首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The high-affinity receptors for human granulocyte-macrophage colony-stimulating factor (GM-CSF), interleukin 3 (IL-3) and interleukin 5 (IL-5) are composed of two distinct subunits, alpha and beta c. The alpha subunits are specific for each cytokine, whereas the beta subunit (beta c) is shared by the three receptors and is an essential component of signal transduction. We have made a series of mutant beta c cDNAs that delete various regions of the cytoplasmic domain and examined the function of these mutants by coexpressing them with the alpha subunit of the human GM-CSF receptor (hGMR) in an IL-3-dependent mouse pro-B cell line BaF3. Two domains in the membrane-proximal portion of beta c were found to be important for transducing the hGM-CSF-mediated growth signals: one domain between Arg456 and Phe487 appears to be essential for proliferation, and the second domain between Val518 and Asp544 enhances the response to GM-CSF, but is not absolutely required for proliferation. The region between Val518 and Leu626 was responsible for major tyrosine phosphorylation of 95 and 60 kDa proteins. Thus, beta c-mediated major tyrosine phosphorylation of these proteins was apparently separated from proliferation. However, the beta 517 mutant lacking residues downstream of Val518 transmitted a herbimycin-sensitive proliferation signal, suggesting that beta 517 still activates a tyrosine kinase(s). We also evaluated the role of the cytoplasmic domain of the GMR alpha subunit and the results suggest that it is involved in the hGM-CSF-mediated signal transduction, but is not essential.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
The beta subunit (beta c) of the receptors for human granulocyte macrophage colony stimulating factor (GM-CSF), interleukin-3 (IL-3) and interleukin-5 (IL-5) is essential for high affinity ligand-binding and signal transduction. An important feature of this subunit is its common nature, being able to interact with GM-CSF, IL-3 and IL-5. Analogous common subunits have also been identified in other receptor systems including gp130 and the IL-2 receptor gamma subunit. It is not clear how common receptor subunits bind multiple ligands. We have used site-directed mutagenesis and binding assays with radiolabelled GM-CSF, IL-3 and IL-5 to identify residues in the beta c subunit involved in affinity conversion for each ligand. Alanine substitutions in the region Tyr365-Ile368 in beta c showed that Tyr365, His367 and Ile368 were required for GM-CSF and IL-5 high affinity binding, whereas Glu366 was unimportant. In contrast, alanine substitutions of these residues only marginally reduced the conversion of IL-3 binding to high affinity by beta c. To identify likely contact points in GM-CSF involved in binding to the 365-368 beta c region we used the GM-CSF mutant eco E21R which is unable to interact with wild-type beta c whilst retaining full GM-CSF receptor alpha chain binding. Eco E21R exhibited greater binding affinity to receptor alpha beta complexes composed of mutant beta chains Y365A, H367A and I368A than to those composed of wild-type beta c or mutant E366A. These results (i) identify the residues Tyr365, His367 and Ile368 as critical for affinity conversion by beta c, (ii) show that high affinity binding of GM-CSF and IL-5 can be dissociated from IL-3 and (iii) suggest that Tyr365, His367 and Ile368 in beta c interact with Glu21 of GM-CSF.  相似文献   

3.
The human interleukin-3 receptor (IL-3R) is a heterodimer that comprises an IL-3 specific alpha chain (IL-3R alpha) and a common beta chain (beta C) that is shared with the receptors for granulocyte-macrophage colony-stimulating factor (GM-CSF) and IL-5. These receptors belong to the cytokine receptor superfamily, but they are structurally and functionally more related to each other and thus make up a distinct subfamily. Although activation of the normal receptor occurs only in the presence of ligand, the underlying mechanisms are not known. We show here that human IL-3 induces heterodimerization of IL-3R alpha and beta c and that disulfide linkage of these chains is involved in receptor activation but not high-affinity binding. Monoclonal antibodies (MAb) to IL-3R alpha and beta c were developed which immunoprecipitated, in the absence of IL-3, the respective chains from cells labelled with 125I on the cell surface. However, in the presence of IL-3, each MAb immunoprecipitated both IL-3R alpha and beta c. IL-3-induced receptor dimers were disulfide and nondisulfide linked and were dependent on IL-3 interacting with both IL-3R alpha and beta c. In the presence of IL-3 and under nonreducing conditions, MAb to either IL-3R alpha or beta c immunoprecipitated complexes with apparent molecular weights of 215,000 and 245,000 and IL-3R alpha and beta c monomers. Preincubation with iodoacetamide prevented the formation of the two high-molecular-weight complexes without affecting noncovalent dimer formation or high-affinity IL-3 binding. Two-dimensional gel electrophoresis and Western blotting (immunoblotting) demonstrated the presence of both IL-3R alpha and beta c in the disulfide-linked complexes. IL-3 could also be coimmunoprecipitated with anti-IL-3R alpha or anti-beta c MAB, but it was not covalently attached to the receptor. Following IL-3 stimulation, only the disulfide-linked heterodimers exhibited reactivity with antiphosphotyrosine antibodies, with beta c but not IL-3R alpha being the phosphorylated species. A model of IL-3R activation is proposed which may be also applicable to the related GM-CSF and IL-5 receptors.  相似文献   

4.
M Hatakeyama  H Mori  T Doi  T Taniguchi 《Cell》1989,59(5):837-845
The functional, high affinity form of interleukin-2 receptor (IL-2R) is composed of two receptor components, the IL-2R alpha (p55) and IL-2R beta (p70-75) chains. Unlike the IL-2R alpha chain, the IL-2R beta chain contains a large cytoplasmic domain that shows no obvious tyrosine kinase motif. In the present study, we report the establishment of a system in which the cDNA-directed human IL-2R beta allows growth signal transduction in a mouse pro-B cell line. This system enabled us to identify a unique region within the cytoplasmic domain of the human IL-2R beta chain essential for ligand-mediated signal transduction. We also demonstrate that certain cytoplasmic deletion mutants in the IL-2R beta chain, although deficient in signal transduction, can still form high affinity IL-2R in conjunction with endogenous mouse IL-2R alpha chain; the mutants are still able to internalize the ligand as well.  相似文献   

5.
The major signalling entity of the receptors for the haemopoietic cytokines granulocyte-macrophage colony stimulating factor (GM-CSF), interleukin-3 (IL-3) and interleukin-5 (IL-5) is the shared beta(c) receptor, which is activated by ligand-specific alpha receptors. The beta(c) subunit is a stable homodimer whose extracellular region consists of four fibronectin domains and appears to be a duplication of the cytokine receptor homology module. No four domain structure has been determined for this receptor family and the structure of the beta(c) subunit remains unknown. We have expressed the extracellular domain in insect cells using the baculovirus system, purified it to homogeneity and determined its N-terminal sequence. N-glycosylation at two sites was demonstrated. Crystals of the complete domain have been obtained that are suitable for X-ray crystallographic studies, following mutagenesis to remove one of the N-glycosylation sites. The rhombohedral crystals of space group R3, with unit cell dimensions 186.1 A and 103.5 A, diffracted to a resolution of 2.9 A using synchrotron radiation. Mutagenesis was also used to engineer cysteine substitution mutants which formed isomorphous Hg derivatives in order to solve the crystallographic phase problem. The crystal structure will help to elucidate how the beta(c) receptor is activated by heterodimerization with the respective alpha/ligand complexes.  相似文献   

6.
The interleukin-2 (IL-2) receptor (IL-2R) consists of three distinct subunits (alpha, beta, and gamma c) and regulates proliferation of T lymphocytes. Intracellular signalling results from ligand-mediated heterodimerization of the cytoplasmic domains of the beta and gamma c chains. To identify the residues of gamma c critical to this process, mutations were introduced into the cytoplasmic domain, and the effects on signalling were analyzed in the IL-2-dependent T-cell line CTLL2 and T-helper clone D10, using chimeric IL-2R chains that bind and are activated by granulocyte-macrophage colony-stimulating factor. Whereas previous studies of fibroblasts and transformed T cells have suggested that signalling by gamma c requires both membrane-proximal and C-terminal subdomains, our results for IL-2-dependent T cells demonstrate that the membrane-proximal 52 amino acids are sufficient to mediate a normal proliferative response, including induction of the proto-oncogenes c-myc and c-fos. Although gamma c is phosphorylated on tyrosine upon receptor activation and could potentially interact with downstream molecules containing SH2 domains, cytoplasmic tyrosine residues were dispensable for mitogenic signalling. However, deletion of a membrane-proximal region conserved among other cytokine receptors (cytoplasmic residues 5 to 37) or an adjacent region unique to gamma c (residues 40 to 52) abrogated functional interaction of the receptor chain with the tyrosine kinase Jak3. This correlated with a loss of all signalling events analyzed, including phosphorylation of the IL-2R beta-associated kinase Jak1, expression of c-myc and c-fos, and induction of the proliferative response. Thus, it appears in T cells that Jak3 is a critical mediator of mitogenic signaling by the gamma c chain.  相似文献   

7.
The high-affinity receptor for granulocyte-macrophage colony-stimulating factor (GM-CSF) consists of a unique alpha chain and a beta c subunit that is shared with the receptors for interleukin-3 (IL-3) and IL-5. Two regions of the beta c chain have been defined; these include a membrane-proximal region of the cytoplasmic domain that is required for mitogenesis and a membrane-distal region that is required for activation of Ras, Raf-1, mitogen-activated protein kinase, and S6 kinase. Recent studies have implicated the cytoplasmic protein tyrosine kinase JAK2 in signalling through a number of the cytokine receptors, including the IL-3 and erythropoietin receptors. In the studies described here, we demonstrate that GM-CSF stimulation of cells induces the tyrosine phosphorylation of JAK2 and activates its in vitro kinase activity. Mutational analysis of the beta c chain demonstrates that only the membrane-proximal 62 amino acids of the cytosolic domain are required for JAK2 activation. Thus, JAK2 activation is correlated with induction of mitogenesis but does not, alone, activate the Ras pathway. Carboxyl truncations of the alpha chain, which inactivate the receptor for mitogenesis, are unable to mediate GM-CSF-induced JAK2 activation. Using baculovirus-expressed proteins, we further demonstrate that JAK2 physically associates with the beta c chain but not with the alpha chain. Together, the results further support the hypothesis that the JAK family of kinase are critical to coupling cytokine binding to tyrosine phosphorylation and ultimately mitogenesis.  相似文献   

8.
Our recent data suggested that tissue eosinophils may be relatively insensitive to anti-IL-5 treatment. We examined cross-regulation and functional consequences of modulation of eosinophil cytokine receptor expression by IL-3, IL-5 GM-CSF, and eotaxin. Incubation of eosinophils with IL-3, IL-5, or GM-CSF led to reduced expression of IL-5R alpha, which was sustained for up to 5 days. Eosinophils incubated with IL-5 or IL-3 showed diminished respiratory burst and mitogen-activated protein kinase kinase phosphorylation in response to further IL-5 stimulation. In contrast to these findings, eosinophil expression of IL-3R alpha was increased by IL-3, IL-5, and GM-CSF, whereas GM-CSF receptor alpha was down-regulated by GM-CSF, but was not affected by IL-3 or IL-5. CCR3 expression was down-regulated by IL-3 and was transiently reduced by IL-5 and GM-CSF, but rapidly returned toward baseline. Eotaxin had no effect on receptor expression for IL-3, IL-5, or GM-CSF. Up-regulation of IL-3R alpha by cytokines was prevented by a phosphoinositol 3-kinase inhibitor, whereas this and other signaling inhibitors had no effect on IL-5R alpha down-regulation. These data suggest dynamic and differential regulation of eosinophil receptors for IL-3, IL-5, and GM-CSF by the cytokine ligands. Since these cytokines are thought to be involved in eosinophil development and mobilization from the bone marrow and are present at sites of allergic inflammation, tissue eosinophils may have reduced IL-5R expression and responsiveness, and this may explain the disappointing effect of anti-IL-5 therapy in reducing airway eosinophilia in asthma.  相似文献   

9.
The high-affinity interleukin 2 receptor (IL-2R) consists of at least three distinct subunits: the IL-2R alpha chain (IL-2R alpha), beta chain (IL-2R beta), and gamma chain (IL-2R gamma). It has been shown that the cytoplasmic region of IL-2R beta, but not of IL-2R alpha, is essential for IL-2 signalling to the cell interior. In the present study, we examined the functional role of the IL-2R gamma cytoplasmic region in the IL-3-dependent mouse hematopoietic cell line BAF-B03, which expresses the endogenous IL-2R alpha and IL-2R gamma, or its subline F7, which additionally expresses human IL-2R beta cDNA. We show that overexpression of a mutant IL-2R gamma, lacking all but 7 amino acids of its cytoplasmic region, results in the selective inhibition of IL-2-induced c-fos gene activation and cellular proliferation in F7 cells. When two chimeric receptor molecules in which the cytoplasmic regions of IL-2R beta and IL-2R gamma had been swapped with each other (IL-2R beta/gamma and IL-2R gamma/beta) were coexpressed in BAF-B03, the cells responded to IL-2. These results indicate the critical importance of the IL-2-induced functional cooperation of the two cytoplasmic regions. Finally, we provide evidence that the IL-2R gamma cytoplasmic region is also critical for the IL-4 and IL-7-induced growth signal transduction in BAF-B03.  相似文献   

10.
IL-7/IL-7R signaling functions in both growth and differentiation during T cell development. In this study, we examined the extent these activities were controlled by signaling associated with distinct IL-7R alpha cytoplasmic domains by transgenic expression of wild-type or cytoplasmic deletion mutants of IL-7R alpha in the thymi of IL-7R alpha(-/-) mice. We show an essential requirement for the tyrosine-containing carboxyl-terminal T domain in restoring thymic cellularity, pro-/pre-T cell progression, and survival. In contrast, the functional differentiation of TCR alpha beta cells and the development of TCR gamma delta cells are partially independent of the T domain. Thus, separate cytoplasmic domains of the IL-7R alpha chain differentially control distinct functions during T cell development, whereas normal IL-7R-dependent thymic development requires the integrated activity of all these domains.  相似文献   

11.
T Hara  A Miyajima 《The EMBO journal》1992,11(5):1875-1884
The human interleukin-3 receptor (IL-3R) is composed of an IL-3 specific alpha subunit (IL-3R alpha) and a common beta subunit (beta c) that is shared by IL-3, granulocyte/macrophage colony stimulating factor (GM-CSF) and IL-5 receptors. In contrast to the human, the mouse has two distinct but related genes, AIC2A and AIC2B, both of which are homologous to the human beta c gene. AIC2B has proved to encode a common beta subunit between mouse GM-CSF and IL-5 receptors. AIC2A is unique to the mouse and encodes a low affinity IL-3 binding protein. Based on the observation that the AIC2A protein is a component of a high affinity IL-3R, we searched for a cDNA encoding a protein which conferred high affinity IL-3 binding when coexpressed with the AIC2A protein in COS7 cells. We obtained such a cDNA (SUT-1) encoding a mature protein of 70 kDa that has weak homology to the human IL-3R alpha. The SUT-1 protein bound IL-3 with low affinity and formed high affinity receptors not only with the AIC2A protein but also with the AIC2B protein. Both high affinity IL-3Rs expressed on a mouse T cell line, CTLL-2, showed similar IL-3 binding properties and transmitted a growth signal in response to IL-3. Thus, the mouse has two distinct functional high affinity IL-3Rs, providing a molecular explanation for the differences observed between mouse and human IL-3Rs.  相似文献   

12.
Some sensors of extracellular signaling molecules such as Notch and sterol response element binding protein (SREBP) receive ligand-induced intra-membrane proteolysis followed by nuclear translocation of their cytoplasmic domains to regulate gene expression programs in the nucleus. It has not been extensively examined whether ligand-induced intra-membrane proteolysis of type I cytokine receptors and nuclear translocation of cytoplasmic domains occur. Here, by using a sensitive reporter system, we examined this possibility for the interleukin-2 (IL-2) receptor (IL-2R) β-chain (IL-2Rβ) and the IL-15 receptor (IL-15R) α-chain (IL-15Rα). Flowcytometric analysis revealed that ligand stimulation does not induce nuclear translocation of their cytoplasmic domains. In addition, overexpression of the cytoplasmic domain of the common cytokine receptor γ-chain (γc) in an IL-2R-reconstituted Ba/F3-derived cell line did not affect any biological responses including cell survival, disproving potential roles of the cleaved cytoplasmic domain of γc as a signal transducer. Collectively, these results indicated that potential nuclear function of cleaved type I cytokine receptor subunits is not plausible.  相似文献   

13.
BACKGROUND: The interaction of different members of the hematopoietic growth factor receptor family may be relevant to the increased proliferation and the failure of differentiation that characterizes the myeloid leukemias. We recently demonstrated that a chimeric receptor (GMER) that is composed of the extracellular and transmembrane domains of the human granulocyte-macrophage colony-stimulating factor (GM-CSF) receptor alpha-chain (GMR alpha) and the cytoplasmic domain of the murine erythropoietin receptor mEpoR binds hGM-CSF with low affinity (3 nM) and confers both proliferative and differentiation signals to stably transfected murine Ba/F3 cells. MATERIALS AND METHODS: To investigate whether the common beta-subunit of the GM-CSF receptor (beta c) can interact with GMER, either the entire beta-subunit or a mutant, truncated beta-subunit that completely lacks the cytoplasmic domain (beta tr) was introduced into Ba/F3 cells that express GMER, and the binding of GM-CSF as well as proliferation and differentiation responses were measured. RESULTS: Scatchard analysis showed that both GMER + beta c and GMER + beta tr bound hGM-CSF with high affinity (Kd 40 pM to 65 pM). Proliferation assays showed that the maximum growth of cells expressing GMER + beta c was identical to that of cells with GMER alone. However, proliferation of the cells that expressed GMER + beta tr was reduced by 80-95% of GMER. Dose-response curves showed that the concentration of GM-CSF required for half-maximal growth was 0.5-5.0 pM for GMER + beta c and 0.5-5 nM for GMER and GMER + beta tr. The EpoR cytoplasmic domain of GMER also undergoes ligandinducible tyrosine phosphorylation. However, the tyrosine phosphorylation did not correlate with growth in cells expressing beta tr. Coexpression of beta c with GMER in Ba/F3 cells grown in hGM-CSF markedly enhanced beta-globin mRNA expression. CONCLUSIONS: These results indicate that beta c can transduce a unique signal in association with GMER to influence both proliferative and differentiation signal pathways.  相似文献   

14.
Granulocyte-macrophage colony-stimulating factor (GM-CSF), interleukin (IL)-3 and IL-5 are related cytokines that play key roles in regulating the differentiation, proliferation, survival and activation of myeloid blood cells. The cell surface receptors for these cytokines are composed of cytokine-specific alpha-subunits and a common beta-receptor (betac), a shared subunit that is essential for receptor signaling in response to GM-CSF, IL-3 and IL-5. Previous studies have reached conflicting conclusions as to whether N-glycosylation of the betac-subunit is necessary for functional GM-CSF, IL-3 and IL-5 receptors. We sought to clarify whether betac N-glycosylation plays a role in receptor function, since all structural studies of human betac to date have utilized recombinant protein lacking N-glycosylation at Asn(328). Here, by eliminating individual N-glycans in human betac and the related murine homolog, beta(IL-3), we demonstrate unequivocally that ligand-binding and receptor activation are not critically dependent on individual N-glycosylation sites within the beta-subunit although the data do not preclude the possibility that N-glycans may exert some sort of fine control. These studies support the biological relevance of the X-ray crystal structures of the human betac domain 4 and the complete ectodomain, both of which lack N-glycosylation at Asn(328).  相似文献   

15.
Interleukin 5 (IL-5) is a kind of peptide hormone released from T lymphocytes of mammals infected with microorganisms or parasites. It is an acidic glycoprotein with a molecular mass of 40 to 50 kDa that consists of a homodimer of polypeptides. It controls hematopoiesis so that it increases natural immunity. In the mouse, IL-5 acts on committed B cells to induce differentiation into Ig-producing cells and on common progenitors for CD5+ pre-B cells and CD5+ macrophages to support their survival. The antibodies secreted by CD5+ B cells seem to be responsible for the primary protection against the infection with microorganisms or parasites. It also supports the growth and/or differentiation of eosinophil precursor and mature eosinophils, which can be effective for the removal of parasites in combination with the antibodies against them. Murine IL-5 receptor (IL-5R) consists of two different polypeptide chains; alpha chain and beta chain. The IL-5R alpha chain is 60 kDa protein that binds IL-5 with low affinity. The IL-5R beta chain is a 130 kDa protein which does not bind IL-5 by itself but is necessary to form the high affinity IL-5R. The beta chain was identified by using one of the anti-IL-5R mAb and anti-IL-3R mAb as the IL-3R homologue. This beta chain is also used as the beta chain of GM-CSF receptor. This fact suggests that there is a common signaling mechanism among these cytokines and efficient cooperation among them. At the same time, these findings may explain the overlapping role of these cytokines in the development of granulocytes.  相似文献   

16.
Transduction of the biological effects of granulocyte-macrophage colony-stimulating factor (GM-CSF) and interleukin-5 (IL-5) requires the interaction of each cytokine with at least two cell surface receptor components, one of which is shared between these two cytokines. A strategy is presented that allowed us to identify receptor binding determinants in GM-CSF and IL-5. Mixed species (human and mouse) receptors were used to locate unique receptor binding domains on a series of human-mouse hybrid GM-CSF and IL-5 cytokines. Results show that the interaction of these two cytokines with the shared subunit of their high affinity receptor complexes is governed by a very small part of their peptide chains. The presence of a few key residues in the amino-terminal alpha-helix of each ligand is sufficient to confer specificity to the interaction. Comparison with other cytokines suggests that the amino-terminal helix of many of these proteins may contain the recognition element for the formation of high affinity binding sites with the alpha subunit of their multi-component receptors.  相似文献   

17.
The common cytokine receptor gamma chain (gamma c), an essential component of the receptors for IL-2, IL-4, IL-7, IL-9, and IL-15, is critical for the development and function of lymphocytes. Recently, a novel lymphokine (IL-21) and its receptor (IL-21R alpha) were described which profoundly affect the growth and activation state of B, T, and NK cells in concert with other lymphokines or stimuli [Parrish-Novak, J., et al. (2000) Nature 408, 57-63]. In this report, we show that gamma c is also a required signaling component of the IL-21 receptor (IL-21R) using the gamma c-deficient X-linked severe combined immunodeficiency (XSCID) lymphoblastoid cell line JT, and JT cells reconstituted with gamma c (JT/gamma c). Moreover, we demonstrate a functional requirement for both gamma c and the gamma c-associated Janus family tyrosine kinase 3 (JAK3) in IL-21-induced proliferation of pro-B-lymphoid cells engineered to express human IL-21R alpha (BaF3/IL-21R alpha). Retroviral-mediated transduction of wild-type gamma c into XSCID JT cells restored function to the IL-21R, as shown by IL-21-induced tyrosine phosphorylation of JAK1 and JAK3, and downstream activation of STAT5, in JT/gamma c cells as well as BaF3/IL-21R alpha and primary splenic B cells. In contrast, IL-21 failed to activate the JAK-STAT pathway in nonreconstituted JT cells. Monoclonal antibodies specific for the gamma c chain effectively inhibited IL-21-induced growth of BaF3/IL-21R alpha cells, supporting a functional role for this molecule in the IL-21R complex. In addition, the specific JAK3 tyrosine kinase inhibitor WHI-P131 significantly reduced IL-21-induced proliferation of BaF3/IL-21R alpha cells. Taken together, these results definitively demonstrate that IL-21-mediated signaling requires the gamma c chain, and indicate that JAK3 is an essential transducer of gamma c-dependent survival and/or mitogenic signals induced by this cytokine.  相似文献   

18.
19.
Interleukin-15 (IL-15) is a novel cytokine of the four-helix bundle family which shares many biological activities with IL-2, probably due to its interaction with the IL-2 receptor beta and gamma (IL-2R beta and gamma c) chains. We report here the characterization and molecular cloning of a distinct murine IL-15R alpha chain. IL-15R alpha alone displays an affinity of binding for IL-15 equivalent to that of the heterotrimeric IL-2R for IL-2. A biologically functional heteromeric IL-15 receptor complex capable of mediating IL-15 responses was generated through reconstruction experiments in a murine myeloid cell line. IL-15R alpha is structurally similar to IL-2R alpha; together they define a new cytokine receptor family. The distribution of IL-15 and IL-15R alpha mRNA suggests that IL-15 may have biological activities distinct from IL-2.  相似文献   

20.
Recent studies have identified a new family of cytokine receptors, which is primarily characterized by the conservation of periodically interspersed four cysteine residues and the W-S-X-W-S sequence ('WS motif') within the extracellular domain. However, the role of such conserved structures still remains elusive, in particular that of the WS motif. Interleukin-2 (IL-2) is known to play a critical role in the clonal expansion of antigen-stimulated T lymphocytes, and the IL-2 signal is delivered by one of the receptor components, the IL-2 receptor beta (IL-2R beta) chain. The IL-2R beta chain, unlike the IL-2R alpha chain, belongs to this receptor family. In the present study, we analyzed the function of the WS motif of IL-2R beta (Trp194-Ser195-Pro196-Trp197-Ser198) with the use of site-directed mutagenesis. Our results indicate the critical role of the two Trp residues in the proper folding of the IL-2R beta extracellular domain and point to the general functional importance of the WS motif in the new cytokine receptor family.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号