首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary A characteristic phenotype of highly embryogenic explants along with the location of embryogenesis- and transformation-competent cells/tissues on immature cotyledons of soybean [Glycine max (L.) Merrill.] under hygromycin selection was identified. This highly embryogenic immature cotyledon was characterized with emergence of somatic embryos and incidence of browning/necrotic tissues along the margins and collapsed tissues in the mid-region of an explant incubated upwards on the selection medium. The influences of various parameters on induction of somatic embryogenesis on immature cotyledons following Agrobacterium tumefaciens-mediated transformation and selection were investigated. Using cotyledon explants derived from immature embryos of 5–8 mm in length, a 1∶1 (v/v; bacterial cells to liquid D40 medium) concentration of bacterial suspension and 4-wk cocultivation period significantly increased the frequency of transgenic somatic embryos. Whereas, increasing the infection period of explants or subjecting explants to either wounding or acetosyringone treatments did not increase the frequency of transformation. An optimal selection regime was identified when inoculated immature cotyledons were incubated on either 10 or 25 mgl−1 hygromycin for a 2-wk period, and then maintained on selection media containing 25 mgl−1 hygromycin in subsequent selection periods. However, somatic embryogenesis was completely inhibited when inoculated immature cotyledons were incubated on a kanamycin selection medium. These findings clearly demonstrated that the tissue culture protocols for transformation of soybean should be established under both Agrobacterium and selection conditions.  相似文献   

2.
AnAgrobacterium-mediated gene transfer system with recovery of putative transformants was developed for cotton (Gossypium hirsutum L.) cv. Cocker-312. Two-month-old hypocotyl-derived embryogenic calli were infected through agroinfiltration for 10 min at 27 psi in a suspension ofAgrobacterium tumefaciens strain GV3101 carrying tDNA with theGUS gene, encoding β-glucuronidase (GUS), and the neomycin phosphotransferase II (nptII) gene as a kanamycin-resistant plant-selectable marker. Six days after the histochemicalGUS assay was done, 46.6% and 20%GUS activity was noted with the vacuum-infiltration and commonAgrobacterium-mediated transformation methods, respectively. The transformed embryogenic calli were cultured on selection medium (100 mg/L and 50 mg/L kanamycin for 2 wk and 10 wk, respectively) for 3 mo. The putative transgenic plants were developed via somatic embryogenesis (25 mg/L kanamycin). In 4 independent experiments, up to 28.23% transformation efficiency was achieved. PCR amplification and Southern blot analysis fo the transformants were used to confirm the integration of the transgenes. Thus far, this is the only procedure available for cotton that can successfully be used to generate cotton transformants.  相似文献   

3.
Broussonetia papyrifera is well-known for its bark fibers, which are used for making paper, cloth, rope etc. This is the first report of a successful genetic transformation protocol for B. papyrifera using Agrobacterium tumefaciens. Callus was initiated at a frequency of about 100% for both leaf and petiole explants. Shoots formed on these calli with a success rate of almost 100%, with 14.08 and 8.36 shoots regenerating from leave-derived and petiole-derived callus, respectively. For genetic transformation, leaf explants of B. papyrifera were incubated with A. tumefaciens strain LBA4404 harboring the binary vector pCAMBIA 1301 which contains the hpt gene as a selectable marker for hygromycin resistance and an intron-containing β-glucuronidase gene (gus-int) as a reporter gene. Following co-cultivation, leaf explants were cultured on Murashige and Skoog (Physiol Plant 15:473, 1962) (MS) medium supplemented with 1.5 mg l−1 benzyladenine (BA) and 0.05 mg l−1 indole-3-butyric acid (IBA) (CI medium) containing 5 mg l−1 hygromycin and 500 mg l−1 cefotaxime, in the dark. Hygromycin-resistant calli were induced from leaf explants 3 weeks thereafter. Regenerating shoots were obtained after transfer of the calli onto MS medium supplemented with 1.5 mg l−1 BA, 0.05 mg l−1 IBA, and 0.5 mg l−1 gibberellic acid (GA3) (SI medium), 5 mg l−1 hygromycin and 250 mg l−1 cefotaxime under fluorescent light. Finally, shoots were rooted on half strength MS medium (1/2 MS) supplemented with 10 mg l−1 hygromycin. Transgene incorporation and expression was confirmed by PCR, Southern hybridisation and histochemical GUS assay. Using this protocol, transgenic B. papyrifera plants containing desirable new genes can be obtained in approximately 3 months with a transformation frequency as high as 44%.  相似文献   

4.
Dioscorea zingiberensis Wright has been cultivated as a pharmaceutical crop for production of diosgenin, a precursor for synthesis of various important steroid drugs. Because breeding of D. zingiberensis through sexual hybridization is difficult due to its unstable sexuality and differences in timing of flowering in male and female plants, gene transfer approaches may play a vital role in its genetic improvement. In this study, the Agrobacterium tumefaciens-mediated transformation of D. zingiberensis was investigated with leaves and calli as explants. The results showed that both leaf segments and callus pieces were sensitive to 30 mg/l hygromycin and 50–60 mg/l kanamycin, and using calli as explants and addition of acetosyringone (AS) in cocultivation medium were crucial for successful transformation. We first immersed callus explants in A. tumefaciens cells for 30 min and then transferred the explants onto a co-cultivation medium supplemented with 200 μM AS for 3 days. Three days after, we cultured the infected explants on a selective medium containing 50 mg/l kanamycin and 100 mg/l timentin for formation of kanamycin-resistant calli. After the kanamycin-resistant calli were produced, we transferred them onto fresh selective medium for shoot induction. Finally, the kanamycin resistant shoots were rooted and the stable incorporation of the transgene into the genome of D. zingiberensis plants was confirmed by GUS histochemical assay, PCR and Southern blot analyses. The method reported here can be used to produce transgenic D. zingiberensis plants in 5 months and the transformation frequency is 24.8% based on the numbers of independent transgenic plants regenerated from initial infected callus explants.  相似文献   

5.
Li HQ  Xu J  Chen L  Li MR 《Plant cell reports》2007,26(10):1785-1789
Thellungiella halophila is a salt-tolerant close relative of Arabidopsis, which is adopted as a halophytic model for stress tolerance research. We established an Agrobacterium tumefaciens-mediated transformation procedure for T. halophila. Leaf explants of T. halophila were incubated with A. tumefaciens strain EHA105 containing a binary vector pCAMBIA1301 with the hpt gene as a selectable marker for hygromycin resistance and an intron-containing β-glucuronidase gene as a reporter gene. Following co-cultivation, leaf explants were cultured on selective medium containing 10 mg l−1 hygromycin and 500 mg l−1 cefotaxime. Hygromycin-resistant calluses were induced from the leaf explants after 3 weeks. Shoot regeneration was achieved after transferring the calluses onto fresh medium of the same composition. Finally, the shoots were rooted on half strength MS basal medium supplemented with 10 mg l−1 hygromycin. Incorporation and expression of the transgenes were confirmed by PCR, Southern blot analysis and GUS histochemical assay. Using this protocol, transgenic T. halophila plants can be obtained in approximately 2 months with a high transformation frequency of 26%.  相似文献   

6.
A highly reproducible Agrobacterium-mediated transformation system was developed for the wetland monocot Juncus accuminatus. Three Agrobacterium tumefaciens binary plasmid vectors, LBA4404/pTOK233, EHA105/pCAMBIA1201, and EHA105/pCAMBIA1301 were used. All vectors contained the 35SCaMV promoter driven, intron containing, β-glucuronidase (gus), and hygromycin phosphotransferase (hptII) genes within their T-DNA. After 48 h of cocultivation, 21-d-old seedling derived calli were placed on medium containing timentin at 400 mg l−1, to eliminate the bacteria. Calli were selected on MS medium containing 40 or 80 mg l−1 hygromycin, for 3 mo. Resistant calli were regenerated and rooted on MS medium containing hygromycin, 5 mg l−1(22.2 μM) of 6-benzylamino-purine (BA) and 0.1 mg l−1(0.54 μM) of alpha-naphthaleneacetic acid (NAA), respectively. Seventy-one transgenic cell culture lines were obtained and 39 plant lines were established in the greenhouse. All the plants were fertile, phenotypically normal, and set viable seed. Both transient and stable expression of the gus gene were demonstrated by histochemical GUS assays of resistant calli, transgenic leaf, root, inflorescence, seeds, and whole plants. The integration of gus and hptII genes were confirmed by polymerase chain reaction (PCR) and Southern analysis of both F0 and F1 progenies. The integrated genes segregated to the subsequent generation in Mendelian pattern. To our knowledge, this is the first report of the generation of transgenic J. accuminatus plants.  相似文献   

7.
Summary The embryogenic potential of different Echinacea purpurea tissues, viz. leaf, cotyledon, and root, was investigated. Maximum embryo-induction was achieved from leaf dises cultured on Murashige and Skoog medium supplemented with benzylaminopurine (5.0 μM) and indolebutyric acid (2.5 μM) where 95% of the explants responded, yielding an average of 83 embryos per explant within 4 wk of culture. Incubation of cultures in the dark for an initial period of 14 d significantly increased the frequency of somatic embryogenesis (6–8-fold in leaf explants). Exposure of the abaxial surface of leaves to the medium significantly increased the number of embryos. Transfer of somatic embryos to a medium devoid of growth regulators resulted in 80% germination within 7 d. Over 73% of the somatic embryos developed roots within 28 d of culture on a medium containing naphthaleneacetic acid (10 μM) with a maximum root number of 9.8 per plantlet. Transplanting ex vitro and acclimatization for a period of 7 d were sufficient to promote establishment of plants in the greenhouse, and more than 90% of the regenerated plants survived.  相似文献   

8.
Somatic embryogenesis (SE) was induced in female flower buds from mature Schisandra chinensis cultivar ‘Hongzhenzhu’. Somatic embryo structures were induced at a low frequency from unopened female flower buds and excised unopened on Murashige and Skoog (MS) agar medium containing 4.0 mg l−1 2,4-dichlorophenoxyacetic acid (2,4-D). Friable embryogenic calli were induced from somatic embryo structures after three to four subcultures on initiation medium. The frequencies of mature somatic embryo germination and plantlet conversion were low, but increased in the presence of gibberellic acid (GA3). Some germinated somatic embryos could form friable embryogenic calli on medium without plant growth regulators (PGRs). The germination and conversion frequencies of somatic embryos from embryogenic calli induced using PGR-free medium were higher than for somatic embryos from embryogenic calli induced on medium containing 2,4-D. Most somatic embryos from 2,4-D-induced embryogenic calli had trumpet-shaped embryos, and most somatic embryos from PGR-free medium–induced embryogenic calli had two or three cotyledons. Histological observation indicated that two- and three-cotyledon embryos had defined shoot primordia, but most of the trumpet-shaped embryos yielded plantlets that lacked or had poorly developed meristem tissue. Cytological and random amplification of polymorphic DNA (RAPD) analyses indicated no evidence of genetic variation in the plantlets of somatic embryo origin.  相似文献   

9.
We developed an efficient gene transfer method mediated by Agrobacterium tumefaciens for introgression of new rice for Africa (NERICA) cultivars, which are derivatives of interspecific hybrids between Oryza glaberrima Steud. and O. sativa L. Freshly isolated immature embryos were inoculated with A. tumefaciens LBA4404 that harbored binary vector pBIG-ubi::GUS or pIG121Hm, which each carried a hygromycin-resistance gene and a GUS gene. Growth medium supplemented with 500 mg/l cefotaxime and 20 mg/l hygromycin was suitable for elimination of bacteria and selection of transformed cells. Shoots regenerated from the selected cells on MS medium containing 20 g/l sucrose, 30 g/l sorbitol, 2 g/l casamino acids, 0.25 mg/l naphthaleneacetic acid, 2.5 mg/l kinetin, 250 mg/l cefotaxime, and 20 mg/l hygromycin. The shoots developed roots on hormone-free MS medium containing 30 mg/l hygromycin. Integration and expression of the transgenes were confirmed by PCR, Southern blot analysis, and histochemical GUS assay. Stable integration, expression, inheritance, and segregation of the transgenes were demonstrated by molecular and genetic analyses in the T0 and T1 generations. Most plants were normal in morphology and fertile. The transformation protocol produced stable transformants from 16 NERICA cultivars. We also obtained transformed plants by inoculation of calluses derived from mature seeds, but the frequency of transformation was lower and sterility was more frequent.  相似文献   

10.
Efficient Agrobacterium tumefaciens-mediated transformation was achieved using embryogenic suspension cultures of sweetpotato (Ipomoea batatas (L.) Lam.) cv. Lizixiang. Cell aggregates from embryogenic suspension cultures were cocultivated with the A. tumefaciens strain EHA105 harboring a binary vector pCAMBIA1301 with gusA and hygromycin phosphotransferase II gene (hpt II) genes. Selection culture was conducted using 25 mg l−1 hygromycin. A total of 2,218 plants were regenerated from the inoculated 1,776 cell aggregates via somatic embryogenesis. β-glucuronidase (GUS) assay and PCR, dot blot and Southern blot analyses of the regenerated plants randomly sampled showed that 90.37% of the regenerated plants were transgenic plants. The number of integrated T-DNA copies varied from 1 to 4. Transgenic plants, when transferred to soil in a greenhouse and a field, showed 100% survival. No morphological variations were observed in the ex vitro transgenic plants. These results exceed all transformation experiments reported so far in the literature in quantity of independent events per transformation experiment in sweetpotato.  相似文献   

11.
A procedure for producing somatic embryos enriched with dibenzyl trisulfide (DTS) using a hormone-dependent culture system is reported for Petiveria alliacea L. (Guinea hen weed). Leaf explants were cultured on a Murashige and Skoog medium supplemented with a range of naphthaleneacetic acid (NAA) concentrations and a fixed concentration of benzyladenine (BAP) at 11.0 μM and sucrose or glucose at 30 g l−1. Leaf explants cultured on all media types started to form callus at the cut surfaces of the discs 10–14 d after initiation. The type of sugar used influenced average fresh weight, the propensity to form roots, as well as the embryogenic response. The highest mean fresh weight (337.7 ± 26.18 mg) and mean root number (23.7 ± 1.69) was produced on media enriched with sucrose and supplemented with 53.7 μM NAA and 11.0 μM BAP. An ethanol extract of rhizogenic/embryogenic callus or somatic embryos was subjected to high-performance liquid chromatography analysis, which revealed the presence of DTS in both extracts. UV spectral analysis and the use of standard quantitation procedures showed that the quantity of DTS in the somatic embryo extract, at 0.16% (w/v), was approximately 30-fold higher than in rhizogenic/embryogenic callus (0.0055% w/v) of similar fresh weight. These results indicate that it is possible to biosynthesize approximately 6 mg of natural DTS from 3,808 mg of fresh somatic embryos within 10 wk from less than three leaf explants.  相似文献   

12.
Plants were regenerated from root explants of Arabidopsis halleri (L.) O’Kane and Al-Shehbaz via a three-step procedure callus induction, induction of somatic embryos and shoot development. Callus was induced from root segments, leaflets and petiole segments after incubation for 2 weeks in Murashige and Skoog medium (MS) supplemented with 0.5 mg/l−1 (2.26 μM) 2,4-D (2,4-dichlorophenoxyacetic acid) and 0.05 mg/l−1 (0.23 μM) kinetin. Only calli developed from root segments continued to grow when transferred to a regeneration medium containing 2.0 mg/l−1 (9.8 μM) 6-γ-γ-(dimethylallylamino)-purine (2ip) and 0.05 mg/l−1 (2.68 μM) α-naphthalenacetic acid (NAA) and eventually 40 of them developed embryogenic structures. On the same medium 38 of these calli regenerated shoots. Rooting was achieved for 50 of the shoots subcultured in MS medium without hormones. The regeneration ability of callus derived from root cuttings, observed in this study, makes this technique useful for genetic transformation experiments and in vitro culture studies.  相似文献   

13.
To establish a procedure for Agrobacterium tumefaciens-mediated transformation of golden pothos (Epipremnum aureum) plants, the effects of selection antibiotics and the preculture period of stem explants before A. tumefaciens infection were examined. Explants were co-cultivated with A. tumefaciens EHA105, harboring the plasmid pGWB2/cGUS, on a somatic embryo-inducing medium supplemented with acetosyringone. Resulting transgenic somatic embryos were screened on an antibiotic selection medium, and the transgenic pothos plants were regenerated on a germination medium. Hygromycin was the optimum selection antibiotic tested. The preculture period significantly affected the transformation efficiency, with explants precultured for one-day showing the best efficiency (5–30%). Both transformed hygromycin-resistant embryos and regenerated plants showed β-glucuronidase activity. Southern blot analysis confirmed transgene integration into the pothos genome. This reproducible transformation system for golden pothos may enable the molecular breeding of this very common indoor plant.  相似文献   

14.
A highly efficient Agrobacterium-mediated transformation system for Lilium × formolongi was established by modifying the medium used for inoculation and co-cultivation. Meristematic nodular calli of Lilium were inoculated with an overnight culture of A. tumefaciens strain EHA101 containing the plasmid pIG121-Hm harboring an intron-containing β-glucuronidase (GUS), hygromycin phosphotransferase, and neomycin phosphotransferase II genes. The effects of ten different types of media and carbohydrates (sucrose, d-glucose, and l-arabinose) in both inoculation and co-cultivation media were evaluated. Interestingly, a dramatic increase in the frequency of transformation (25.4%) was observed when Murashige and Skoog (MS) medium containing sucrose and lacking KH2PO4, NH4NO3, KNO3, and CaCl2 was used. Hygromycin-resistant transgenic calli were obtained only in medium supplemented with sucrose. The effects of this modified medium were also investigated for Lilium cultivars ‘Acapulco’, ‘Casa Blanca’, and ‘Red Ruby’. The highest frequency of transformation (23.3%) was obtained for cv. Acapulco. Hygromycin-resistant calli were successfully regenerated into plantlets on plant growth regulator-free MS medium. Transgenic plants were confirmed by GUS histochemical assay, polymerase chain reaction (PCR), and Southern blot analyses.  相似文献   

15.
An innovative and efficient genetic transformation protocol for European chestnut is described in which embryogenic cultures are used as the target material. When somatic embryos at the globular or early-torpedo stages were cocultured for 4 days with Agrobacterium tumefaciens strain EHA105 harbouring the pUbiGUSINT plasmid containing marker genes, a transformation efficiency of 25% was recorded. Murashige and Skoog culture medium containing 150 mg/l of kanamycin was used as the selection medium. The addition of acetosyringone was detrimental to the transformation efficiency. Transformation was confirmed by a histochemical -glucuronidase (GUS ) assay, PCR and Southern blot analyses for the uidA (GUS) and nptII (neomycin phosphotransferase II) genes. At present, 93 GUS-positive chestnut embryogenic lines are being maintained in culture. Low germination rates (6.3%) were recorded for the transformed somatic embryos. The presence of the transferred genes in leaves and shoots derived from the germinated embryos was also verified by the GUS assay and PCR analysis.  相似文献   

16.
Summary An efficient system for the regeneration of plants from protoplasts was developed in Alstroemeria. Friable embryogenic callus (FEC) proved to be the best source for protoplast isolation and culture when compared with leaf tissue and compact embryogenic callus. Protoplast isolation was most efficient when FEC was cultured under vacuum for 5 min in an enzyme solution consisting of 4% cellulase, 0.5% Driselase and 0.2% Macerozyme, followed by culture for 12–16h in the dark at 24°C. Cell wall formation and colony formation were better in a liquid medium than on a semi-solid agarose medium. Micro-calluses were formed after 4 wk of culture. Ninety percent of the micro-calluses developed into FEC after 12wk of culture on proliferation medium. FEC cultures produced somatic embryos on a regeneration medium and half of these somatic embryos developed shoots. Protoplast-derived plants showed more somaclonal variation than vegetatively propagated control plants.  相似文献   

17.
An efficient method for Agrobacterium-mediated genetic transformation of embryogenic cell suspension cultures of Santalum album L. is described. Embryogenic cell suspension cultures derived from stem internode callus were transformed with Agrobacterium tumefaciens harbouring pCAMBIA 1301 plant expression vector. Transformed colonies were selected on medium supplemented with hygromycin (5 mg/l). Continuously growing transformed cell suspension cultures were initiated from these colonies. Expression of β-glucuronidase in the suspension cultures was analysed by RT-PCR and GUS histochemical staining. GUS specific activity in the transformed suspension cultures was quantified using a MUG-based fluorometric assay. Expression levels of up to 105,870 pmol 4-MU/min/mg of total protein were noted in the transformed suspension cultures and 67,248 pmol 4-MU/min/mg of total protein in the spent media. Stability of GUS expression over a period of 7 months was studied. Plantlets were regenerated from the transformed embryogenic cells. Stable insertion of T-DNA into the host genome was confirmed by Southern blot analysis. This is the first report showing stable high-level expression of a foreign protein using embryogenic cell suspension cultures in S. album. U. K. S. Shekhawat and T. R. Ganapathi contributed equally to this work.  相似文献   

18.
An efficient regeneration protocol via somatic embryogenesis was optimized for mung bean [Vigna radiata (L.) Wilczek; cv. Vamban 1]. Primary leaf explants were used for embryogenic callus induction in MMS medium (Murashige and Skoog salts with B5 vitamins) containing 2.0 mg dm−3 2,4-dichlorophenoxyacetic acid (2,4-D), 150 mg dm−3 glutamine and 3 % sucrose. Fast growing, highly embryogenic cell suspensions were established from 21-d-old calli in MMS medium supplemented with 0.5 mg dm−3 2,4-D and 50 mg dm−3 proline (Pro), and maximum recovery of globular (39.0 %), heart-shaped (26.3 %) and torpedo-stage (21.0 %) somatic embryos were observed in this medium. Mature cotyledonary-stage somatic embryos were cultured for 5 d in half strength B5 liquid medium containing 0.05 mg dm−3 2,4-D, 20 mg dm−3 Pro, 5 μM abscisic acid, 1000 mg dm−3 KNO3, 50 mg dm−3 polyethylene glycol (PEG 6000) and 30 g dm−3 D-mannitol. Mature somatic embryos were germinated after dessication for 3 d and complete development of plantlets accomplished in MMS medium containing 30 g dm−3 maltose, 0.5 mg dm−3 benzyladenine and 500 mg dm−3 KNO3. Profuse lateral roots, and regeneration frequency (up to 60 %) were observed in half-strength MMS medium containing 0.5 mg dm−3 indolebutyric acid (IBA). The regenerated plants were grown to fruiting and were morphologically normal and fertile.  相似文献   

19.
Jatropha curcas contains high amounts of oil in its seed and has been considered for bio-diesel production. A transformation procedure for J. curcas has been established for the first time via Agrobacterium tumefaciens infection of cotyledon disc explants. The results indicated that the efficiency of transformation using the strain LBA4404 and phosphinothricin for selection was an improvement over that with the strain EHA105 and hygromycin. About 55% of the cotyledon explants produced phosphinothricin-resistant calluses on Murashige and Skoog (MS) medium supplemented with 1.5 mg l−1 benzyladenine (BA), 0.05 mg l−1 3–indolebutyric acid (IBA), 1 mg l−1 phosphinothricin and 500 mg l−1 cefotaxime after 4 weeks. Shoots were regenerated following transfer of the resistant calli to shoot induction medium containing 1.5 mg l−1 BA, 0.05 mg l−1 IBA, 0.5 mg l−1 gibberellic acid (GA3), 1 mg l−1 phosphinothricin and 250 mg l−1 cefotaxime, and about 33% of the resistant calli differentiated into shoots. Finally, the resistant shoots were rooted on 1/2 MS media supplemented with 0.3 mg l−1 IBA at a rate of 78%. The transgenic nature of the transformants was demonstrated by the detection of β-glucuronidase activity in the primary transformants and by PCR and Southern hybridization analysis. 13% of the total inoculated explants produced transgenic plants after approximately 4 months. The procedure described will be useful for both, the introduction of desired genes into J. curcas and the molecular analysis of gene function.  相似文献   

20.
Somatic embryogenesis from cultures of shoot apices, cotyledon and young leaves of in vitro shoots of Agave vera-cruz Mill. was studied. Embryogenic callus was obtained when explants were cultured on Murashige and Skoog’s (MS) medium (1962) supplemented with L2 vitamins, 4.52 μM 2,4-dichlorophenoxyacetic acid (2,4-d) or 5.37 μM ∝-naphthalene acetic acid (NAA). Somatic embryos differentiated from this embryogenic callus upon subculture to maturation/conversion medium containing cytokinin either alone or with auxin and l-glutamine. The best combination of growth regulators for development of somatic embryos was found to be 5.37 μM naphthalene acetic acid plus 0.91 μM zeatin and 40 g/l sucrose. The conversion frequency of somatic embryos to plantlets varied from 46–50%. Rooted plantlets were transferred directly to pots containing a soil, sand, and manure mixture without any hardening phase with 96–98% survival of the plantlets. Based on the histological observations, the potential origin of the somatic embryo is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号