首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
We investigated the distribution and time course of expression of two subtypes of prostaglandin E2 (PGE2) receptors, EP2 and EP4, in a rat model of cerebral ischemia and ischemic tolerance. Adult male Sprague-Dawley rats were subjected to either lethal global ischemia (10 min) with or without sublethal ischemic preconditioning (3 min), or ischemia only (3 min). A short 3-min cerebral ischemia and a 3-min ischemia followed by a second lethal ischemia enhanced the expression of EP2 and EP4 receptors in CA1 pyramidal neurons of the hippocampus. In tolerance-acquired CA1 neurons, the immunoreactivities of EP2 and EP4 were upregulated after 4 h and 12 h, respectively. The immunoreactivities were most prominent at 3 days and were sustained for at least 14 days, consistent with results of immunoblotting experiments. However, immunoreactivities for these PGE2 receptors increased in reactive glial cells in the vulnerable CA1 and hilar regions of rats subjected to lethal ischemia without ischemic preconditioning. Most of the EP2 immunoreactivity occurred in microglial cells and some astrocytes, whereas increased immunoreactivity for EP4 was found only in astrocytes. These data suggest that ischemia and the induction of ischemia tolerance have different regulatory effects on the expression of EP2 and EP4 receptors. Moreover, PGE2 may exert its unique pathophysiological functions in relation to delayed neuronal death and ischemic tolerance induction in the rat hippocampus via specific PGE2 receptors.This research was supported by a grant (M103KV010019 04K2201 01930) from the Brain Research Center of the 21st Century Frontier Research Program funded by the Ministry of Science and Technology of the Republic of Korea.  相似文献   

2.
Transient global brain ischemia induces dysfunctions of mitochondria including disturbance in mitochondrial protein synthesis and inhibition of respiratory chain complexes. Due to capacity of mitochondria to release apoptogenic proteins, ischemia-induced mitochondrial dysfunction is considered to be a key event coupling cerebral blood flow arrest to neuronal cell death. Ischemic preconditioning (IPC) represents an important phenomenon of adaptation of central nervous system (CNS) to sub-lethal short-term ischemia, which results in increased tolerance of CNS to the lethal ischemia. In this study we have determined the effect of ischemic preconditioning on ischemia/reperfusion-associated inhibition of mitochondrial protein synthesis and activity of mitochondrial respiratory chain complexes I and IV in the hippocampus of rats. Global brain ischemia was induced by 4-vessel occlusion in duration of 15 min. Rats were preconditioned by 5 min of sub-lethal ischemia and 2 days later, 15 min of lethal ischemia was induced. Our results showed that IPC affects ischemia-induced dysfunction of hippocampal mitochondria in two different ways. Repression of mitochondrial translation induced during reperfusion of the ischemic brain is significantly attenuated by IPC. Slight protective effect of IPC was documented for complex IV, but not for complex I. Despite this, protective effect of IPC on ischemia/reperfusion-associated changes in integrity of mitochondrial membrane and membrane proteins were observed. Since IPC exhibited also inhibitory effect on translocation of p53 to mitochondria, our results indicate that IPC affects downstream processes connecting mitochondrial dysfunction to neuronal cell death.  相似文献   

3.
Ischemic preconditioning (IPC) represents an important adaptation of CNS to sub-lethal ischemia, which results in increased tolerance of CNS to the lethal ischemia. Ischemia-induced mitochondrial apoptosis is considered to be an important event leading to neuronal cell death after cerebral blood flow arrest. In presented study, we have determined the effect of IPC on ischemia/reperfusion-induced mitochondrial apoptosis. Global brain ischemia was induced by permanent occlusion of vertebral arteries and temporal occlusion of carotid arteries for 15 min. Rats were preconditioned by 5 min of sub-lethal ischemia and 2 days later 15 min of lethal ischemia was induced. With respect to mitochondrial apoptosis initiation, translocation of p53 to mitochondria was observed in hippocampus but not in cerebral cortex. However, level of both apoptotic bax and anti-apoptotic bcl-xl in both hippocampal and cortical mitochondria was unchanged after global brain ischemia. Detection of genomic DNA fragmentation as well as Fluoro-Jade C staining showed that ischemia induces apoptosis in vulnerable CA1 layer of rat hippocampus. IPC abolished completely ischemia-induced translocation of p53 to mitochondria and had significant protective effect on ischemia-induced DNA fragmentation. In addition, significant decrease of Fluoro-Jade C positive cells was observed as well. Our results indicate that IPC abolished almost completely both initiation and execution of mitochondrial apoptosis induced by global brain ischemia.  相似文献   

4.
肢体缺血预处理减轻大鼠海马缺血/再灌注损伤   总被引:10,自引:0,他引:10  
目的:探讨肢体缺血预处理(LIP)对大鼠全脑缺血/再灌注损伤的影响.方法: 36只大鼠椎动脉凝闭后随机分为假手术(Control)组、脑缺血组、肢体缺血组、LIP 0 d组(LIP后即刻行脑缺血)、LIP 1 d组(LIP后1 d行脑缺血)和LIP 2 d组(LIP后2 d行脑缺血).重复夹闭大鼠双侧股动脉3次(每次10 min,间隔10 min)作为LIP,夹闭颈总动脉进行全脑缺血8 min后再灌注.硫堇染色观察海马CA1区组织学分级及锥体神经元密度以判断海马损伤程度.结果:脑缺血组海马CA1区锥体神经元损伤严重,与Control组比较,组织学分级明显升高,神经元密度明显降低(P<0.01).LIP 0 d组海马CA1区神经元损伤较脑缺血组明显减轻,组织学分级明显降低,神经元密度明显升高(P<0.01).而LIP 1 d组和LIP 2 d组大鼠海马CA1区锥体细胞缺失较多,仍有明显的组织损伤.结论:LIP可减轻随后立即发生的脑缺血/再灌注损伤,但对间隔1 d后的脑缺血/再灌注损伤无显著对抗作用.  相似文献   

5.
Ischemic preconditioning (IPC) of the brain describes the neuroprotection induced by a short, conditioning ischemic episode (CIE) to a subsequent severe (test) ischemic episode (TIE). Most of the supporting evidence for IPC is based on histological assessment, several days after TIE. The aim of this study is to investigate if changes induced by IPC can be detected within 30 min of reperfusion following the ischemic episode. A rat model of "four-vessel occlusion" transient global cerebral ischemia and parametric analysis of electrocorticogram were used. A control group was subjected directly to a 10 min TIE, and in a preconditioned group TIE was induced 48 h after a 3 min CIE. Quantitative histology was performed 48 h after TIE. Our key finding is that, 30 min after reperfusion, there is a significant increase in the electrocortical slow activity in the control group but not in the preconditioned group. Moreover the increase inversely correlates with the degree of electrocortical suppression during seconds 10 to 15 after the onset of the ischemic episode.  相似文献   

6.
Ischemic preconditioning (IPC) represents the phenomenon of CNC adaptation, which results in increased tolerance of CNS to lethal ischemia. Brain ischemia/reperfusion (IRI) initiates a catastrophic cascade in which many subcellular organelles play an important role. The Golgi apparatus, which is a part of secretory pathways (SP), represents the Ca2+ store and regulates secretion of proteins for growth/reorganization of neuronal circuit by secretory Ca2+ATPases (SPCA1). The purpose of this study is to evaluate the effect of IRI and preconditioning on SPCA1 gene expression and oxidative damage after 4-vessel occlusion for 15 min and after being exposed to different reperfusion periods. Rats were preconditioned by 5 min of sub-lethal ischemia and 2 days later, 15 min of lethal ischemia was induced. Our experiments conclusively showed IRI-induced depression of SPCA activity and lipo- and protein oxidation in rat hippocampal membranes. IRI also activates the induction of SPCA1 gene expression in later reperfusion periods. IPC partially suppresses lipo- and protein oxidation in hippocampal membranes and leads to partiall rovery of the ischemic-induced depression of SPCA activity. In addition, IPC initiates earlier cellular response to the injury by the significant elevation of mRNA expression to 142% comparing to 1 h of corresponding reperfusion and to 11% comparing to 24 h of corresponding reperfusion, respectively. Similar patterns were observed on the translational level by Western blot analysis. Our results indicate the specific SPCA1 expression pattern in ischemic hippocampus. It also shows that the SPCA expression and the post-translational changes induced by ischemia are modulated by the IPC. This might serve to understand the molecular mechanisms involved in the structural integrity and function of the SP after ischemic challenge. It also suggests that there is a correlation of SPCA function with the role of SP in the response to pre-ischemic challenge.  相似文献   

7.
The aim of this study was to evaluate the additive protective efficiency of ischemic preconditioning when used in combination with conventional clinically relevant cardioprotective methods of hypothermia or hypothermic cardioplegia during sustained global ischemia.Isolated rat hearts were aorta-perfused with Krebs-Henseleit buffer and were divided into six groups (n = 10 each). Group I: Ischemia at 34°C for 60 min; Group PC+I: preconditioned (PC) ischemia at 34°C, 2 episodes of 5 min ischemia and 10 min reperfusion at 34°C followed by I; Group HI: hypothermic ischemia at 10°C for 60 min; Group PC+HI: preconditioned (PC) hypothermic ischemia, 2 episodes of 5 min ischemia and 10 min reperfusion at 34°C followed by HI; Group CPL+HI: single dose of 'Plegisol' cardioplegia followed by HI; Group PC+CPL+HI: preconditioned hypothermic cardioplegia, followed by CPL+HI. At the end of 60 min ischemia, all the hearts were reperfused at 34°C for 30 min when post-ischemic recovery in left ventricular contractile function and coronary vascular dynamics was computed and compared.There was a significant depression in the post-ischemic recovery of developed pressure (Pmax), positive derivative of pressure (+dp/dt), negative derivative of pressure (-dp/dt) and heterometric autoregulation (HA) of contractile force in all the groups, with no major differences between the groups. Left ventricular end-diastolic pressure (LVEDP) was significantly elevated after I at 34°C. Preconditioning (PC+I) prevented the rise in the LVEDP and this was accompanied by a significant reduction in the release of purine metabolises in the coronary effluents, particularly adenosine, during the immediate reperfusion period. Hypothermia (HI) provided essentially the same level of metabolic and mechanical preservation as offered by PC+I. Combination of hypothermia with preconditioning (PC+HI) or cardioplegia (PC+CPL+HI), did not further enhance the preservation. Post-ischemic recovery in the regional contractile function (segment shortening, %SS) followed nearly identical pattern to global (Pmax) recovery. Post-ischemic recovery in coronary flow (CF) was significantly reduced and coronary vascular resistance (CVR) was significantly increased in all the groups. Myogenic autoregulation (transient and sustained) was generally enhanced indicating increased vascular reactivity. Preconditioning did not alter the time-course of these changes.Preconditioned ischemia (34°C) preserved left ventricular diastolic functions and prevented the contracture development after sustained ischemia reperfusion at 34°C. This protective effect of preconditioning was possibly mediated by the reduction in the breakdown of purine metabolises. Hypothermia alone or in combination with crystalloid cardioplegia prevented the irreversibility of the ischemic injury but produced contractile and vascular stunning which was not improved by ischemic preconditioning. The results of this study indicate that preconditioning when combined with hypothermia or hypothermic cardioplegia offered no significant additional protection.  相似文献   

8.
In this study we investigated iron deposition in the hippocampus CA1 area and the corpus striatum pars dorsolateralis in a rat model of cerebral ischemia and ischemic tolerance. Forebrain ischemia was induced by four-vessel occlusion for 5-min as ischemic preconditioning. Two days after the preconditioning or the sham operation, a second ischemia was induced for 20-min. With the use of iron histochemistry, regional changes were examined after 2 to 8 weeks of recirculation following the 20-min ischemia with or without preconditioning. Perl's reaction with DAB intensification demonstrated iron deposits in the CA1 area and in the corpus striatum pars dorsolateralis after 2 weeks of recirculation. These iron deposits gradually increased in density and formed clusters by the 8th week. When the rats were exposed to 5-min ischemia 2 days before lethal 20-min ischemia, the deposition of iron in the CA1 region of the hippocampus and also in the corpus striatum pars dorsolateralis was decreased and produced a minimal number of iron-containing cells between the second and the 8th week of recirculation. Preconditioning with sublethal 5-min ischemia followed by 2 days of reperfusion also prevented the neuronal destruction of the hippocampal CA1 region induced by 20-min ischemia.  相似文献   

9.
The possible relationships between intracellular Na(+) (Na(i)(+)), bioenergetic status and intracellular pH (pH(i)) in the mechanism for ischemic preconditioning were studied using (23)Na and (31)P magnetic resonance spectroscopy in isolated Langendorff perfused rat heart. The ischemic preconditioning (three 5-min ischemic episodes followed by two 5-min and one 10-min period of reperfusion) prior to prolonged ischemia (20 min stop-flow) resulted in a decrease in ischemic acidosis and faster and complete recovery of cardiac function (ventricular developed pressure and heart rate) after 30 min of reperfusion. The response of Na(i) during ischemia in the preconditioned hearts was characterized by an increase in Na(i)(+) at the end of preconditioning and an accelerated decrease during the first few minutes of reperfusion. During post-ischemic reperfusion, bioenergetic parameters (PCr/P(i) and betaATP/P(i) ratios) were partly recovered without any significant difference between control and preconditioned hearts. The reduced acidosis during prolonged ischemia and the accelerated decrease in Na(i)(+) during reperfusion in the preconditioned hearts suggest activation of Na(+)/H(+) exchanger and other ion transport systems during preconditioning, which may protect the heart from intracellular acidosis during prolonged ischemia, and result in better recovery of mechanical function (LVDP and heart rate) during post-ischemic reperfusion.  相似文献   

10.
The purpose of this study was to investigate the role of superoxide dismutase (SOD) and catalase (CAT) in brain ischemic tolerance induced by ischemic preconditioning. Forebrain cerebral ischemia was induced in rat by four vessel occlusion. The activities of the antioxidant enzymes CuZn-SOD, Mn-SOD and CAT were measured in the hippocampus, striatum and cortex after 5 min of ischemia used as a preconditioning and subsequent reperfusion, by spectrophotometric methods. In all ischemia-reperfusion groups (5 h, 1 and 2 days of reperfusion), CuZn-SOD activities were found to be increased if compared to the sham operated controls. The increase was significant (P < 0.05) in all reperfusion groups, particularly after 5 h of reperfusion (3 times) in all studied brain regions; the largest increase was detected in the more vulnerable hippocampus and striatum. Very similar changes were found in Mn-SOD activity. The activity of CAT was increased too, but reached the peak of postischemic activity 24 h after ischemia. Our attempt to understand the mechanisms of increased SOD and CAT activities by application of protein synthesis inhibitor cycloheximide showed that this increase was caused by de novo synthesis of enzymes during first hours after ischemia. Our findings indicate that both major endogenous antioxidant enzymes SOD and CAT are synthesized as soon as 5 h after ischemia. In spite of significant upregulation of these enzymes a large number of neurons in selectively vulnerable CA1 region of hippocampus undergoes to neurodegeneration within 7 days after ischemia.  相似文献   

11.
Global cerebral ischemia induced to Mongolian gerbils by ligation of common carotid arteries (CCAs) is known to result in injury to the hippocampal CA1 region. In this study, we examined whether neuronal injury can be depicted by measuring levels of mRNA encoding inositol 1,4,5-trisphosphate receptor type 1 (IP3R1), neuron specific enolase (NSE) and -actin and whether these measurements can be use to assess ischemic tolerance. Gerbils were subjected either to cerebral ischemia induced by ligation of both CCAs for 5 min, or to an ischemic tolerance paradigm in which a 2 min ischemic preconditioning was performed 24 hr prior to the 5 min ischemia. At 48 hr after the 5 min ischemic insult, significant decreases in mRNA levels for IP3R1 (26%), NSE (38%) and -actin (50%) could be observed in the hippocampal CA1 region. Although levels of mRNA in the preconditioning group were decreased as compared to the sham control, the levels were significantly higher than those in the ischemic group. These results indicate the feasibility of using mRNA measurement as a parameter to assess cerebral ischemic damage. In addition, based on the differences in the decline in mRNA levels between the ischemia group and the preconditioned ischemia group, it can be concluded that this ischemic tolerance paradigm could offer partial protection (around 45%) against the injury due to the 5 min cerebral ischemic insult.  相似文献   

12.
Here we examined the effects of ischemia preconditioning and ketamine, an NMDA receptor antagonist, on the activation and its nucleus translocation of ERK5 in hippocampal CA1 region. Our results showed ERK5 was not activated in rat hippocampus CA1 region. But in cytosol extracts preconditioned with 3 min of sublethal ischaemia, ERK5 activation was enhanced significantly, with two peaks occurring at 3 hr and 3 days, respectively. This activation returned to base level 3 days later. The results lead us to conclude that preconditioning increased the activations of ERK5 during reperfusion after lethal ischemia through NMDA receptor. Preconditioning increased the activation and nucleus translocation of ERK5 during reperfusion after lethal ischemia through the NMDA receptor. These findings might provide some clues to understanding the mechanism underlying ischemia tolerance and to finding clinical therapies for stroke using the endogenous neuroprotection.  相似文献   

13.
Although ischemic preconditioning of the heart and brain is a well-documented neuroprotective phenomenon, the mechanism underlying the increased resistance to severe ischemia induced by a preceding mild ischemic exposure remains unclear. In this study we have determined the effect of ischemic preconditioning on ischemia/reperfusion-associated translation inhibition in the neocortex and hippocampus of the rat. We studied the effect of the duration on the sublethal ischemic episode (3, 4, 5 or 8 min), as well as the amount of time elapsed between sublethal and lethal ischemia on the cell death 7 days after the last ischemic episode. In addition, the rate of protein synthesis in vitro and expression of the 72-kD heat shock protein (hsp) were determined under the different experimental conditions. Our results suggest that two different mechanisms are essential for the acquisition of ischemic tolerance, at least in the CA1 sector of hippocampus. The first mechanism implies a highly significant reduction in translation inhibition after lethal ischemia, especially at an early time of reperfusion, in both vulnerable and nonvulnerable neurons. For the acquisition of full tolerance, a second mechanism, highly dependent on the time interval between preconditioning (sublethal ischemia) and lethal ischemia, is absolutely necessary; this second mechanism involves synthesis of protective proteins, which prevent the delayed death of vulnerable neurons.  相似文献   

14.
Zhao HG  Li WB  Li QJ  Chen XL  Liu HQ  Feng RF  Ai J 《生理学报》2004,56(3):407-412
探探讨肢体缺血预处理(limb ischemic preconditioning,LIP)对大鼠全脑缺血再灌注后海马CA1区锥体细胞凋亡的影响。46只大鼠椎动脉凝闭后分为假手术组、肢体缺血组、脑缺血组、LIP组。重复夹闭大鼠双侧股动脉3次(每次10min,间隔10min)作为LIP,之后立即夹闭双侧颈总动脉进行全脑缺血8min后再灌注。DNA凝胶电泳、TUNEL和吖啶橙/溴乙锭(AO/EB)双染技术从生化和形态学方面观察海马神经元凋亡的情况。凝胶电泳显示,脑缺血组出现了凋亡特征性DNA梯状条带,而LIP组无上述条带出现。与脑缺血组比较,LIP可明显减少海马CAI区TUNEL阳性神经元数(17.8±5.8vs 69.8±12,P<0.01)。AO/EB染色也显示LIP可明显减少脑缺血再灌注引起的神经元凋亡。以上结果提示,LIP可抑制脑缺血再灌注后海马神经元的凋亡,进而减轻脑缺血再灌注损伤,提供脑保护作用。  相似文献   

15.
There is an increasing body of evidence that a brief exposure to anesthesia induces ischemic tolerance in rat brain (anesthetic preconditioning). However, it is unknown whether preconditioning with sevoflurane, a commonly used volatile anesthetic in current clinical practice, produces a delayed window of neuroprotection against ischemia and what the mechanisms are for this protection. To address these issues, adult male Sprague–Dawley rats were subjected to middle cerebral arterial occlusion (MCAO) for 2 h. Sevoflurane preconditioning was induced 24 h before brain ischemia by exposing the animals to sevoflurane at 1.0 minimum alveolar concentration (2.4%) in oxygen for 60 min. Animals preconditioned with sevoflurane had lower neurological deficit scores and smaller brain infarct volumes than animals with brain ischemia at 6 and 24 h after MCAO, respectively. Application of a selective antagonist for mitochondrial ATP-sensitive potassium (mitoKATP) channel, 5-hydroxydecanoate (5-HD, 40 mg/kg i.p.) 30 min before sevoflurane exposure attenuated this beneficial effect. Moreover, protein kinase C ε (PKC ε) was translocated to the membrane fraction at 6 h, but not 24 h, after brain reperfusion in animals preconditioned with sevoflurane and this effect was also abolished by 5-HD. We concluded that sevoflurane preconditioning induces a delayed neuroprotection and that mitochondrial KATP channels and PKC ε may be involved in this neuroprotection.  相似文献   

16.
To investigate the role of 12-lipoxygenase in preconditioning, we examined whether hearts lacking the "leukocyte-type" 12-lipoxygenase (12-LOKO) would be protected by preconditioning. In hearts from wild-type (WT) and 12-LOKO mice, left ventricular developed pressure (LVDP) and (31)P NMR were monitored during treatment (+/-preconditioning) and during global ischemia and reperfusion. Postischemic function (rate-pressure product, percentage of initial value) measured after 20 min of ischemia and 40 min of reperfusion was significantly improved by preconditioning in WT hearts (78 +/- 12% in preconditioned vs. 44 +/- 7% in nonpreconditioned hearts) but not in 12-LOKO hearts (47 +/- 7% in preconditioned vs. 33 +/- 10% in nonpreconditioned hearts). Postischemic recovery of phosphocreatine was significantly better in WT preconditioned hearts than in 12-LOKO preconditioned hearts. Preconditioning significantly reduced the fall in intracellular pH during sustained ischemia in both WT and 12-LOKO hearts, suggesting that attenuation of the fall in pH during ischemia can be dissociated from preconditioning-induced protection. Necrosis was assessed after 25 min of ischemia and 2 h of reperfusion using 2,3,5-triphenyltetrazolium chloride. In WT hearts, preconditioning significantly reduced the area of necrosis (26 +/- 4%) compared with nonpreconditioned hearts (62 +/- 10%) but not in 12-LOKO hearts (85 +/- 3% in preconditioned vs. 63 +/- 11% in nonpreconditioned hearts). Preconditioning resulted in a significant increase in 12(S)-hydroxyeicosatetraenoic acid in WT but not in 12-LOKO hearts. These data demonstrate that 12-lipoxygenase is important in preconditioning.  相似文献   

17.
Rehni AK  Singh TG 《Cytokine》2012,60(1):83-89
The present study has been designed to investigate the potential role of CCR-2 chemokine receptor in ischemic preconditioning as well as postconditioning induced reversal of ischemia-reperfusion injury in mouse brain. Bilateral carotid artery occlusion of 17min followed by reperfusion for 24h was employed in present study to produce ischemia and reperfusion induced cerebral injury in mice. Cerebral infarct size was measured using triphenyltetrazolium chloride staining. Memory was evaluated using elevated plus-maze test and Morris water maze test. Rota rod test was employed to assess motor incoordination. Bilateral carotid artery occlusion followed by reperfusion produced cerebral infarction and impaired memory and motor co-ordination. Three preceding episodes of bilateral carotid artery occlusion for 1min and reperfusion of 1min were employed to elicit ischemic preconditioning of brain, while three episodes of bilateral carotid artery occlusion for 10s and reperfusion of 10s immediately after the completion of were employed to elicit ischemic postconditioning of brain. Both prior ischemic preconditioning as well as ischemic postconditioning immediately after global cerebral ischemia prevented markedly ischemia-reperfusion-induced cerebral injury as measured in terms of infarct size, loss of memory and motor coordination. RS 102895, a selective CCR-2 chemokine receptor antagonist, attenuated the neuroprotective effect of both the ischemic preconditioning as well as postconditioning. It is concluded that the neuroprotective effect of both ischemic preconditioning as well as ischemic postconditioning may involve the activation of CCR-2 chemokine receptors.  相似文献   

18.
Zhou AM  Li QJ  Chen XL  Li WB 《生理学报》2001,53(4):265-269
采用放射性配基结合法,测定大鼠全脑缺血后海马细胞膜腺苷(adenosine,ADO)受体数量及亲和力的变化,以探讨其与脑缺血耐受形成之间的关系。发现缺血6min即可导致海马组织明显的神经元延迟性死亡(delayed neuron  相似文献   

19.
The aim of the present study was to clarify whether pharmacological preconditioning with dopamine protects the heart against ischemia and whether this effect is mediated through dopaminergic receptors (D1 and D2) or alpha1-adrenoceptors. Isolated perfused rat hearts were either non-preconditioned, preconditioned with 5 min ischemia, or treated for 5 min with dopamine (1, 5 or 10 microM) before being subjected to 45 min of sustained ischemia followed by 60 min reperfusion. Postischemic functional recovery and infarct size were used as indices of the effects of ischemia. Treatment with the lower concentration of dopamine (1 microM), did not provide any protection to the ischemic myocardium. On the other hand, treatment with 5 microM dopamine resulted in significantly improved functional recovery, whereas administration of dopamine (10 microM) resulted in significantly improved functional recovery as well as reduction of infarct size. Pretreatment with the mixed D1/D2 dopaminergic receptor antagonist haloperidol or the beta-adrenoceptor selective antagonist propranolol did not attenuate the protective effect of pharmacological preconditioning with 10 microM dopamine with respect to both functional recovery and infarct size reduction. On the other hand, the cardioprotective effect of dopamine was blocked when the alpha1-adrenoceptor selective antagonist, prazosin, was administered. In conclusion, pharmacological preconditioning with dopamine protects the myocardium against ischemia and this effect seems to be mediated through activation of alpha1-adrenoceptors.  相似文献   

20.
Zhao HG  Li WB  Sun XC  Li QJ  Ai J  Li DL 《中国应用生理学杂志》2007,23(1):19-23,I0002
目的:探讨神经途径在肢体缺血预处理(limbi schemic preconditioning,LIP)抗脑缺血/再灌注损伤中的作用。方法:脑缺血采用四血管闭塞模型,重复短暂夹闭放松大鼠双侧股动脉3次作为LIP。将凝闭椎动脉的大鼠随机分为sham组、脑缺血组、股神经切断+脑缺血组、LIP+脑缺血组、股神经切断+LIP+脑缺血组。于Sham手术和脑缺血后7d处死大鼠,硫堇染色观察海马CA1区锥体神经元迟发性死亡的变化。于Sham手术和脑缺血后6h心脏灌注固定大鼠,免疫组化法测定海马CAI区c-Fos表达的变化。结果:硫堇染色结果显示,与sham组比较。脑缺血组和股神经切断+脑缺血组大鼠海马CAI区均有明显组织损伤。LIP+脑缺血组CAI区无明显细胞缺失,神经元密度明显高于脑缺血组(P〈0.01)。而股神经切断+LIP+脑缺血组大鼠海马CA1区明显损伤,锥体细胞缺失较多,与LIP+脑缺血组组比较,神经元密度显著降低(P〈O.01),提示LIP前切断双侧股神经取消了LIP抗脑缺血/再灌注损伤作用。c—Fos免疫组化染色结果显示,Sham组海马CAI区未见明显的c-Fos蛋白表达。脑缺血组海马CAI区偶见c—Fm的阳性表达。LIP+脑缺血组c—Fos表达增强,数量增加,与Sham组和脑缺血组比较。c-Fos阳性细胞数和光密度均明显升高(P〈0.01)。而股神经切断+LIP+脑缺血组c-Fos表达明显减少,仅见少量弱阳性e-Fos表达。结论:LIP可通过神经途径发挥抗脑缺血/再灌注损伤作用,而LIP诱导c—Fos表达增加可能是LIP诱导脑缺血耐受神经途径的一个环节。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号