首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The oxidation of a series of seven alkyl ethers of 7-hydroxycoumarin by cytochrome P450 3A4 (CYP3A4) has been studied to probe the active site of the enzyme. TLC of the reaction mixture showed formation of metabolites other than 7-hydroxycoumarin. The separation and characterization of the different metabolites of the C4 to C7 compounds were achieved using a combination of TLC, HPLC, and gas chromatography-electron impact mass spectra. Among the 7-alkoxycoumarins, 7-hexoxycoumarin was found to be the most suitable candidate for investigating the active site of cytochrome CYP3A4, due to the well-separated metabolite peaks on TLC and HPLC. 7-hexoxycoumarin was found to produce three side-chain hydroxylated products besides 7-hydroxycoumarin: 7-(5-hydroxyhexoxy)coumarin, 7-(4-hydroxyhexoxy)coumarin, and 7-(3-hydroxycoumarin). The substitution of residues from substrate recognition sites -1, -4, -5, and -6 of CYP3A4 showed a strong influence on the product profile of 7-hexoxycoumarin, the most prominent effects observed with mutants at residues 119, 301, 305, 370, 373, and 479. The docking of 7-hexoxycoumarin into a molecular model of CYP3A4 also confirmed the presence of these residues within 5 A of the substrate. A comparative study of cytochrome P450 2B1 showed that the active-site mutants F206L, T302V, V363A, and S478G but not V363L exhibited a dramatic decrease in total 7-hexoxycoumarin hydroxylation. The study suggests that although the electronic nature of the substrate is important, enzymatic constraints significantly contribute to CYP3A4 selectivity.  相似文献   

2.
Cytochrome P450 (P450) 7A1 is well known as the cholesterol 7α-hydroxylase, the first enzyme involved in bile acid synthesis from cholesterol. The human enzyme has been reported to have the highest catalytic activity of any mammalian P450. Analyses of individual steps of cholesterol 7α-hydroxylation reaction revealed several characteristics of this reaction: (i) two-step binding of cholesterol to ferric P450, with an apparent K(d) of 0.51 μM, (ii) a rapid reduction rate in the presence of cholesterol (~10 s(-1) for the fast phase), (iii) rapid formation of a ferrous P450-cholesterol-O(2) complex (29 s(-1)), (iv) the lack of a non-competitive kinetic deuterium isotope effect, (v) the lack of a kinetic burst, and (vi) the lack of a deuterium isotope effect when the reaction was initiated with the ferrous P450-cholesterol complex. A minimum kinetic model was developed and is consistent with all of the observed phenomena and the rates of cholesterol 7α-hydroxylation and H(2)O and H(2)O(2) formation. The results indicate that the first electron transfer step, although rapid, becomes rate-limiting in the overall P450 7A1 reaction. This is a different phenomenon compared with other P450s that have much lower rates of catalysis, attributed to the much more efficient substrate oxidation steps in this reaction.  相似文献   

3.
Cytochrome P450 (P450) 2A6 is an important human enzyme involved in the metabolism of many xenobiotic chemicals including coumarin, indole, nicotine, and carcinogenic nitrosamines. A combination of random mutagenesis and high-throughput screening was used in the analysis of P450 2A6, utilizing a fluorescent coumarin 7-hydroxylation assay. The steady-state kinetic parameters (k(cat) and Km) for coumarin 7-hydroxylation by wild-type P450 2A6 and 35 selected mutants were measured and indicated that mutants throughout the coding region can have effects on activity. Five mutants showing decreased catalytic efficiency (k(cat)/Km) were further analyzed for substrate selectivity and binding affinities and showed reduced catalytic activities for 7-methoxycoumarin O-demethylation, tert-butyl methyl ether O-demethylation, and indole 3-hydroxylation. All mutants except one (K476E) showed decreased coumarin binding affinities (and also higher Km values), indicating that this is a major basis for the decreased enzymatic activities. A recent x-ray crystal structure of P450 2A6 bound to coumarin (Yano, J. K., Hsu, M. H., Griffin, K. J., Stout, C. D., and Johnson, E. F. (2005) Nat. Struct. Mol. Biol. 12, 822-823) indicates that the recovered A481T and N297S mutations appear to be close to coumarin, suggesting direct perturbation of substrate interaction. The decreased enzymatic activity of the K476E mutant was associated with decreases both in NADPH oxidation and the reduction rate of the ferric P450 2A6-coumarin complex. The attenuation is caused in part to lower binding affinity for NADPH-P450 reductase, but the K476E mutant did not achieve the wild-type coumarin 7-hydroxylation activity even at high reductase concentrations.  相似文献   

4.
Fago A  Mathews AJ  Moens L  Dewilde S  Brittain T 《FEBS letters》2006,580(20):4884-4888
Previously identified, potentially neuroprotective reactions of neuroglobin require the existence of yet unknown redox partners. We show here that the reduction of ferric neuroglobin by cytochrome b(5) is relatively slow (k=6 x 10(2)M(-1)s(-1) at pH 7.0) and thus is unlikely to be of physiological significance. In contrast, the reaction between ferrous neuroglobin and ferric cytochrome c is very rapid (k=2 x 10(7)M(-1)s(-1)) with an apparent overall equilibrium constant of 1 microM. Based on this data we propose that ferrous neuroglobin may well play a role in preventing apoptosis.  相似文献   

5.
A highly sensitive method for the determination of coumarin 7-hydroxylation and 7-ethoxycoumarin O-deethylation by human cytochrome P450 (P450 or CYP) enzymes was developed using high-performance liquid chromatography (HPLC). The newly developed HPLC method was found to be about 100-fold more sensitive than the previous spectrofluorimetric method in detecting the metabolite 7-hydroxycoumarin (umbelliferone). With this high sensitivity, the kinetics of coumarin 7-hydroxylation and 7-ethoxycoumarin O-deethylation catalyzed by human liver microsomal and recombinant P450 enzymes were determined more precisely. With 36 different substrate concentrations in these two reactions, coumarin 7-hydroxylation was found to be catalyzed mainly by a single enzyme CYP2A6 and 7-ethoxycoumarin was oxidized by at least two enzymes CYP2E1 and CYP1A2 in human liver microsomes.  相似文献   

6.
Oxygen binding to the oxygenase domain of reduced endothelial nitric oxide synthase (eNOS) results in two distinct species differing in their Soret and visible absorbance maxima and in their capacity to exchange oxygen by CO. At 7 degrees C, heme-oxy I (with maxima at 420 and 560 nm) is formed very rapidly (k(on) approximately 2.5.10(6) m(-1).s(-1)) in the absence of substrate but in the presence of pterin cofactor. It is capable of exchanging oxygen with CO at -30 degrees C. Heme-oxy II is formed more slowly (k(on) approximately equal to 3.10(5) m(-1).s(-1)) in the presence of substrate, regardless of the presence of pterin. It is also formed in the absence of both substrate and pterin. In contrast to heme-oxy I, it cannot exchange oxygen with CO at cryogenic temperature. In the presence of arginine, heme-oxy II is characterized by absorbance maxima near 432, 564, and 597 nm. When arginine is replaced by N-hydroxyarginine, and also in the absence of both substrate and pterin, its absorbance maxima are blue-shifted to 428, 560, and 593 nm. Heme-oxy I seems to resemble the ferrous dioxygen complex observed in many hemoproteins, including cytochrome P450. Heme-oxy II, which is the oxygen complex competent for product formation, appears to represent a distinct conformation in which the electronic configuration is essentially locked in the ferric superoxide complex.  相似文献   

7.
Guengerich FP  Krauser JA  Johnson WW 《Biochemistry》2004,43(33):10775-10788
Several issues regarding the rate-limiting nature of individual reaction steps in catalysis by rabbit liver cytochrome P450 (P450) 1A2 were addressed using anisoles and other substrates. Substrate binding is very fast (k > 10(6) M(-1) s(-1)). Product release is not rate-limiting, as shown by the absence of bursts, placing rate-limiting steps at or before product formation. We had previously shown that the first 1-electron reduction step is fast (k > 700 min(-1)), even in the absence of ligand [Guengerich, F. P., and Johnson, W. W. (1997) Biochemistry 36, 14741-147500]. O(2) binding to ferrous P450 is fast (k >/= 10(6) M(-1) s(-1)). The decay of the P450 Fe(2+)-substrate-O(2) complex was slow in the absence of NADPH-P450 reductase, with a first-order rate constant of 14 min(-1) at 25 degrees C. During the decay, product was formed (from the substrate methacetin) in 61% theoretical yield, although this reaction requires electron transfer among P450 molecules and may not be related to normal turnover. Steady-state spectra suggest that one or more iron-oxygen complexes accumulate, representing entities between the Fe(2+)-O(2) complex and putative FeO(3+) entity. Kinetic isotope effect experiments were done with several substrates, mainly anisoles. Apparent intrinsic deuterium isotope effects as high as 15 were measured. In all cases, the C-H bond-breaking step is at least partially rate-limiting. The isotope effects were not strongly attenuated in noncompetitive or competitive experiments, consistent with relatively rapid P450-substrate exchange, except with the active enzyme Fe-O complex. Kinetic simulations with the available data (i) are consistent with the view that C-H bond breaking is a major rate-limiting step, (ii) demonstrate that increasing the rate of this step will affect k(cat), K(m), and kinetic hydrogen isotope effects but will only increase catalytic efficiency to a certain degree, (iii) indicate that increasing ground-state binding can increase catalytic efficiency but not k(cat), and (iv) suggest that nonproductive binding modes and abortive reduction of O(2) are factors that attenuate catalytic efficiency.  相似文献   

8.
The kinetics of product formation by cytochrome P450 2B4 were compared in the presence of cytochrome b(5) (cyt b(5)) and NADPH-cyt P450 reductase (CPR) under conditions in which cytochrome P450 (cyt P450) underwent a single catalytic cycle with two substrates, benzphetamine and cyclohexane. At a cyt P450:cyt b(5) molar ratio of 1:1 under single turnover conditions, cyt P450 2B4 catalyzes the oxidation of the substrates, benzphetamine and cyclohexane, with rate constants of 18 +/- 2 and 29 +/- 4.5 s(-1), respectively. Approximately 500 pmol of norbenzphetamine and 58 pmol of cyclohexanol were formed per nmol of cyt P450. In marked contrast, at a cyt P450:CPR molar ratio of 1:1, cyt P450 2B4 catalyzes the oxidation of benzphetamine congruent with100-fold (k = 0.15 +/- 0.05 s(-1)) and cyclohexane congruent with10-fold (k = 2.5 +/- 0.35 s(-1)) more slowly. Four hundred picomoles of norbenzphetamine and 21 pmol of cyclohexanol were formed per nmol of cyt P450. In the presence of equimolar concentrations of cyt P450, cyt b(5), and CPR, product formation is biphasic and occurs with fast and slow rate constants characteristic of catalysis by cyt b(5) and CPR. Increasing the concentration of cyt b(5) enhanced the amount of product formed by cyt b(5) while decreasing the amount of product generated by CPR. Under steady-state conditions at all cyt b(5):cyt P450 molar ratios examined, cyt b(5) inhibits the rate of NADPH consumption. Nevertheless, at low cyt b(5):cyt P450 molar ratios 相似文献   

9.
The use of 5-deazaFAD T491V cytochrome P450 reductase has made it possible to directly measure the rate of electron transfer to microsomal oxyferrous cytochrome (cyt) P450 2B4. In this reductase the FMN moiety can be reduced to the hydroquinone, FMNH(2), while the 5-deazaFAD moiety remains oxidized [Zhang, H., et al. (2003) Biochemistry 42, 6804-6813]. The rate of electron transfer from 5-deazaFAD cyt P450 reductase to oxyferrous cyt P450 was determined by rapidly mixing the ferrous cyt P450-2-electron-reduced 5-deazaFAD T491V reductase complex with oxygen in the presence of substrate. The 5-deazaFAD T491V reductase which can only donate a single electron reduces the oxyferrous cyt P450 and oxidizes to the air-stable semiquinone, with rate constants of 8.4 and 0.37 s(-1) at 15 degrees C. Surprisingly, oxyferrous cyt P450 turns over more slowly with a rate constant of 0.09 s(-1), which is the rate of catalysis under steady-state conditions at 15 degrees C (k(cat) = 0.08 s(-1)). In contrast, the rate constant for electron transfer from ferrous cyt b(5) to oxyferrous cyt P450 is 10 s(-1) with oxyferrous cyt P450 and cyt b(5) simultaneously undergoing spectral changes. Quantitative analyses by LC-MS/MS revealed that the product, norbenzphetamine, was formed with a coupling efficiency of 52% with cyt b(5) and 32% with 5-deazaFAD T491V reductase. Collectively, these results suggest that during catalysis a relatively stable reduced oxyferrous intermediate of cyt P450 is formed in the presence of cyt P450 reductase but not cyt b(5) and that the rate-limiting step in catalysis follows introduction of the second electron.  相似文献   

10.
F P Guengerich 《Biochemistry》1983,22(12):2811-2820
A series of equilibrium and kinetic measurements involving the oxidation-reduction properties of purified rat liver NADPH-cytochrome P-450 reductase and eight different purified rat liver cytochromes P-450 (P-450s) were carried out. Apparent spin states of P-450 iron were determined in the absence and presence of a number of known substrates by using second-derivative and conventional near-UV absorbance spectroscopy. Many of the substrates examined did not produce significant changes in the apparent iron spin state, even when binding could be demonstrated with equilibrium dialysis. Further, the spin state was not correlated to catalytic activity of the P-450s in reconstituted enzyme systems. The oxidation-reduction potentials were determined for the ferric/ferrous couples of each of the eight P-450s in the presence and absence of known substrates, as well as other proteins suspected of altering the potentials. The midpoint potential (Em,7) ranged from -350 to -289 mV for the P-450s under these conditions. In some cases Em,7 was raised with the addition of substrates, but the extent of the increase was no greater than +33 mV. The Em,7 of one P-450 (P-450 beta NF/ISF-G) was not changed significantly when the fraction of high-spin iron varied between 11 and 67%. Steady-state spectral studies provided evidence for the accumulation of an oxygenated ferrous intermediate (or a derived product) of one P-450 (P-450PB-B) in the presence of a substrate, cyclohexane. Studies on the donation of electrons from cytochrome b5 and a series of dyes to this complex suggest that it has an effective Em,7 (for reduction) of approximately +50 mV. In studies with one of the P-450s, steady-state spectral studies indicated that the three-electron-reduced form of NADPH-P-450 reductase accumulates, consistent with the view that this form of the reductase is involved in the reduction of P-450 from the ferric to the ferrous state.  相似文献   

11.
A fluorescence-based assay was developed to estimate soluble methane monooxygenase (sMMO) activity in solution. Whole cells of Methylosinus trichosporium OB3b expressing sMMO were used to oxidize various compounds to screen for fluorescent products. Of the 12 compounds tested, only coumarin yielded a fluorescent product. The UV absorbance spectrum of the product matches that of 7-hydroxycoumarin, and this identification was confirmed by 13C-NMR spectroscopy. The dependence of the fluorescent reaction on sMMO activity was investigated by pre-incubation with acetylene, a known inhibitor of sMMO activity. Apparent kinetic parameters for whole cells were determined to be Km(app)=262 microM and Vmax(app)=821 nmol 7-hydroxycoumarin min(-1) mg protein(-1). The rate of coumarin oxidation by sMMO correlates well with those of trichloroethylene degradation and naphthalene oxidation. Advantages of the fluorescence-based coumarin oxidation assay over the naphthalene oxidation assay include a more stable product, direct detection of the product without additional reagents, and greater speed and convenience.  相似文献   

12.
High-resolution resonance Raman spectra of the ferric, ferrous, and carbonmonoxy (CO)-bound forms of wild-type Escherichia coli-expressed Pseudomonas putida cytochrome P450cam and its P420 form are reported. The ferric and ferrous species of P450 and P420 have been studied in both the presence and absence of excess camphor substrate. In ferric, camphor-bound, P450 (mos), the E. coli-expressed P450 is found to be spectroscopically indistinguishable from the native material. Although substrate binding to P450 is known to displace water molecules from the heme pocket, altering the coordination and spin state of the heme iron, the presence of camphor substrate in P420 samples is found to have essentially no effect on the Raman spectra of the heme in either the oxidized or reduced state. A detailed study of the Raman and absorption spectra of P450 and P420 reveals that the P420 heme is in equilibrium between a high-spin, five-coordinate (HS,5C) form and low-spin six-coordinate (LS,6C) form in both the ferric and ferrous oxidation states. In the ferric P420 state, H2O evidently remains as a heme ligand, while alterations of the protein tertiary structure lead to a significant reduction in affinity for Cys(357) thiolate binding to the heme iron. Ferrous P420 also consists of an equilibrium between HS,5C and LS,6C states, with the spectroscopic evidence indicating that H2O and histidine are the most likely axial ligands. The spectral characteristics of the CO complex of P420 are found to be almost identical to those of a low pH of Mb. Moreover, we find that the 10-ns transient Raman spectrum of the photolyzed P420 CO complex possesses a band at 220 cm-1, which is strong evidence in favor of histidine ligation in the CO-bound state. The equilibrium structure of ferrous P420 does not show this band, indicating that Fe-His bond formation is favored when the iron becomes more acidic upon CO binding. Raman spectra of stationary samples of the CO complex of P450 reveal VFe-CO peaks corresponding to both substrate-bound and substrate-free species and demonstrate that substrate dissociation is coupled to CO photolysis. Analysis of the relative band intensities as a function of photolysis indicates that the CO photolysis and rebinding rates are faster than camphor rebinding and that CO binds to the heme faster when camphor is not in the distal pocket.  相似文献   

13.
Cytochrome P450 (P450) 2D6 is involved in the oxidation of a large fraction ( approximately 30%) of drugs used by humans and also catalyzes the O-demethylation of the model substrates 3- and 4-methoxyphenethylamine followed by subsequent ring hydroxylation to dopamine. Burst kinetics were not observed; rate-limiting step(s) must occur prior to product formation. Rates of reduction of ferric P450 2D6 were stimulated by 3- or 4-methoxyphenethylamine or the inhibitor quinidine; reduction is not the most rate-limiting step. The non-competitive intramolecular deuterium isotope effect, an estimate of the intrinsic isotope effect, for 4-methoxyphenethylamine O-demethylation was 9.6. Intermolecular non-competitive deuterium isotope effects of 3.1-3.8 were measured for k(cat) and k(cat)/K(m) for both O-demethylation reactions, implicating at least partially rate-limiting C-H bond breaking. Simulation of steady-state kinetic data yielded a catalytic mechanism dominated by the rates of (i) Fe(2+)O(2)(-) protonation (plus O-O bond scission) and (ii) C-H bond breaking, consistent with the appearance of the spectral intermediates in the steady state, attributed to iron-oxygen complexes. However, all the rates of individual steps (or rates of combined steps) are considerably higher than k(cat), and the contributions of several steps must be considered in understanding rates of the P450 2D6 reactions.  相似文献   

14.
A direct fluorometric procedure for the continuous determination of cytochrome P-450-dependent mixed function oxidases, using 3-cyano-7-ethoxycoumarin substrate, is described. The reaction product, 3-cyano-7-hydroxycoumarin, is fluorescent at neutral pH values (excitation and emission wavelength maxima: 408 and 450 nm, respectively). Using hepatic microsomal preparations from control rats, the enzyme(s) had an apparent Km of 16 microM. Vmax values (0.5 nmol/min/mg protein) were induced 6- and 21-fold by pretreatment of rats with phenobarbitone and about 50- to 100-fold more sensitive than the ethoxyresorufin deethylase assay. Reaction rates using 3-cyano-7-pentoxycoumarin as substrate were generally much lower than with the ethoxy analog. 3-Cyano-7-ethoxycoumarin can also be used as a substrate to measure mixed function oxidases in isolated hepatocytes. However, 3-cyano-7-hydroxycoumarin shows a time- and concentration-dependent loss of fluorescence when incubated with such cells. This causes an approximately 5% underestimate of the true reaction rates.  相似文献   

15.
Rabbit liver cytochrome P450 (P450) 1A2 was found to catalyze the 5,6-epoxidation of alpha-naphthoflavone (alphaNF), 1-hydroxylation of pyrene, and the subsequent 6-, 8-, and other hydroxylations of 1-hydroxy (OH) pyrene. Plots of steady-state rates of product formation versus substrate concentration were hyperbolic for alphaNF epoxidation but highly cooperative (Hill n coefficients of 2-4) for pyrene and 1-OH pyrene hydroxylation. When any of the three substrates (alphaNF, pyrene, 1-OH pyrene) were mixed with ferric P450 1A2 using stopped-flow methods, the changes in the heme Soret spectra were relatively slow and multiphasic. Changes in the fluorescence of all of the substrates were much faster, consistent with rapid initial binding to P450 1A2 in a manner that does not change the heme spectrum. For binding of pyrene to ferrous P450 1A2, the course of the spectra revealed sequential changes in opposite directions, consistent with P450 1A2 being involved in a series of transitions to explain the kinetic multiphasicity as opposed to multiple, slowly interconverting populations of enzyme undergoing the same event at different rates. Models of rabbit P450 1A2 based on a published crystal structure of a human P450 1A2-alphaNF complex show active site space for only one alphaNF or for two pyrenes. The spectral changes observed for binding and hydroxylation of pyrene and 1-OH pyrene could be fit to a kinetic model in which hydroxylation occurs only when two substrates are bound. Elements of this mechanism may be relevant to other cases of P450 cooperativity.  相似文献   

16.
Recently we have shown that ferric alpha-hydroxyhaem bound to haem oxygenase-1 can be converted to ferrous verdohaem by approximately an equimolar amount of O2 in the absence of exogenous electrons [Sakamoto, H., Omata, Y., Palmer, G., and Noguchi, M. (1999) J. Biol. Chem.274, 18196-18200]. Contrary to those results, other studies have claimed that the conversion requires both O2 and an electron. More recently, Migita et al. have reported that the major reaction product of ferric alpha-hydroxyhaem with O2 is a ferric porphyrin cation radical that can be converted to ferrous alpha-hydroxyhaem with sodium dithionite [Migita, C. T., Fujii, H., Matera, K. M., Takahashi, S., Zhou, H., and Yoshida, T. (1999) Biochim. Biophys. Acta1432, 203-213]. To clarify the reason(s) for the discrepancy, we compared the reactions; i.e. alpha-hydroxyhaem to verdohaem and verdohaem to biliverdin, under various conditions as well as according to the procedures of Migita. We find that complex formation of alpha-hydroxyhaem with haem oxygenase may be small and a substantial amount of free alpha-hydroxyhaem may remain, depending on the reconstitution conditions; this could lead to a misinterpretation of the experimental results. We also find that ferrous verdohaem appears to be air-sensitive and is therefore easily converted to a further oxidized species with excess O2. Finally, we find that dithionite seems to be inappropriate for investigating the haem oxygenase reaction, because it reduces ferrous verdohaem to a further reduced species that has not been seen in the haem degradation system driven by NADPH-cytochrome P450 reductase.  相似文献   

17.
The effects of cytochrome b5 on the decay of the ferrous dioxygen complexes of P-450LM2 and P-450LM4 from rabbit liver microsomes were studied by stopped-flow spectrophotometry. The P-450 (FeIIO2) complexes accept an electron from reduced cytochrome b5 and, in a reaction not previously described, donate an electron to oxidized cytochrome b5 to give ferric P-450. A comparison with the electron-transferring properties of ferrous P-450 under anaerobic conditions allowed determination of the limiting steps of the two reactions involving the oxygenated complex. The rate of decay of the dioxygen complex was increased in all cases with b5 present; however, with oxidized b5 a large increase in the rate was observed with P-450 isozyme 4 but not with isozyme 2, whereas the opposite situation was found when reduced b5 was used. The reactions between b5 and ferrous dioxygen P-450 were not at thermodynamic equilibrium under the conditions employed. From the results obtained, a model is proposed in which the ferrous dioxygen complex decomposes rapidly into another species differing from ferric P-450 in its spectral properties and from the starting complex in its electron-transferring properties. A scheme is presented to indicate how competition among spontaneous decay, cytochrome b5 oxidation, and cytochrome b5 reduction by the ferrous O2 complex may influence substrate hydroxylation.  相似文献   

18.
The function of the unique axial thiolate ligand of cytochrome P450 has been investigated by mutagenesis of the active-site cysteine with other amino acids in NH(2)-truncated P450s 2B4 and 2E1. The expressed Ser-436 variant of P450 2B4 was highly purified but incurred considerable heme loss. The pyridine hemochrome spectrum of C436S is characteristic of protoporphyrin IX, and the absolute spectra display Soret maxima at 405 nm (ferric), 422 nm (ferrous), and 413 nm (ferrous CO). 2B4:C436S catalyzes the NADPH- and time-dependent formation of H(2)O(2) in the reconstituted enzyme system, with maximal rates at approximately equimolar amounts of P450 reductase and C436S hemeprotein. The 2-electron oxidase activity with saturating reductase is directly proportional to the concentration of 2B4:C436S, and the turnover is 60-70% of that of the wild-type enzyme. In contrast, the C436S variant is devoid of oxygenase activity with typical substrates such as d-benzphetamine, 1-phenylethanol, and 4-fluorophenol, and has only marginal 4-nitrophenol aromatic hydroxylation activity. H(2)O(2)-supported peroxidation of guaiacol and pyrogallol is comparable with 2B4 and mutant C436S and negligible relative to the turnover of peroxidases with these substrates. Neither 2B4 nor 2B4:C436S catalyzes H(2)O(2) decomposition. It is concluded that replacement of active-site Cys-436 by Ser converts P450 2B4 mainly into a 2-electron oxidase.  相似文献   

19.
Yun CH  Miller GP  Guengerich FP 《Biochemistry》2001,40(14):4521-4530
Human cytochrome P450 (P450) 1A2 is involved in the oxidation of many important drugs and carcinogens. The prototype substrate phenacetin is oxidized to an acetol as well as the O-dealkylation product [Yun, C.-H., Miller, G. P., and Guengerich, F. P. (2000) Biochemistry 39, 11319-11329]. In an effort to improve rates of catalysis of P450 1A2 enzymes, we considered a set of p-alkoxyacylanilide analogues of phenacetin and found that variations in the O-alkyl and N-acyl substituents altered the rates of the two oxidation reactions and the ratio of acetol/phenol products. Moving one methylene group of phenacetin from the O-alkyl group to the N-acyl moiety increased rates of both oxidations approximately 5-fold and improved the coupling efficiency (oxidation products formed/NADPH consumed) from 6% to 38%. Noncompetitive kinetic deuterium isotope effects of 2-3 were measured for all O-dealkylation reactions examined with wild-type P450 1A2 and the E225I mutant, which has 6-fold higher activity. A trend of decreasing kinetic deuterium isotope effect for E225I > wild-type > mutant D320A was observed for O-demethylation of p-methoxyacetanilide, which follows the trend for k(cat). The set of O-dealkylation and acetol formation results for wild-type P450 1A2 and the E225I mutant with several of the protiated and deuterated substrates were fit to a model developed for the basic catalytic cycle and a set of microscopic rate constants in which the only variable was the rate of product formation (substrate oxygenation, including hydrogen abstraction). In this model, k(cat) is considerably less than any of the microscopic rate constants and is affected by several individual rate constants, including the rate of formation of the oxygenating species, the rate of substrate oxidation by the oxygenating species, and the rates of generation of reduced oxygen species (H(2)O(2), H(2)O). This analysis of the effects of the individual rate constants provides a framework for consideration of other P450 reactions and rate-limiting steps.  相似文献   

20.
The effects of various coumarins (i.e. esculetin, daphnetin and fraxetin) on the formation of the 5-lipoxygenase product, 5-HETE, and the cyclooxygenase product, HHT, were studied. Esculetin (6,7-dihydroxycoumarin) was found to inhibit the formation of 5-HETE more strongly than HHT; its concentrations for 50% inhibition (IC50) were 1.46 +/- 1.02 microM for the formation 5-HETE and 57.3 +/- 17.3 microM for the formation of HHT. Daphnetin (7,8-dihydroxycoumarin) and fraxetin (6-methoxy-7,8-dihydroxycoumarin) also inhibited the formation of the 5-lipoxygenase product, 5-HETE, and the cyclooxygenase product, HHT; their IC50 values were, respectively, 6.90 +/- 2.07 microM and 2.57 +/- 0.088 microM for the formation of 5-HETE and 139.0 +/- 30.0 microM and 532.5 +/- 33.0 microM for the formation of HHT. The monohydroxy coumarin derivatives umbelliferone (7-hydroxycoumarin) and scopoletin (6-methoxy-7-hydroxycoumarin) and the coumarin glucosides fraxin (6-methoxy-7,8-dihydroxycoumarin 8-O-D-glucoside) and esculin (6,7-dihydroxycoumarin 6-O-D-glucoside) also inhibited the formation of 5-HETE, though less strongly. 4-Hydroxycoumarin and coumarin had no effect on either 5-lipoxygenase or cyclooxygenase at concentrations of up to 1 mM. Esculetin inhibited the formation of 5-HETE noncompetitively. In contrast, the dimethoxycoumarin fraxidin (6,8-dimethoxy-7-hydroxycoumarin) inhibited the formation of HHT more strongly than the formation of 5-HETE at a concentration of 1 mM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号