首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Summary.  Down syndrome (DS) is the most frequent genetic disorder with mental retardation and caused by trisomy 21. Although the gene dosage effect hypothesis has been proposed to explain the impact of extra chromosome 21 on the pathology of DS, a series of evidence that challenge this hypothesis has been reported. The availability of the complete sequences of genes on chromosome 21 serves now as starting point to find functional information of the gene products, but information on gene products is limited so far. We therefore evaluated expression levels of six proteins whose genes are encoded on chromosome 21 (synaptojanin-1, chromosome 21 open reading frame 2, oligomycin sensitivity confering protein, peptide 19, cystatin B and adenosine deaminase RNA-specific 2) in fetal cerebral cortex from DS and controls at 18–19 weeks of gestational age using Western blot analysis. Synaptojanin-1 and C21orf2 were increased in DS, but others were comparable between DS and controls, suggesting that the DS phenotype cannot be simply explained by gene dosage effects. We are systematically quantifying all proteins whose genes are encoded on chromosome 21 in order to provide a better understanding of the pathobiochemistry of DS at the protein level. These studies are of significance as they show for the first time protein levels that are carrying out specific function in human fetal brain with DS. Received August 12, 2002 Accepted September 12, 2002 Published online January 30, 2003 Authors' address: Prof. Dr. Gert Lubec, CChem, FRSC (UK) Department of Pediatrics, University of Vienna, Waehringer Guertel 18, A-1090 Vienna, Austria, Fax: +43-1-40400-3194, E-mail: gert.lubec@akh-wien.ac.at Abbreviations: ADAR2, adenosine deaminase RNA-specific 2; C21orf2, chromosome 21 open reading frame 2; DS, Down syndrome; NSE, neuron specific enolase; OSCP, oligomycin sensitivity conferring protein; PEP-19, peptide 19  相似文献   

2.
Summary.  Down syndrome (DS) is the most common genetic cause of mental retardation. To explain the impact of extra chromosome 21 in the pathology of DS, gene dosage effect hypothesis has been proposed, but several investigators including our group have challenged this hypothesis. Although analysis of the sequence of chromosome 21 has been essentially completed, the molecular and biochemical mechanisms underlying the pathology are still unknown. We therefore investigated expression levels of six proteins encoded on chromosome 21 (HACS1, DYRK1A, αA-crystallin, FTCD, GARS-AIRS-GART, and CBS) in fetal cerebral cortex from DS and controls at 18–19 weeks of gestational age using Western blot analysis. Protein expression of HACS1 was significantly and remarkably decreased in DS, and the expression levels of five proteins were comparable between DS and controls suggesting that the gene dosage effect hypothesis is not sufficient to fully explain the DS phenotype. We are continuing to quantify proteins whose genes are encoded on chromosome 21 in order to provide a better understanding of the pathobiochemistry of DS at the protein level. Received July 1, 2002 Accepted July 19, 2002 Published online November 14, 2002 Acknowledgement This work was supported, in part (Dr. D. Patterson), by the National Institute of Child Health and Human Development (NICHD; HD17449). Authors' address: Prof. Dr. Gert Lubec, CChem, FRSC (UK), Department of Pediatrics, University of Vienna, Waehringer Guertel 18, A-1090 Vienna, Austria, Fax: +43-1-40400-3194, E-mail: gert.lubec@akh-wien.ac.at Abbreviations: DS, Down syndrome; HACS1, hematopoietic adapter containing Src homology 3 domain and sterile α motifs; DYRK1A, dual specificity tyrosine phosphorylated and regulated kinase; αA-crystallin, alpha crystallin subunit A; FTCD, formi-minotransferase cyclodeaminase; GARS-AIRS-GART, glycinamide ribonucleotide synthetase-aminoimidazole ribonucleotide synthetase-glycinamide ribonucleotide formyltransferase; CBS, cystathionine β-synthase; NSE, neuron specific enolase; GFAP, glial fibrillary acidic protein  相似文献   

3.
Cheon MS  Shim KS  Kim SH  Hara A  Lubec G 《Amino acids》2003,25(1):41-47
Summary.  Down syndrome (DS) is the most frequent genetic disorder with mental retardation and caused by trisomy 21. Although the molecular mechanisms of the various phenotypes of DS could be due to overexpression of gene(s) on chromosome 21, several groups have challenged this gene dosage effect hypothesis. The near completion of the sequencing of human chromosome 21 provides unprecedented opportunities to understand the molecular pathology of DS, however, functional information on gene products is limited so far. We therefore evaluated the levels of six proteins whose genes are encoded on chromosome 21 (trefoil factor 1, trefoil factor 2, trefoil factor 3, coxsackie virus and adenovirus receptor, carbonyl reductase 1 and interferon-α receptor) in fetal cerebral cortex from DS and controls at the early second trimester using Western blot analysis. None of the investigated proteins showed overexpression in DS compared to controls suggesting that these proteins are not involved in abnormal development of fetal DS brain and that DS phenotype can not be simply explained by the gene dosage effect hypothesis. We are systematically quantifying all proteins whose genes are encoded on chromosome 21 and these studies may provide a better understanding of genotype-phenotype correlation in DS. Received November 28, 2002 Accepted March 10, 2003 Acknowledgements's of Hospital of Philadelphia, PA, (USA) and Biogen, Inc. (anti-IFNAR-1 antibody; Cambridge, USA) for kindly providing the antibodies and comments. Authors' address: Prof. Dr. Gert Lubec, CChem, FRSC (UK), Department of Pediatrics, University of Vienna, Waehringer Guertel 18, A-1090 Vienna, Austria, Fax: +43-1-40400-3194, E-mail: gert.lubec@akh-wien.ac.at Abbreviations: AD, Alzheimer's disease; CAR, coxsackievirus and adenovirus receptor; CBR1, carbonyl reductase 1; CNS, central nervous system; DS, Down syndrome; IFNs, interferons; IFNAR-1, interferon-α receptor; NSE, neuron specific enolase; TFF, trefoil factor  相似文献   

4.
5.
Cheon MS  Dierssen M  Kim SH  Lubec G 《Amino acids》2008,35(2):339-343
Down syndrome (DS) is the most common human chromosomal abnormality caused by an extra copy of chromosome 21. The phenotype of DS is thought to result from overexpression of a gene or genes located on the triplicated chromosome or chromosome region. Several reports have shown that the neuropathology of DS comprises developmental abnormalities and Alzheimer-like lesions such as senile plaques. A key component of senile plaques is amyloid beta-peptide which is generated from the amyloid precursor protein (APP) by sequential action of beta-secretases (BACE1 and BACE2) and gamma-secretase. While BACE1 maps to chromosome 11, APP and BACE2 are located on chromosome 21. To challenge the gene dosage effect and gain insight into the expressional relation between beta-secretases and APP in DS brain, we evaluated protein expression levels of BACE1, BACE2 and APP in fetal and adult DS brain compared to controls. In fetal brain, protein expression levels of BACE2 and APP were comparable between DS and controls. BACE1 was increased, but did not reach statistical significance. In adult brain, BACE1 and BACE2 were comparable between DS and controls, but APP was significantly increased. We conclude that APP overexpression seems to be absent during the development of DS brain up to 18-19 weeks of gestational age. However, its overexpression in adult DS brain could lead to disturbance of normal function of APP contributing to neurodegeneration. Comparable expression of BACE1 and BACE2 speaks against the hypothesis that increased beta-secretase results in (or even underlies) increased production of amyloidogenic A beta fragments. Furthermore, current data indicate that the DS phenotype cannot be fully explained by simple gene dosage effect.  相似文献   

6.
Summary. Down Syndrome (DS, trisomy 21) is the most common genetic cause of mental retardation. The completed sequencing of genes encoded on chromosome 21 provides excellent basic information, however the molecular mechanisms leading to the phenotype of DS remain to be elucidated. Although overexpression of chromosome 21 encoded genes has been documented information at the protein expression level is mandatory as it is the proteins that carry out function. We therefore decided to evaluated expression level of seven proteins whose genes are encoded on chromosome 21: DSCR4, DSCR5, DSCR6; KIR4.2, GIRK2, KCNE1 and KCNE2 in fetal cortex brain of DS and controls at the early second trimester of pregnancy by Western blotting. -actin and neuron specific enolase (NSE) were used to normalise cell loss and neuronal loss. DSCR5 (PIG-P), a component of glycosylphosphatidylinositol-N-acetylglucosaminyltransferase (GPI-GnT), was overexpressed about twofold, even when levels were normalised with NSE. DSCR6 was overexpressed in addition but when normalised versus NSE, levels were comparable to controls. DSCR4 was not detectable in fetal brain. Potassium channels KIR4.2 and GIRK2 were comparable between DS and controls, whereas KCNE1 and KCNE2 were not detectable. Quantification of these proteins encoded on chromosome 21 revealed that not all gene products of the DS critical region are overexpressed in DS brain early in life, indicating that the DS phenotype cannot be simply explained by the gene dosage effect hypothesis. Overexpression of PIG-P (DSCR5) may lead to or represent impaired glycosylphosphatidylinositol-N-acetylglucosaminyltransferase mediated posttranslational modifications and subsequent anchoring of proteins to the plasma membrane.  相似文献   

7.
8.
9.
10.
Mice polytransgenic for chromosome 21 genes DSCR3, 5, 6, 9, and TTC3 within the Down Syndrome Critical Region-1 represent an animal model for Down Syndrome (DS). In a proteomic approach, we show a series of altered hippocampal protein levels that may be caused by overexpression of at least one of the five chromosome 21 genes and that fit fear-conditioned memory defects and were observed to be dysregulated in human fetal DS.  相似文献   

11.
12.
Down syndrome (DS), or Trisomy 21, is the most common genetic cause of cognitive impairment and congenital heart defects in the human population. To date, the contribution of microRNAs (miRNAs) in DS has not been investigated. Bioinformatic analyses demonstrate that human chromosome 21 (Hsa21) harbors five miRNA genes; miR-99a, let-7c, miR-125b-2, miR-155, and miR-802. MiRNA expression profiling, miRNA RT-PCR, and miRNA in situ hybridization experiments demonstrate that these miRNAs are overexpressed in fetal brain and heart specimens from individuals with DS when compared with age- and sex-matched controls. We hypothesize that trisomic 21 gene dosage overexpression of Hsa21-derived miRNAs results in the decreased expression of specific target proteins and contribute, in part, to features of the neuronal and cardiac DS phenotype. Importantly, Hsa21-derived miRNAs may provide novel therapeutic targets in the treatment of individuals with DS.  相似文献   

13.
Summary. Overexpression of chromosome 21 genes is directly or indirectly responsible for the Down syndrome phenotype. In order to analyse chromosome 21 gene products (Chr21Ps), we extracted proteins from fetal human brain cortex and applied an ultracentrifugal and chromatographic prefractionation principle followed by two-dimensional gel electrophoresis (2-DE) and mass-spectrometrical analysis using high-throughput automated MALDI-TOF/TOF. Nine Chr21Ps were identified: pyridoxal kinase; superoxide dismutase [Cu/Zn] 1; carbonyl reductase 1; ES1 protein homolog, mitochondrial [Precursor]; cystathionine-beta-synthetase; T-complex protein 1, theta subunit; cystatin B; 6-phosphofructokinase; glycinamide ribonucleotide synthetase. Mass-spectrometric characterisation of Chr21Ps following separation in 2-DE gels is a useful tool for the analysis of these structures in brain, independent of antibody availability and specificity.  相似文献   

14.
15.
16.
Protein expression in Down syndrome brain   总被引:5,自引:0,他引:5  
Engidawork E  Lubec G 《Amino acids》2001,21(4):331-361
Down syndrome (DS) is the most common chromosomal abnormality associated with early mental retardation and neurological abnormalities followed by precocious age dependent Alzheimer-type neurode generation later in life. Knowledge of the pathological mechanisms involved in DS is far from complete, but overexpression of genes residing in chromosome 21 was considered to be the central point for the DS phenotype. In this regard, beta amyloid precursor protein (APP), CuZn superoxide dismutase (SOD1) and S100beta have been implicated in causing apoptosis, a mechanism thought to be responsible for neuronal loss in DS, in one way or another. The gene dosage hypothesis has been challenged, however, and dysregulation of expression of genes located on other chromosomes has been described, which may well be secondary to chromosomal imbalance or a direct consequence of the disease process. The present review focuses on the protein expression profile in DS and we postulate that abnormalities in the coordinated expression, as well as interaction of proteins may be responsible for the neuropathology of DS. A series of candidate proteins are discussed that may be directly causing or reflecting the DS phenotype, in particular the brain abnormalities in DS.  相似文献   

17.
Gene expression profiling in the adult Down syndrome brain   总被引:4,自引:0,他引:4  
  相似文献   

18.
Down syndrome (DS) is the most common human chromosomal abnormality caused by an extra copy of chromosome 21 and characterized by somatic anomalies and mental retardation. The phenotype of DS is thought to result from overexpression of genes encoded on chromosome 21. Although several studies reported mRNA levels of genes localized on chromosome 21, mRNA data cannot be simply extrapolated to protein levels. Furthermore, most protein data have been generated using immunochemical methods. In this study we investigated expression of three proteins (cystathionine beta-synthase (CBS), pyridoxal kinase (PDXK), ES1 protein homolog, mitochondrial precursor (ES1)) whose genes are encoded on chromosome 21 in fetal DS (n = 8; mean gestational age of 19.8 +/- 2.0 weeks) and controls (n = 7; mean gestational age of 18.8 +/- 2.2 weeks) brains (cortex) using proteomic technologies. Two-dimensional electrophoresis (2-DE) with subsequent in-gel digestion of spots and matrix-assisted laser desorption ionization (MALDI) spectroscopic identification followed by quantification of spots with specific software was applied. Subsequent quantitative analysis of CBS and PDXK revealed levels comparable between DS and controls. By contrast, ES1 was two-fold elevated (P < 0.01) in fetal DS brain. This protein shows significant homology with the E. coli SCRP-27A/ELBB and zebrafish ES1 protein and contains a potential targeting sequence to mitochondria in its N-terminal region. Based on the assumption that structural similarities reflect functional relationship, it may be speculated that ES1 is serving a basic function in mitochondria. Although no function of the human ES1 protein is known yet, ES1 may be a candidate protein involved in the pathogenesis of the brain deficit in DS.  相似文献   

19.
Down syndrome (DS) is caused by trisomy of chromosome 21 (Hsa21) and presents a complex phenotype that arises from abnormal dosage of genes on this chromosome. However, the individual dosage-sensitive genes underlying each phenotype remain largely unknown. To help dissect genotype – phenotype correlations in this complex syndrome, the first fully transchromosomic mouse model, the Tc1 mouse, which carries a copy of human chromosome 21 was produced in 2005. The Tc1 strain is trisomic for the majority of genes that cause phenotypes associated with DS, and this freely available mouse strain has become used widely to study DS, the effects of gene dosage abnormalities, and the effect on the basic biology of cells when a mouse carries a freely segregating human chromosome. Tc1 mice were created by a process that included irradiation microcell-mediated chromosome transfer of Hsa21 into recipient mouse embryonic stem cells. Here, the combination of next generation sequencing, array-CGH and fluorescence in situ hybridization technologies has enabled us to identify unsuspected rearrangements of Hsa21 in this mouse model; revealing one deletion, six duplications and more than 25 de novo structural rearrangements. Our study is not only essential for informing functional studies of the Tc1 mouse but also (1) presents for the first time a detailed sequence analysis of the effects of gamma radiation on an entire human chromosome, which gives some mechanistic insight into the effects of radiation damage on DNA, and (2) overcomes specific technical difficulties of assaying a human chromosome on a mouse background where highly conserved sequences may confound the analysis. Sequence data generated in this study is deposited in the ENA database, Study Accession number: ERP000439.  相似文献   

20.
An extra copy of human chromosome 21 (Chr 21) causes Down syndrome (DS), which is characterized by mental retardation and congenital heart disease (CHD). Chimeric mice containing Chr 21 also exhibit phenotypic traits of DS including CHD. In this study, to identify genes contributing to DS phenotypes, we compared the overall protein expression patterns in hearts of Chr 21 chimeras and wild type mice by two-dimensional electrophoresis. The endogenous mouse atrial specific isoform of myosin light chain-2 (mlc-2a) protein was remarkably downregulated in the hearts of chimeric mice. We also confirmed that the human MLC-2A protein level was significantly lower in a human DS neonate heart, as compared to that of a normal control. Since mouse mlc-2a is involved in heart morphogenesis, our data suggest that the downregulation of this gene plays a crucial role in the CHD observed in DS. The dosage imbalance of Chr 21 has a trans-acting effect which lowers the expression of other genes encoded elsewhere in the genome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号