首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2,3-, 2,4-, 2,5-, 3,4-, and 3,5-dimethylphenols were cometabolized by 2,4-dichlorophenoxyacetate-grown Alcaligenes eutrophus JMP 134 or the constitutive derivative JMP 134-1 via the ortho pathway into dimethylmuconolactones as dead-end products. Formation of two distinct lactones from 3,4-dimethylphenol is indicative of 2- as well as 6-hydroxylation. Induction of the meta-cleavage pathway by 2,3- and 3,4-dimethylphenols resulted in growth and no accumulation of products. In contrast, 3,5-dimethylphenol is not metabolized by the meta-cleavage pathway.  相似文献   

2.
Bacterial metabolism of 2,4-dichlorophenoxyacetate   总被引:38,自引:3,他引:35       下载免费PDF全文
1. Two Pseudomonas strains isolated from soil metabolized 2,4-dichlorophenoxyacetate (2,4-D) as sole carbon source in mineral salts liquid medium. 2. 2,4-Dichlorophenoxyacetate cultures of Pseudomonas I (Smith, 1954) contained 2,4-dichlorophenol, 2-chlorophenol, 3,5-dichlorocatechol and alpha-chloromuconate, the last as a major metabolite. 3. Dechlorination at the 4(p)-position of the aromatic ring must therefore take place at some stages before ring fission. 4. Pseudomonas N.C.I.B. 9340 (Gaunt, 1962) cultures metabolizing 2,4-dichlorophenoxyacetate contained 2,4-dichloro-6-hydroxyphenoxyacetate, 2,4-dichlorophenol, 3,5-dichlorocatechol and an unstable compound, probably alphagamma-dichloromuconate. 5. Cell-free extracts of the latter organism grown in 2,4-dichlorophenoxyacetate cultures contained an oxygenase that converted 3,5-dichlorocatechol into alphagamma-dichloromuconate, a chlorolactonase that in the presence of Mn(2+) ions converted the dichloromuconate into gamma-carboxymethylene-alpha-chloro-Delta(alphabeta)-butenolide, and a delactonizing enzyme that gave alpha-chloromaleylacetate from this lactone. 6. Pathways of metabolism of 2,4-dichlorophenoxyacetate are discussed.  相似文献   

3.
2,4-Dichloro-cis,cis-muconate is established as ringcleavage product in the degradation of 3,5-dichlorocatechol by Alcaligenes eutrophus JMP 134. The formerly described isomerization of 2-chloro-trans- to 2-chlorocis-4-carboxymethylenebut-2-en-4-olide as an essential catabolic step could not be certified.  相似文献   

4.
Of eleven substituted phenoxyacetic acids tested, only three (2,4-dichloro-, 4-chloro-2-methyl- and 2-methylphenoxyacetic acid) served as growth substrates for Alcaligenes eutrophus JMP 134. Whereas only one enzyme seems to be responsible for the initial cleavage of the ether bond, there was evidence for the presence of three different phenol hydroxylases in this strain. 3,5-Dichlorocatechol and 5-chloro-3-methylcatechol, metabolites of the degradation of 2,4-dichlorophenoxyacetic acid and 4-chloro-2-methylphenoxyacetic acid, respectively, were exclusively metabolized via the ortho-cleavage pathway. 2-Methylphenoxyacetic acid-grown cells showed simultaneous induction of meta- and ortho-cleavage enzymes. Two catechol 1,2-dioxygenases responsible for ortho-cleavage of the intermediate catechols were partially purified and characterized. One of these enzymes converted 3,5-dichlorocatechol considerably faster than catechol or 3-chlorocatechol. A new enzyme for the cycloisomerisation of muconates was found, which exhibited high activity against the ring-cleavage products of 3,5-dichlorocatechol and 4-chlorocatechol, but low activities against 2-chloromuconate and muconate.Non-standard abbreviations MCPA 4-chloro-2-methylphenoxyacetic acid - 2MPA 2-methylphenoxyacetic acid - PA phenoxyacetic acid  相似文献   

5.
Degradation of 1,4-dichlorobenzene by Xanthobacter flavus 14p1.   总被引:2,自引:0,他引:2       下载免费PDF全文
E Spiess  C Sommer    H Grisch 《Applied microbiology》1995,61(11):3884-3888
Xanthobacter flavus 14p1 was isolated from sludge of the river Mulde by selective enrichment with 1,4-dichlorobenzene as the sole source of carbon and energy. The bacterium did not use other aromatic or chloroaromatic compounds as growth substrates. During growth on 1,4-dichlorobenzene, stoichiometric amounts of chloride ions were released. Degradation products of 1,4-dichlorobenzene were identified by gas chromatography-mass spectrometry analysis. 3,6-Dichloro-cis-1,2-dihydroxycyclohexa-3,5-diene and 3,6-dichlorocatechol were isolated from culture fluid. 2,5-Dichloromuconic acid and 2-chloromaleylacetic acid as well as the decarboxylation product 2-chloroacetoacrylic acid were identified after enzymatic conversion of 3,6-dichlorocatechol by cell extract. 1,4-Dichlorobenzene dioxygenase, dihydrodiol dehydrogenase, and catechol 1,2-dioxygenase activity were induced in cells grown on 1,4-dichlorobenzene. The results demonstrate that 1,4-dichlorobenzene degradation is initiated by dioxygenation and that ring opening proceeds via ortho cleavage.  相似文献   

6.
In the course of our screening for dibenzo-p-dioxin-utilizing bacteria, a Sphingomonas sp. strain was isolated from enrichment cultures inoculated with water samples from the river Elbe. The isolate grew with both the biaryl ethers dibenzo-p-dioxin and dibenzofuran (DF) as the sole sources of carbon and energy, showing doubling times of about 8 and 5 h, respectively. Biodegradation of the two aromatic compounds initially proceeded after an oxygenolytic attack at the angular position adjacent to the ether bridge, producing 2,2',3-trihydroxydiphenyl ether or 2,2',3-trihydroxybiphenyl from the initially formed dihydrodiols, which represent extremely unstable hemiacetals. Results obtained from determinations of enzyme activities and oxygen consumption suggest meta cleavage of the trihydroxy compounds. During dibenzofuran degradation, hydrolysis of 2-hydroxy-6-oxo-6-(2-hydroxyphenyl)-hexa-2,4-dienoate yielded salicylate, which was branched into the catechol meta cleavage pathway and the gentisate pathway. Catechol obtained from the product of meta ring fission of 2,2',3-trihydroxydiphenyl ether was both ortho and meta cleaved by Sphingomonas sp. strain RW1 when this organism was grown with dibenzo-p-dioxin.  相似文献   

7.
Metabolism of dibenzo-p-dioxin by Sphingomonas sp. strain RW1.   总被引:10,自引:4,他引:6       下载免费PDF全文
In the course of our screening for dibenzo-p-dioxin-utilizing bacteria, a Sphingomonas sp. strain was isolated from enrichment cultures inoculated with water samples from the river Elbe. The isolate grew with both the biaryl ethers dibenzo-p-dioxin and dibenzofuran (DF) as the sole sources of carbon and energy, showing doubling times of about 8 and 5 h, respectively. Biodegradation of the two aromatic compounds initially proceeded after an oxygenolytic attack at the angular position adjacent to the ether bridge, producing 2,2',3-trihydroxydiphenyl ether or 2,2',3-trihydroxybiphenyl from the initially formed dihydrodiols, which represent extremely unstable hemiacetals. Results obtained from determinations of enzyme activities and oxygen consumption suggest meta cleavage of the trihydroxy compounds. During dibenzofuran degradation, hydrolysis of 2-hydroxy-6-oxo-6-(2-hydroxyphenyl)-hexa-2,4-dienoate yielded salicylate, which was branched into the catechol meta cleavage pathway and the gentisate pathway. Catechol obtained from the product of meta ring fission of 2,2',3-trihydroxydiphenyl ether was both ortho and meta cleaved by Sphingomonas sp. strain RW1 when this organism was grown with dibenzo-p-dioxin.  相似文献   

8.
Growth of Alcaligenes eutrophus JMP134 on 2,4-dichlorophenoxyacetate requires a 2,4-dichlorphenol hydroxylase encoded by gene tfdB. Catabolism of either 2,4-dichlorophenoxyacetate or 3-chlorobenzoate involves enzymes encoded by the chlorocatechol oxidative operon consisting of tfdCDEF, which converts 3-chloro- and 3,5-dichlorocatechol to maleylacetate and chloromaleylacetate, respectively. Transposon mutagenesis has localized tfdB and tfdCDEF to EcoRI fragment B of plasmid pJP4 (R. H. Don, A. J. Wieghtman, H.-J. Knackmuss, and K. N. Timmis, J. Bacteriol. 161:85-90, 1985). We present the complete nucleotide sequence of tfdB and tfdCDEF contained within a 7,954-base-pair HindIII-SstI fragment from EcoRI fragment B. Sequence and expression analysis of tfdB in Escherichia coli suggested that 2,4-dichlorophenol hydroxylase consists of a single subunit of 65 kilodaltons. The amino acid sequences of proteins encoded by tfdD and tfdE were found to be 63 and 53% identical to those of functionally similar enzymes encoded by clcB and clcD, respectively, from plasmid pAC27 of Pseudomonas putida. P. putida(pAC27) can utilize 3-chlorocatechol but not dichlorinated catechols. A region of DNA adjacent to clcD in pAC27 was found to be 47% identical in amino acid sequence to tfdF, a gene important in catabolizing dichlorocatechols. The region in pAC27 does not appear to encode a protein, suggesting that the absence of a functional trans-chlorodienelactone isomerase may prevent P. putida(pAC27) from utilizing 3,5-dichlorocatechol.  相似文献   

9.
Abstract 2,4-Dichlorophenoxyacetate-grown cells of Alcaligenes eutrophus JMP134 [1] metabolized 4-methylphenoxyacetate via a modified ortho -cleavage pathway. 4-Carboxymethyl-4-methylbut-2-en-1,4-olide (4-methyl-2-enelactone), 4-carboxymethyl-3-methylbut-2-en-1,4-olide (3-methyl-2-enelactone) and 4-methyl-3-oxoadipate, were identified as intermediates.  相似文献   

10.
Smith AR  Beadle CA 《Biodegradation》2008,19(5):669-681
Burkholderia cepacia 2a inducibly degraded 2,4-dichlorophenoxyacetate (2,4-D) sequentially via 2,4-dichlorophenol, 3,5-dichlorocatechol, 2,4-dichloromuconate, 2-chloromuconolactone and 2-chloromaleylacetate. Cells grown on nutrient agar or broth grew on 2,4-D-salts only if first passaged on 4-hydroxybenzoate- or succinate-salts agar. Buffered suspensions of 4-hydroxybenzoate-grown cells did not adapt to 2,4-D or 3,5-dichlorocatechol, but responded to 2,4-dichlorophenol at concentrations <0.4 mM. Uptake of 2,4-dichlorophenol by non-induced cells displayed a type S (cooperative uptake) uptake isotherm in which the accelerated uptake of the phenol began before the equivalent of a surface monolayer had been adsorbed, and growth inhibition corresponded with the acquisition of 2.2-fold excess of phenol required for the establishment of the monolayer. No evidence of saturation was seen even at 2 mM 2,4-dichlorophenol, possibly due to absorption by intracellular poly-beta-hydroxybutyrate inclusions. With increasing concentration, 2,4-dichlorophenol caused progressive cell membrane damage and, sequentially, leakage of intracellular K(+), P(i), ribose and material absorbing light at 260 nm (presumed nucleotide cofactors), until at 0.4 mM, protein synthesis and enzyme induction were forestalled. Growth of non-adapted cells was inhibited by 0.35 mM 2,4-dichlorophenol and 0.25 mM 3,5-dichlorocatechol; the corresponding minimum bacteriocidal concentrations were 0.45 and 0.35 mM. Strain 2a grew in chemostat culture on carbon-limited media containing 2,4-D, with an apparent growth yield coefficient of 0.23, and on 2,4-dichlorophenol. Growth on 3,5-dichlorocatechol did not occur without a supplement of succinate, probably due to accumulation of toxic quantities of quinonoid and polymerisation products. Cells grown on these compounds were active towards all three, but not when grown on other substrates. The enzymes of the pathway therefore appeared to be induced by 3,5-dichlorocatechol or some later metabolite. A possible reason is offered for the environmental persistence of 2,4,5-trichlorophenoxyacetic acid (2,4,5-T).  相似文献   

11.
The reductive dechlorination of pentachlorophenol (PCP) was investigated in anaerobic sediments that contained nonadapted or 2,4- or 3,4-dichlorophenol (DCP)-adapted microbial communities. Adaptation of sediment communities increased the rate of conversion of 2,4- or 3,4-DCP to monochlorophenols (CPs) and eliminated the lag phase before dechlorination was observed. Both 2,4- and 3,4-DCP-adapted sediment communities dechlorinated the six DCP isomers to CPs. The specificity of chlorine removal from the DCP isomers indicated a preference for ortho-chlorine removal by 2,4-DCP-adapted sediment communities and for para-chlorine removal by 3,4-DCP-adapted sediment communities. Sediment slurries containing nonadapted microbial communities either did not dechlorinate PCP or did so following a lag phase of at least 40 days. Sediment communities adapted to dechlorinate 2,4- or 3,4-DCP dechlorinated PCP without an initial lag phase. The 2,4-DCP-adapted communities initially removed the ortho-chlorine from PCP, whereas the 3,4-DCP-adapted communities initially removed the para-chlorine from PCP. A 1:1 mixture of the adapted sediment communities also dechlorinated PCP without a lag phase. Dechlorination by the mixture was regiospecific, following a para greater than ortho greater than meta order of chlorine removal. Intermediate products of degradation, 2,3,5,6-tetrachlorophenol, 2,3,5-trichlorophenol, 3,5-DCP, 3-CP, and phenol, were identified by a combination of cochromatography (high-pressure liquid chromatography) with standards and gas chromatography-mass spectrometry.  相似文献   

12.
Degradation of 1,4-dichlorobenzene by a Pseudomonas sp   总被引:22,自引:0,他引:22  
A Pseudomonas species able to degrade p-dichlorobenzene as the sole source of carbon and energy was isolated by selective enrichment from activated sludge. The organism also grew well on chlorobenzene and benzene. Washed cells released chloride in stoichiometric amounts from o-, m-, and p-dichlorobenzene, 2,5-dichlorophenol, 4-chlorophenol, 3-chlorocatechol, 4-chlorocatechol, and 3,6-dichlorocatechol. Initial steps in the pathway for p-dichlorobenzene degradation were determined by isolation of metabolites, simultaneous adaptation studies, and assay of enzymes in cell extracts. Results indicate that p-dichlorobenzene was initially converted by a dioxygenase to 3,6-dichloro-cis-1,2-dihydroxycyclohexa-3,5-diene, which was converted to 3,6-dichlorocatechol by an NAD+-dependent dehydrogenase. Ring cleavage of 3,6-dichlorocatechol was by a 1,2-oxygenase to form 2,5-dichloro-cis, cis-muconate. Enzymes for degradation of haloaromatic compounds were induced in cells grown on chlorobenzene or p-dichlorobenzene, but not in cells grown on benzene, succinate, or yeast extract. Enzymes of the ortho pathway induced in cells grown on benzene did not attack chlorobenzenes or chlorocatechols.  相似文献   

13.
Degradation of 1,4-dichlorobenzene by a Pseudomonas sp.   总被引:16,自引:14,他引:2       下载免费PDF全文
A Pseudomonas species able to degrade p-dichlorobenzene as the sole source of carbon and energy was isolated by selective enrichment from activated sludge. The organism also grew well on chlorobenzene and benzene. Washed cells released chloride in stoichiometric amounts from o-, m-, and p-dichlorobenzene, 2,5-dichlorophenol, 4-chlorophenol, 3-chlorocatechol, 4-chlorocatechol, and 3,6-dichlorocatechol. Initial steps in the pathway for p-dichlorobenzene degradation were determined by isolation of metabolites, simultaneous adaptation studies, and assay of enzymes in cell extracts. Results indicate that p-dichlorobenzene was initially converted by a dioxygenase to 3,6-dichloro-cis-1,2-dihydroxycyclohexa-3,5-diene, which was converted to 3,6-dichlorocatechol by an NAD+-dependent dehydrogenase. Ring cleavage of 3,6-dichlorocatechol was by a 1,2-oxygenase to form 2,5-dichloro-cis, cis-muconate. Enzymes for degradation of haloaromatic compounds were induced in cells grown on chlorobenzene or p-dichlorobenzene, but not in cells grown on benzene, succinate, or yeast extract. Enzymes of the ortho pathway induced in cells grown on benzene did not attack chlorobenzenes or chlorocatechols.  相似文献   

14.
Biotransformation of 1,1,1-trichloro-2,2-bis(4-chlorophenyl)ethane (DDT) by Alcaligenes eutrophus A5 was demonstrated by analysis of ethyl acetate-extracted products from resting cell cultures. Gas chromatography-mass spectrometry characterization of the neutral extracts revealed two hydroxy-DDT intermediates (m/z = 370) with retention times at 19.55 and 19.80 min that shared identical mass spectra. This result suggested that the hydroxylations occurred at the ortho and meta positions on the aromatic ring. UV-visible spectrum spectrophotometric analysis of a yellow metabolite in the culture supernatant showed a maximum A402 with, under acidic and basic conditions, spectrophotometric characteristics similar to those of the aromatic ring meta-cleavage products. 4-Chlorobenzoic acid was detected by thin-layer chromatography radiochemical scanning in samples from mineralization experiments by comparison of Rf values of [14C]DDT intermediates with that of an authentic standard. These results were further confirmed by gas chromatography-mass spectrometry analysis. This study indicates that DDT appears to be oxidized by a dioxygenase in A. eutrophus A5 and that the products of this oxidation are subsequently subjected to ring fission to eventually yield 4-chlorobenzoic acid as a major stable intermediate.  相似文献   

15.
Abstract: Twenty-five 2,4-dichlorophenoxyacetic acid (2,4-D) degrading bacteria from geographically diverse locations and presenting various degrees of similarity or no similarity to the tfdA and tfdB genes from Alcaligenes eutrophus JMP134 were analysed by PCR-RFLP (restriction length fragment polymorphism). Primers for the 2,4-D etherase gene were derived by sequence alignment of the tfdA genes from A. eutrophus JMP134 and Burkholderia sp. RASC. Primers for the 2,4-dichlorophenolhydroxylase gene were based on the tfdB gene sequence from A. eutrophus JMP134 by taking codon degeneration and variations in amino acid residue sequences into consideration. PCR amplification using the tfdA primer set produced fragments of 0.3 kb from 17 strains which showed varying degrees of similarity to the tfdA gene probe from A. eutrophus JMP134. Significant variations in the gene sequences were confirmed by PCR-RFLP analysis. DNA amplification using the tfdB primer set produced a 1.1 kb fragment from 19 strains. Amongst them, two did not show any similarity to the tfdB gene probe. The size and restriction pattern of the products obtained from A. eutrophus JMP134 were in accordance with the expected size calculated from the A. eutrophus tfdA and tfdB gene sequence and their theoretical PCR-RFLP patterns. Some strains which did not amplify using the tfdA primer set did however amplify with the tfdB primer set. These results suggest the independent evolution of these two genes in the construction of the 2,4-D metabolic pathway. Our tfdA and tfdB primer sets could be used for the detection of similar sequences in bacteria and soils. Moreover, PCR-RFLP patterns could also be used to select subsets of strains for sequencing to study the phylogeny of the tfdA and tfdB genes.  相似文献   

16.
Phenoxyalkanoic compounds are used worldwide as herbicides. Cupriavidus necator JMP134(pJP4) catabolizes 2,4-dichlorophenoxyacetate (2,4-D) and 4-chloro-2-methylphenoxyacetate (MCPA), using tfd functions carried on plasmid pJP4. TfdA cleaves the ether bonds of these herbicides to produce 2,4-dichlorophenol (2,4-DCP) and 4-chloro-2-methylphenol (MCP), respectively. These intermediates can be degraded by two chlorophenol hydroxylases encoded by the tfdB(I) and tfdB(II) genes to produce the respective chlorocatechols. We studied the specific contribution of each of the TfdB enzymes to the 2,4-D/MCPA degradation pathway. To accomplish this, the tfdB(I) and tfdB(II) genes were independently inactivated, and growth on each chlorophenoxyacetate and total chlorophenol hydroxylase activity were measured for the mutant strains. The phenotype of these mutants shows that both TfdB enzymes are used for growth on 2,4-D or MCPA but that TfdB(I) contributes to a significantly higher extent than TfdB(II). Both enzymes showed similar specificity profiles, with 2,4-DCP, MCP, and 4-chlorophenol being the best substrates. An accumulation of chlorophenol was found to inhibit chlorophenoxyacetate degradation, and inactivation of the tfdB genes enhanced the toxic effect of 2,4-DCP on C. necator cells. Furthermore, increased chlorophenol production by overexpression of TfdA also had a negative effect on 2,4-D degradation by C. necator JMP134 and by a different host, Burkholderia xenovorans LB400, harboring plasmid pJP4. The results of this work indicate that codification and expression of the two tfdB genes in pJP4 are important to avoid toxic accumulations of chlorophenols during phenoxyacetic acid degradation and that a balance between chlorophenol-producing and chlorophenol-consuming reactions is necessary for growth on these compounds.  相似文献   

17.
Pseudomonas sp. strain P51 contains two gene clusters located on catabolic plasmid pP51 that encode the degradation of chlorinated benzenes. The nucleotide sequence of a 5,499-bp region containing the chlorocatechol-oxidative gene cluster tcbCDEF was determined. The sequence contained five large open reading frames, which were all colinear. The functionality of these open reading frames was studied with various Escherichia coli expression systems and by analysis of enzyme activities. The first gene, tcbC, encodes a 27.5-kDa protein with chlorocatechol 1,2-dioxygenase activity. The tcbC gene is followed by tcbD, which encodes cycloisomerase II (39.5 kDa); a large open reading frame (ORF3) with an unknown function; tcbE, which encodes hydrolase II (25.8 kDa); and tcbF, which encodes a putative trans-dienelactone isomerase (37.5 kDa). The tcbCDEF gene cluster showed strong DNA homology (between 57.6 and 72.1% identity) and an organization similar to that of other known plasmid-encoded operons for chlorocatechol metabolism, e.g., clcABD of Pseudomonas putida and tfdCDEF of Alcaligenes eutrophus JMP134. The identity between amino acid sequences of functionally related enzymes of the three operons varied between 50.6 and 75.7%, with the tcbCDEF and tfdCDEF pair being the least similar of the three. Measurements of the specific activities of chlorocatechol 1,2-dioxygenases encoded by tcbC, clcA, and tfdC suggested that a specialization among type II enzymes has taken place. TcbC preferentially converts 3,4-dichlorocatechol relative to other chlorinated catechols, whereas TfdC has a higher activity toward 3,5-dichlorocatechol. ClcA takes an intermediate position, with the highest activity level for 3-chlorocatechol and the second-highest level for 3,5-dichlorocatechol.  相似文献   

18.
Pseudomonas sp. strain P51 is able to use 1,2-dichlorobenzene, 1,4-dichlorobenzene, and 1,2,4-trichlorobenzene as sole carbon and energy sources. Two gene clusters involved in the degradation of these compounds were identified on a catabolic plasmid, pP51, with a size of 110 kb by using hybridization. They were further characterized by cloning in Escherichia coli, Pseudomonas putida KT2442, and Alcaligenes eutrophus JMP222. Expression studies in these organisms showed that the upper-pathway genes (tcbA and tcbB) code for the conversion of 1,2-dichlorobenzene and 1,2,4-trichlorobenzene to 3,4-dichlorocatechol and 3,4,6-trichlorocatechol, respectively, by means of a dioxygenase system and a dehydrogenase. The lower-pathway genes have the order tcbC-tcbD-tcbE and encode a catechol 1,2-dioxygenase II, a cycloisomerase II, and a hydrolase II, respectively. The combined action of these enzymes degrades 3,4-dichlorocatechol and 3,4,6-trichlorocatechol to a chloromaleylacetic acid. The release of one chlorine atom from 3,4-dichlorocatechol takes place during lactonization of 2,3-dichloromuconic acid.  相似文献   

19.
The Alcaligenes eutrophus JMP134 plasmid pJP4 contains genes necessary for the complete degradation of 2,4-dichlorophenoxyacetic acid (2,4-D) and 3-chlorobenzoic acid. tfdA encodes 2,4-D monooxygenase, the initial enzyme in the 2,4-D catabolic pathway. The tfdA locus has recently been localized to a region on pJP4 13 kilobases away from a cluster of five genes, tfdB to tfdF, which encode the enzymes responsible for the further degradation of 2,4-D to chloromaleylacetic acid (W.R. Streber, K. N. Timmis, and M. H. Zenk, J. Bacteriol. 169:2950-2955, 1987). A second, dissimilar locus on pJP4, tfdAII, has been observed which encodes 2,4-D monooxygenase activity. Gas chromatographic analysis of the 2,4-D metabolites of A. eutrophus harboring pJP4 or subclones thereof localized tfdAII to within a 9-kilobase SstI fragment of pJP4 which also carries the genes tfdBCDEF. This fragment was further characterized in Escherichia coli by deletion and subcloning analysis. A region of 2.5 kilobases, adjacent to tfdC, enabled E. coli extracts to degrade 2,4-D to 2,4-dichlorophenol. Hybridization under low-stringency conditions was observed between tfdA and tfdAII, signifying that the 2,4-D monooxygenase gene was present as two related copies on pJP4.  相似文献   

20.
Summary The 2-(2,4-dichlorphenoxy)propionic acid (2,4-DP)-degrading bacterial strain MH was isolated after numerous subcultivations of a mixed culture obtained by soil-column enrichment and finally identified as Flavobacterium sp. Growth of this strain was supported by 2,4-DP (maximum specific growth rate 0.2 h–1) as well as by 2,4-dichlorophenoxyacetic acid (2,4-D), 4(2,4-dichlorophenoxy)butyric acid (2,4-DB), and 2-(4-chloro-2-methyphenoxy)propionic acid (MCPP) as sole sources of carbon and energy under aerobic conditions. 2,4-DP-Grown cells (108) of strain MH degraded 2,4-dichlorophenoxyalkanoic acids, 2,4-dichlorophenol (2,4-DCP), and 4-chlorophenol at rates in the range of 30 nmol/h. Preliminary investigations indicate that cleavage of 2,4-DP results in 2,4-DCP, which is further mineralized via ortho-hydroxylation and ortho-cleavage of the resulting 3,5-dichlorocatechol. Offprint requests to: F. Streichsbier  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号