首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We examined nutrient limitation to primary productivity in a secondary savanna in the interior branch of the Coastal Range of Venezuela, which was converted from forest to savanna more than 100 years ago. We manipulated soil nutrients by adding nitrogen (+N), phosphorus and potassium (+PK), and nitrogen, phosphorus, and potassium (+NPK) to intact savanna. Eleven months after fertilization, we measured aboveground biomass and belowground biomass as live fine roots in the top 20 cm of soil, and species and functional group composition in response to nutrient additions. Aboveground biomass was highest in the NPK treatment ([mean g/m2]; control = 402, +N = 718, +PK = 490, +NPK = 949). Aboveground production, however, appeared to be limited primarily by N. Aboveground biomass increased 78 percent when N was added alone but did not significantly respond to PK additions when compared to controls. In contrast to aboveground biomass, belowground biomass increased with PK additions but showed no significant increase with N (depth 0–20 cm; [mean g/m2]; control = 685, +N = 443, +PK = 827, +NPK = 832). There was also a 36 percent increase in root length with PK additions when compared to controls. Whole savanna shoot:root ratios were similar for control and +PK (0.6), while those for +N or +NPK fertilization were significantly higher (1.7 and 1.2, respectively). Total biomass response (above + belowground) to nutrient additions showed a strong N and PK co‐limitation ([mean g/m2]; control = 1073, +N = 1111, +PK = 1258, +NPK = 1713). Aboveground biomass of all monocots increased with N additions, whereas dicots showed no response to nutrient additions. Trachypogon spp. (T. plumosus+T. vestitus) and Axonopus canescens, the two dominant grasses, made up more than 89 percent of the total aboveground biomass in these sites. Trachypogon spp. responded to NPK, whereas A. canescens, sedges, and the remaining monocots only responded to N. Even though nutrient additions resulted in higher aboveground biomass in N and NPK fertilized plots, this had little effect on plant community composition. With the exception of sedges, which responded positively to N additions and increased from 4 to 8 percent of die plant community, no changes were observed in plant community composition after 11 months.  相似文献   

2.
典型草原建群种羊草对氮磷添加的生理生态响应   总被引:1,自引:0,他引:1       下载免费PDF全文
由于人类活动和气候变化的共同作用, 大气氮(N)沉降日益加剧, 使得陆地生态系统中的可利用性N显著增加, 生态系统更易受其他元素如磷(P)的限制。然而, 目前关于N、P养分添加对草原生态系统不同组织水平的影响研究较少, 相关机制尚不清楚。该文以内蒙古典型羊草(Leymus chinensis)草原为研究对象, 通过连续两年(2011-2012年)的N和P养分添加实验, 研究建群种羊草的生理生态性状、种群生物量和群落初级生产力对N、P添加的响应及其适应机制。结果表明: 羊草草原不同组织水平对N、P添加的响应不同。群落水平上, 地上净初级生产力在不同降水年份均受N和P元素的共同限制, N、P共同添加显著提高了地上净初级生产力; 物种水平上, N、P添加对羊草种群生物量和密度, 以及相对生物量均没有显著影响, 表明羊草能够维持种群的相对稳定; 个体水平上, 在正常降水年份(2011年), 羊草生长主要受N素限制, 而在湿润年份(2012年), 降水增加使得羊草生长没有受到明显的养分限制。羊草通过增加比叶面积、叶片大小和叶片N含量, 提高整体光合能力, 以促进个体生长。总之, 内蒙古典型草原群落净初级生产力受N、P元素共同限制, 作为建群种的羊草, 其对N、P添加的响应因组织水平而异, 也受年际间降水变化的影响。  相似文献   

3.
青藏高原正经历着明显的温暖化过程, 由此引起的土壤温度的升高促进了土壤中微生物的活性, 同时青藏高原东缘地区大气氮沉降十分明显, 并呈逐年增加的趋势, 这些环境变化均促使土壤中可利用营养元素增加, 因此深入了解青藏高原高寒草甸植物生物量对可利用营养元素增加的响应, 是准确预测未来全球变化背景下青藏高原高寒草甸碳循环过程的重要基础。该研究基于在青藏高原高寒草甸连续4年(2009-2012年)氮、磷添加后对不同功能群植物地上生物量、群落地上和地下生物量的测定, 探讨高寒草甸生态系统碳输入对氮、磷添加的响应。结果表明: (1)氮、磷添加均极显著增加了禾草的地上绝对生物量及其在群落总生物量中所占的比例, 同时均显著降低了杂类草在群落总生物量中的比例, 此外磷添加极显著降低了莎草地上绝对生物量及其在群落总生物量中所占的比例。(2)氮、磷添加均显著促进了青藏高原高寒草甸的地上生物量增加, 分别增加了24%和52%。(3)氮添加对高寒草甸地下生物量无显著影响, 而磷添加后地下生物量有增加的趋势。(4)氮添加对高寒草甸植物总生物量无显著影响, 而磷添加后植物总生物量显著增加。研究表明, 氮、磷添加可缓解青藏高原高寒草甸植物生长的营养限制, 促进植物地上部分的生长, 然而高寒草甸植物的生长极有可能更受土壤中可利用磷含量的限制。  相似文献   

4.
In Venezuela, the alien grasses Melinis minutiflora Beauv. and Hyparrhenia rufa (Nees.) Stapf tend to displace the native savanna plant community dominated by Trachypogon plumosus (Humb. and Bonpl.) Nees. This occurs in either relatively wetter and fertile highland savannas or in drier and less fertile lowland savannas. Although the native and aliens are perennial C4 grasses, higher net assimilation leaf biomass per plant and germination rate of the latter are some causes for their higher growth rates and for their competitive success. The objective of this study is to compare seasonal tissue energy, N, P and K concentrations and the calculated construction costs (CC) between the native grass and either one of the alien grasses from lowland and highland savannas. We predict that, in order to out-compete native plants, alien grasses should be more efficient in resource use as evidenced by lower tissue energy and nutrient concentrations and CC.Tissue energy and nutrient concentration were measured throughout the year and compared between M. minutiflora and the co-occurring local population of T. plumosus in a highland savanna and between H. rufa and its neighbor local population of T. plumosus in a lowland savanna. CC was calculated from energy, N and ash concentrations considering ammonium as the sole N source. Differences between co-occurring species, T. plumosus populations, seasons, and organs were analyzed with ANOVA.Highland and lowland grasses differed in concentration and allocation of energy and nutrients whereas the differences between alien and native grasses were specific for each pair considered. Highland grasses had higher energy, N, P and CC than lowland grasses. These variables were always lowest in the culms. In the more stressed lowland site, tissue energy and nutrient concentrations decreased significantly during the dry season except in the roots of both grasses which had the highest energy and nutrients concentrations during the drought. This seasonal response was more marked in the local lowland population of T. plumosus in which maximum CC alternated seasonally between leaves and roots. Energy and nutrient concentrations and CC were the lowest in H. rufa. In the lowland savannas, the higher efficiency of resource use in the invader grass contributes to its higher competitive success through increased growth rate. In the highlands, overall tissue energy concentration and CC, but not N nor P concentration, were lower in the fast growing M. minutiflora but seasonal differences were lacking. The higher leaf CC in T. plumosus can be attributed to the higher proportion of sclerenchyma tissue which is more expensive to construct. Considering CC, both fast growing alien grasses are more efficient in resource use than the co-occurring native grass. However, the role of CC explaining the competitive success of the former, through higher growth rates, is more evident in the more stressful environment of the lowland savanna.  相似文献   

5.
Communities subject to stress, including those with low invasibility, may be dominated by exotic generalist species. African grasses are aggressive invasive species in Neotropical savannas, where their response to abiotic stress remains unknown. We assessed the role of waterlogging and canopy closure on the presence, abundance and reproductive tillering of African and native grasses in a Neotropical savanna in southeastern Brazil. We obtained abundance and reproductive tillering data of exotic (Melinis minutiflora, Melinis repens and Urochloa decumbens) and common native grasses in 20 sites. We also determined the groundwater depth, soil surface water potential and canopy cover at these sites. The grass species generally had a low frequency and performed poorly where soil remained waterlogged throughout the year, except for two native species. Most native species were exclusive to either well‐drained savannas or better drained wet grasslands. However, two species (Loudetiopsis chrysothrix and Trachypogon spicatus) occurred in both vegetation types. Two exotic species (M. minutiflora and M. repens) were less common but demonstrated reasonable performance in wet grasslands, possibly due to their root system plasticity. Furthermore, U. decumbens had a lower occurrence, density and reproductive tillering at these sites, but was successful at sites where the groundwater level was slightly deeper. Although the favourable water regime in the savannas increases their invasibility in general, resistance to invasion by African grasses may be greater at microsites with high canopy closure, where these species showed lower performance and did not affect the abundance of co‐occurring native grasses. In summary, the Brazilian savanna becomes more susceptible to the spread of African grasses when disturbances decrease canopy closure or lower rainfall associated with climate change reduces the average groundwater depth and consequently releases invasive species from soil waterlogging in grasslands.  相似文献   

6.
The interactive effects of three levels of N (mM) (low 0.36, medium 2.1 and high 6.4) and two levels of P (mM) (low 0.10 and high 0.48) on growth and resource allocation of Canna indica Linn. were studied in wetland microcosms. After 91 days of plant growth, there was a significant interactive effect of N and P on plant growth, but not on resource allocation (except for allocation of N to leaves and allocation of P to the stems). The plant growth positively responded to the relatively higher nutrient availability (taller plants with more stems, leaves and flowers), but the growth performance was not significantly different between the medium N-low P and high N-low P treatments. At high P, the total biomass in the high N was about 51% higher than that in the medium N and about 348% higher than that in the low N. The growth performance was related to the physiological responses. The photochemical efficiency (Fv/Fm) increased from 0.843 to 0.855 with an increase in N additions. The photosynthetic rate increased from 13 to 16 μmol m−2 s−1 in the low P levels and from 14 to 20 μmol m−2 s−1 in the high P levels with an increase in N applications, but significant difference was only between the low and medium N levels, regardless of the P levels. The tissue concentrations of N increased with an increase in N applications and decreased with an increase in P additions, whereas reverse was true for tissue concentrations of P. The highest concentrations of N and P in leaves were 30.8 g N kg−1 in the high N-low P treatment and 4.9 g P kg−1 in the low N-high P treatment. The percent biomass allocation to aboveground tissues in the high N was nearly twice that in the low N treatments. The N allocation to aboveground tissues was slightly larger in high N than in low N treatments, whereas the P allocation to aboveground tissues increased with an increase in the N addition. Although some patterns of biomass allocation were similar to those of nutrient allocation, they did not totally reflect the nutrient allocation. These results imply that in order to enhance the treatment performance, appropriately high nutrient availability of N and P are required to stimulate the growth of C. indica in constructed wetlands.  相似文献   

7.
Macek  Petr  Lepš  Jan 《Plant Ecology》2003,168(1):31-43
Melinis minutiflora Beauv. (Poaceae) is an African grass that is invading mid-elevation Trachypogon savannas in Venezuela. The objective of this study was to investigate the influence of soil fertility, competition and soil disturbance in facilitating Melinis' invasion and growth in these savanna sites. We manipulated soil fertility by adding nitrogen (+N), phosphorus and potassium (+PK), or nitrogen, phosphorus, and potassium (+NPK). We simultaneously manipulated the competitive environment by clipping background vegetation. In a separate experiment, we mechanically disrupted the soil to simulate disturbance. We hypothesized that germination and growth were bottlenecks to early establishment in undisturbed savanna, but that disturbance would alleviate those bottlenecks. We measured Melinis seed germination and subsequent establishment by adding seeds to all plots. We examined Melinis growth by measuring biomass of Melinis seedling transplants, 11 months after they were placed into treatment plots. Germination and establishment of Melinis from seed was extremely low. Of the 80,000 seeds applied in the experiment, only 28 plants survived the first growing season. Mortality of Melinis seedling transplants was lowest in PK fertilized plots, but in the absence of PK mortality increased with N additions and clipping. By contrast, fertilization of the savanna with NPK greatly increased Melinis seedling biomass and this effect was greatly enhanced when competition was reduced (e.g. clipping). Melinis transplant growth responded strongly to soil disturbance- a response not fully explained by removal of competitors (clipping) or changes in soil nutrients and moisture. We suspect that disruption of the soil structure allowed for greater root proliferation and subsequent plant growth. We believe that native savanna is relatively resistant to Melinis invasion, since Melinis seedlings persisted in intact savanna but exhibited little or no growth during the first year. The significant enhancement of Melinis seedling growth with clipping and nutrient additions suggests that low soil nutrients and the presence of native savanna species are important factors in the ability of native savanna to resist Melinis establishment. However, the potential for Melinis growth increases enormously with soil disturbance.  相似文献   

8.
Baruch Z  Jackson RB 《Oecologia》2005,145(4):522-532
The invasion of African grasses into Neotropical savannas has altered savanna composition, structure and function. The projected increase in atmospheric CO2 concentration has the potential to further alter the competitive relationship between native and invader grasses. The objective of this study was to quantify the responses of two populations of a widespread native C4 grass (Trachypogon plumosus) and two African C4 grass invaders (Hyparrhenia rufa and Melinis minutiflora) to high CO2 concentration interacting with two primary savanna stressors: drought and herbivory. Elevated CO2 increased the competitive potential of invader grasses in several ways. Germination and seedling size was promoted in introduced grasses. Under high CO2, the relative growth rate of young introduced grasses was twice that of native grass (0.58 g g−1 week−1 vs 0.25 g g−1 week−1). This initial growth advantage was maintained throughout the course of the study. Well-watered and unstressed African grasses also responded more to high CO2 than did the native grass (biomass increases of 21–47% compared with decreases of 13–51%). Observed higher water and nitrogen use efficiency of invader grasses may aid their establishment and competitive strength in unfertile sites, specially if the climate becomes drier. In addition, high CO2 promoted lower leaf N content more in the invader grasses. The more intensive land use, predicted to occur in this region, may interact with high CO2 to fincreasesavor the African grasses, as they generally recovered faster after simulated herbivory. The superiority of invader grasses under high CO2 suggests further in their competitive strength and a potential increased rate of displacement of the native savannas in the future by grasslands dominated by introduced African species.  相似文献   

9.
Vegetation and soil indicators of nutrient condition were evaluated in 30 wetlands, 10 each in 3 Nutrient Ecoregions (NE) (VI-Corn Belt and Northern Great Plains, VII-Mostly Glaciated Dairy Region, IX-Temperate Forested Plains and Hills) of the Midwestern United States (U.S.) to identify robust indicators for assessment of wetland nutrient enrichment and eutrophication. Nutrient condition was characterized by surface water inorganic N (NH4-N, NO3-N) and P (PO4-P) concentrations measured seasonally for 1 year, plant available and total soil N and P, and aboveground biomass, leaf N and P and species composition of emergent vegetation measured at the end of the growing season. Aboveground biomass, nutrient uptake and species composition were positively related to surface water NH4-N (N) but not to PO4-P or NO3-N. Aboveground biomass and biomass of aggressive species, Typha spp. plus Phalaris arundinacea, increased asymptotically with surface water N whereas leaf P, senesced leaf N and senesced leaf P increased linearly with N. And, species richness declined with surface water N. Soil total P was positively related to surface water PO4-P but it was the only soil indicator related to wetland nutrient condition. Individual regressions for each NE generally were superior to a single regression for all NEs. In NE VI (Corn Belt), few indicators were related to surface water N because of the high degree of anthropogenic disturbance (85% of the landscape is cleared) as compared to NEs VII and IX (24–53% cleared). Of the indicators evaluated, stem height (r2 = 0.42 for all NEs, r2 = 0.56 for NE VII + IX) and percent biomass of aggressive species, Typha spp. plus Phalaris, (r2 = 0.46 for all NEs, r2 = 0.54 for NE VII + IX), were the best predictors of wetland nutrient enrichment. Vegetation-based indicators are a promising tool for assessment of wetland nutrient condition but they may not be effective in NEs where landscape disturbance is intense and widespread.  相似文献   

10.
Abstract Exotic grasses are becoming increasingly abundant in Neotropical savannas, with Melinis minutiflora Beauv. being particularly invasive. To better understand the consequences for the native flora, we performed a field study to test the effect of this species on the establishment, survival and growth of seedlings of seven tree species native to the savannas and forests of the Cerrado region of Brazil. Seeds of the tree species were sown in 40 study plots, of which 20 were sites dominated by M. minutiflora, and 20 were dominated by native grasses. The exotic grass had no discernable effect on initial seedling emergence, as defined by the number of seedlings present at the end of the first growing season. Subsequent seedling survival in plots dominated by M. minutiflora was less than half that of plots dominated by native species. Consequently, at the end of the third growing season, invaded plots had only 44% as many seedlings as plots with native grasses. Above‐ground grass biomass of invaded plots was more than twice that of uninvaded plots, while seedling survival was negatively correlated with grass biomass, suggesting that competition for light may explain the low seedling survival where M. minutiflora is dominant. Soils of invaded plots had higher mean Ca, Mg and Zn, but these variables did not account for the higher grass biomass or the lower seedling survival in invaded plots. The results indicate that this exotic grass is having substantial effects on the dynamics of the tree community, with likely consequences for ecosystem structure and function.  相似文献   

11.
王全成  郑勇  宋鸽  金圣圣  贺纪正 《生态学报》2021,41(15):6245-6256
氮(N)沉降深刻影响着森林生态系统的生物多样性、生产力和稳定性。亚热带地区森林土壤磷(P)的有效性较低,N沉降将更突显P的限制作用。N、P输入对亚热带次级森林土壤的影响是否依赖于森林演替阶段知之甚少。选取两种不同演替年龄阶段(年轻林:<40 a;老年林:>85 a)的亚热带常绿阔叶林,设置模拟N和/或P沉降(10 g m-2 a-1)4个处理(Ctrl、N、P、NP),连续处理4.5年后采集表层、次表层和下底层(0-15、15-30、30-60 cm)土壤样品,综合分析了土壤微生物生物量碳(MBC)氮(MBN)和多种土壤养分含量。结果表明,MBC、MBN及土壤养分含量均随土壤深度增加而降低。N添加对两种演替阶段森林土壤中MBC和MBN均无显著影响。施P相关处理(P和NP)对年轻林表层土壤MBC和MBN无显著影响,但显著增加了老年林表层土壤MBC和MBN(P<0.05),表明老年林可能比年轻林更易受P限制。N添加显著增加了两种演替森林表层土壤可溶性有机氮(DON)、氨态氮(NH4+-N)和硝态氮(NO3--N)的含量(P<0.05);P相关处理(P和NP)显著增加两种演替阶段表层和次表层土壤速效磷(AP)以及表层土壤全磷(TP)的含量(P<0.05)。土壤MBC和MBN与土壤中各养分指标(可溶性有机碳DOC、DON、NH4+-N、NO3--N、AP、全碳TC、全氮TN和TP)呈显著正相关关系,土壤TC、TN和DOC是影响土壤微生物生物量的主要因子。研究可为评估和揭示未来全球环境变化背景下不同演替林龄亚热带森林的土肥潜力及土壤质量的演变提供一定的科学理论依据。  相似文献   

12.
Tropical regions are facing increasing atmospheric inputs of nutrients, which will have unknown consequences for the structure and functioning of these systems. Here, we show that Neotropical montane rainforests respond rapidly to moderate additions of N (50 kg ha−1 yr−1) and P (10 kg ha−1 yr−1). Monitoring of nutrient fluxes demonstrated that the majority of added nutrients remained in the system, in either soil or vegetation. N and P additions led to not only an increase in foliar N and P concentrations, but also altered soil microbial biomass, standing fine root biomass, stem growth, and litterfall. The different effects suggest that trees are primarily limited by P, whereas some processes—notably aboveground productivity—are limited by both N and P. Highly variable and partly contrasting responses of different tree species suggest marked changes in species composition and diversity of these forests by nutrient inputs in the long term. The unexpectedly fast response of the ecosystem to moderate nutrient additions suggests high vulnerability of tropical montane forests to the expected increase in nutrient inputs.  相似文献   

13.
氮沉降和降水变异显著影响草地群落结构和功能,但缺乏对不同管理措施下草地群落结构对氮沉降和降水变异响应的研究。为模拟不同管理措施下草地群落结构对氮沉降和降水变异的响应特征,以半干旱黄土区云雾山国家自然保护区典型草原为研究对象,系统分析了在封育、刈割和火烧三种管理措施下,氮添加和水添加对群落地上生物量、功能群组成和群落多样性的影响。结果表明,氮添加和水添加对地上生物量、功能群组成和群落多样性指数的影响因管理措施不同有所差异。(1)在封育草地上,氮添加显著降低物种多样性,对地上生物量影响较小;水添加显著增加物种多样性指数,氮添加和水添加的交互作用显著增加地上生物量、禾本科所占比例和莎草科所占比例;物种多样性指数均与地上生物量无显著相关,与不同功能群所占比例显著相关。(2)在刈割草地上,氮添加和水添加显著提高草地群落地上生物量,氮添加和水添加交互作用尤为显著;氮添加和水添加显著增加物种丰富度指数,对物种均匀度影响较小;杂草类所占比例和地上生物量对Shannon-Weiner多样性指数的贡献率较大。(3)在火烧草地上,氮添加和水添加显著提高群落地上生物量,对物种多样性的影响因年份不同有所差异,氮添加和水添加交互作用具有累加效应;Shannon-Weiner多样性指数与地上生物量呈显著负相关,与莎草科所占比例呈显著正相关。研究表明管理措施显著影响群落结构对氮添加和水添加的响应特征,亦改变生产力和物种多样性的关系模式,为更好地应对全球变化进行草地管理提供数据支撑。  相似文献   

14.
中国北方草地普遍出现灌丛化现象,灌丛化改变植物群落结构、植物多样性和生产力,直接影响着草地生态保护与可持续利用。该研究以黄土高原灌丛化草地为研究对象,通过植被调查,分析比较不同坡向的灌丛斑块与禾草斑块植物群落结构(物种组成、优势种及物种多样性)和地上生物量的差异。结果发现:(1)灌丛化草地不同坡向对物种多样性及地上生物量均无显著影响(P 0.1),但不同斑块植物群落结构(P=0.001)及地上生物量(P0.001)存在显著差异。(2)灌丛化草地共出现植物29种,其中禾草斑块有27种,灌丛斑块有18种;灌丛化显著改变了植物群落的物种组成,优势种由长芒草(Stipa bungeana)更替为矮脚锦鸡儿(Caragana brachypoda),且灌丛化降低了草地物种丰富度,增加了群落均匀度。(3)灌丛化显著改变了草地地上生物量,其中灌丛斑块地上生物量较禾草斑块地上生物量增加251.2 g·m~(-2),灌丛斑块中灌木/半灌木地上生物量提高了452.1 g·m~(-2),多年生丛生禾草减少了176.5 g·m~(-2),其余功能群植物的地上生物量减少了24.4 g·m~(-2)。(4)灌丛化过程(从禾草斑块—灌丛斑块)中,植物种丢失对地上生物量减少的影响较小,新增物种和群落优势种更替促进了灌木斑块地上生物量增加;虽然灌丛化导致草地地上生物量增加,但植物物种丰富度降低和优势种更替很有可能改变草地多样性和稳定性维持机制。  相似文献   

15.
Previous research has found that plant diversity declines more quickly in exotic than native grassland plots, which offers a model system for testing whether diversity decline is associated with specific plant traits. In a common garden experiment in the Southern Great Plains in central Texas, USA, we studied monocultures and 9-species mixtures of either all exotic or all native grassland species. A total of 36 native and exotic species were paired by phylogeny and functional group. We used community-level measures (relative abundance in mixture) and whole-plant (height, aboveground biomass, and light capture) and leaf-level traits (area, specific leaf area, and C:N ratio) to determine whether trait differences explained native-exotic differences in functional group diversity. Increases in species’ relative abundance in mixture were correlated with high biomass, height, and light capture in both native and exotic communities. However, increasing exotic species were all C4 grasses, whereas, increasing native species included forb, C3 grass and C4 grass species. Exotic C4 grasses had traits associated with relatively high resource capture: greater leaf area, specific leaf area, height, biomass, and light capture, but similar leaf C:N ratios compared to native C4 grasses. Leaf C:N was consistently higher for native than exotic C3 species, implying that resource use efficiency was greater in natives than exotics. Our results suggest that functional diversity will differ between grasslands restored to native assemblages and those dominated by novel collections of exotic species, and that simple plant traits can help to explain diversity decline.  相似文献   

16.
Yoder  Carolyn  Caldwell  Martyn 《Plant Ecology》2002,158(1):77-84
An experiment was conducted to determine if growth and biomass responsesof the annual grass Bromus tectorum are affected by themagnitude and timing of nitrogen (N) pulses and if these responses areinfluenced by different perennial neighbor species. Nitrogen(NH4:NO3) was applied in three pulse treatments of varyinginterpulse length (3-d, 9-d, or 21-d between N additions). The total amount of Nadded was the same among treatments; hence, both the frequency and magnitude ofN pulses varied (i.e., the longer the interpulse period,the greater the amount of N added for a single pulse).Bromus showed little response to the different N-pulsetreatments. The only characteristic that varied among pulse treatments wasspecific leaf area (SLA), which was significantly greater whenBromus was grown under the 21-d N pulse than when grownunder the 3-d or 9-d N pulses. Bromus height, leaf andtiller numbers, leaf area and aboveground biomass were not affected by theN-pulse treatments nor were tissue-N contents and concentrations. However,Bromus production and tissue-N were significantly differentwhen Bromus was grown with different perennial neighborspecies. Tiller production, aboveground biomass, and seed numbers ofBromus were lowest when the perennial neighbor was thetussock grass Agropyron desertorum, intermediate when theneighbor was the evergreen shrub Artemisia tridentata, andgreatest when the neighbor was the deciduous shrub Chrysothamnusnauseosus. N contents of Bromus leaves were alsolowest when the neighbor was Agropyron. In contrast, root Nuptake capacities were greatest for Agropyron-Bromus rootmixes and lowest for Chrysothamnus-Bromus root mixes. Theseresults suggest that perennial neighbors affect growth, seed production, and Nuptake of Bromus to a greater extent than the timing andmagnitude of N pulses.  相似文献   

17.
Although fire is frequent in African savanna ecosystems and may cause considerable loss of nitrogen (N), N2-fixing herbaceous legumes—which could be expected to benefit from low N conditions—are usually not abundant. To investigate possible reasons for this scarcity, we conducted a pot experiment using two common plants of humid African savannas as model species, the legume Cassia mimosoides and the C4 grass Hyperthelia dissoluta. These species were grown at different levels of water, N and phosphorus (P), both in monoculture and in competition with each other. In the monocultures, yields were significantly increased by the combined addition of N and P in pots receiving high water supply. In pots with interspecific competition, the legume grew poorly unless P was added. Foliar δ15N values of legume plants grown in mixtures were considerably lower than those in monocultures, suggesting that rates of symbiotic N-fixation were higher in the presence of the grass. Grass δ15N values, however, were also lower in mixtures, while N concentrations were higher, indicating a rapid transfer of N from the legume to the grass. We conclude that the main reason for the low abundance of C. mimosoides is not low P availability as such, but a greater ability of H. dissoluta to compete for soil N and P, and a much higher N-use efficiency. If other C4 grasses have a similar competitive advantage, it could explain why herbaceous legumes are generally sparse in African savannas. We encourage others to test these findings using species from other types of savanna vegetation.  相似文献   

18.
Several species of African grasses brought to Brazil as cattle forage have spread widely, outcompeting native herb species. The open forms of Brazilian savanna (“campo cerrado” and “campo sujo”) are the most affected by such invasions, because their structure is open, permitting enough sunlight into the lower strata. The invasion of alien forage grasses occurs in almost every cerrado nature reserve. This study was carried out in the “Cerrado de Hmas Biological Reserve”, Pirassununga, São Paulo State, Brazil, with the following objectives: (a) to compare the abundance of native and alien grass species; (b) to verify the importance of such alien grasses in the community; (c) to identity distribution patterns for the alien grass species in a gradient from the edge (highly disturbed) to the center (less disturbed) of the reserve; and (d) to explore the distribution of native and alien grasses in the search for possible competitive interactions. Using the “point method,” a total of 260 points was sampled and 52 species were recorded. The four most frequent species (FA = absolute frequency) were two native (Echinolaena inflexa [Poir.J Chase [FA = 38.85%] and Diandrostachya chrysotrix [Nees] Jacues Felix [FA = 15.38%]) and two alien African species (Melinis minutiflora Beauv. [FA = 33.08%] and Brachiaria decumbens Stapf [FA = 13.85%]). M. minutiflora and E. inflexa had higher values of absolute vigor (67.69 and 59.62%, respectively), relative vigor (28.16 and 24.80%, respectively), and cover (100.77 and 98.47, respectively), indicating higher biomasses and densities and their dominance in the community. B. decumbens presented the highest number of contacts per point, showing the highest stratification. To detect possible edge–center distribution gradients, correspondence analysis was done, initially using all the recorded species and subsequently only the four more frequent grasses, with similar results: (a) the alien grasses, especially M. minutiflora, did not show a distinct distribution gradient from edge to center, but occurred over the whole reserve; (b) no distinct ecotonal band around the reserve (edge–belt) was detected, the whole reserve seeming to be “ecotonal”; and (c) E. inflexa and M. minutiflora showed similar phytosociological patterns, and spatial distribution; association between these two species was statistically significant.  相似文献   

19.
为了解草原植物群落物种多样性和植物地上生物量对氮沉降增加和降水变化的响应,在内蒙古贝加尔针茅(Stipa baicalensis)草原,分别设置对照(N0)、1.5 g/m2(N15)、3.0 g/m2(N30)、5.0 g/m2(N50)、10.0 g/m2(N100)、15.0 g/m2(N150)、20.0g/m2(N200)和30.0 g/m2(N300)(不包括大气沉降的氮量)8个氮素(NH4NO3)添加梯度和模拟夏季增加降水100mm的水分添加交互试验,研究氮素和水分添加对草原群落植物物种多样性和几种常见植物地上生物量的影响。结果表明:(1)氮素和水分的添加降低了草原群落植物物种多样性,且氮素和水分有显著的互作效应。在水分添加的条件下,随着施氮水平的增加,群落植物物种多样性减小;在无水分添加的条件下,随着施氮水平的增加,群落植物物种多样性呈先增加后减小的"单峰"变化趋势。(2)不同植物对氮素和水分添加的响应不同,随着施氮水平的增加,羊草地上生物量显著增加;贝加尔针茅、羽茅、糙隐子草、寸草苔和冷蒿先增加后减少,呈单峰曲线;星毛委陵菜、牧马豆、扁蓄豆和线叶菊地上生物量则逐渐减少。而且氮素和水分对贝加尔针茅、羽茅、扁蓄豆地上生物量有显著的交互作用。  相似文献   

20.
A tallgrass prairie ecosystem was exposed to ambient and twice-ambient CO2 concentrations in open-top chambers and compared to unchambered ambient CO2 during the entire growing season from 1989 through 1991. Dominant species were Andropogon gerardii (C4), A. scoparius (C4), Sorghastrum nutans (C4) and Poa pratensis (C3). Nitrogen and phosphorus concentrations in A. gerardii, P. pratensis and dicotyledonous herbs above ground biomass were estimated by periodic sampling throughout the growing season in 1989 and 1990. In 1991, N and P concentrations in peak biomass were estimated by an early August harvest. N and P concentrations in root production as a function of treatment were estimated using root ingrowth bags that remained in place throughout the growing season. Total N and P in above- and belowground biomass were calculated as products of concentration and peak biomass by species groups. N concentration in A. gerardii and dicotyledonous herb aboveground biomass was lower and total N higher in elevated CO2 plots than in ambient CO2 plots. N concentration in P. pratensis aboveground biomass was lower in elevated CO2 plots than in ambient, but total N did not differ among treatments in 2 out of 3 years. In 1990, N concentration in root ingrowth bag biomass was lower and total N greater in elevated CO2 than in ambient CO2 plots. Root ingrowth bag biomass N concentration did not differ among treatments in 1991, but total N was greater in elevated CO2 plots than in ambient CO2 plots. P concentration was lower under elevated CO2 compared to ambient in 1989, but did not differ substantially among treatments in 1990 or 1991. In all years, total P in aboveground A. gerardii and root ingrowth bag biomass was greater under elevated CO2 than ambient. P concentration and total P in P. pratensis was similar among treatments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号