frequently eaten. Previous dietary experience of the fish and the diel pattern of prey abundance appear to best explain the selective feeding of juvenile chinook salmon.  相似文献   

19.
The reach of artificial light at night (ALAN) is growing rapidly around the globe, including the increasing use of energy‐efficient LED lights. Many studies document the physiological costs of light at night, but far fewer have focused on the potential benefits for nocturnal insectivores and the likely ecological consequences of shifts in predator–prey relationships. We investigated the effects of ALAN on the foraging behaviour and prey capture success in juvenile Australian garden orb‐web spiders (Eriophora biapicata). Laboratory experiments demonstrated that juvenile spiders were attracted to LED lights when choosing foraging sites, but prey availability was a stronger cue for remaining in a foraging site. Field experiments revealed a significant increase in prey capture rates for webs placed near LED lights. This suggests that any physiological costs of light at night may be offset by the foraging benefits, perhaps partially explaining recently observed increases in the size, fecundity and abundance of some orb‐web spider species in urban environments. Our results highlight the potential long‐term consequences of night lighting in urban ecosystems, through the impact of orb‐web spiders on insect populations.  相似文献   

20.
1. We experimentally tested if a multiplicative risk model accurately predicted the consumption of a common mayfly at risk of predation from three predator species in New Zealand streams. Deviations between model predictions and experimental observations were interpreted as indicators of ecologically important interactions between predators. 2. The predators included a drift‐feeding fish [brown trout (T), Salmo trutta], a benthivorous fish [galaxiid (G), koaro, Galaxias brevipennis] and a benthic predatory stonefly (S; Stenoperla sp.) with Deleatidium sp. mayflies as prey. Eight treatments with all predator species combinations and a predator‐free control were used. Experiments were performed in aquaria with cobbles as predator refuges for mayflies and we measured the proportion of prey consumed after 6 h for both day and night trials. 3. Trout consumed a higher proportion of prey than other predators. For the two predator treatments we found less than expected prey consumption in the galaxiid + trout treatment (G + T) for both day and night trials, whereas a higher than expected proportion of prey was consumed during night time in the stonefly + trout (S + T) treatment. 4. The results indicate interference (G + T) and facilitation (S + T) between predators depending on predator identity and time of day. Thus, to make accurate predictions of interspecific interactions, it is necessary to consider the ecology of individual species and how differences influence the direction and magnitude of interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号