首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
1-Hydroxy-2-naphthoate is formed as an intermediate in the bacterial degradation of phenanthrene. A monooxygenase which catalyzed the oxidation of 1-hydroxy-2-naphthoateto 1,2-dihydroxynaphthalene was purified from the phenanthrene- and naphthalene-degrading Pseudomonas putida strain BS202-P1. The purified protein had a molecular weight of45 kDa and required NAD(P)H and FAD as cofactors. The purified enzyme also catalysed the oxidation of salicylate and various substituted salicylates. The comparison of the Kmand Vmax values for 1-hydroxy-2-naphthoate and salicylate demonstrated a higher catalytic efficiency of the enzyme for salicylate as a substrate. A significant substrate-inhibition was detected with higher concentrations of 1-hydroxy-2-naphthoate.The aminoterminal amino acid sequence of the purified enzyme showed significant homologies to salicylate 1-monooxygenases from other Gram negative bacteria. It was therefore concluded that during the degradation of phenanthrene the conversion of 1-hydroxy-2-naphthoate to 1,2-dihydroxynaphthalene is catalysed by a salicylate1-monooxygenase. Together with previous studies, this suggested that the enzymes of the naphthalene pathway are sufficient to catalyse also the mineralization of phenanthrene.  相似文献   

2.
The gene coding for a dioxygenase with the ability to cleave salicylate by a direct ring fission mechanism to 2-oxohepta-3,5-dienedioic acid was cloned from Pseudaminobacter salicylatoxidans strain BN12. The deduced amino acid sequence encoded a protein with a molecular mass of 41,176 Da, which showed 28 and 31% sequence identity, respectively, to a gentisate 1,2-dioxygenase from Pseudomonas alcaligenes NCIMB 9867 and a 1-hydroxy-2-naphthoate 1,2-dioxygenase from Nocardioides sp. KP7. The highest degree of sequence identity (58%) was found to a presumed gentisate 1,2-dioxygenase from Corynebacterium glutamicum. The enzyme from P. salicylatoxidans BN12 was heterologously expressed in Escherichia coli and purified as a His-tagged enzyme variant. The purified enzyme oxidized in addition to salicylate, gentisate, 5-aminosalicylate, and 1-hydroxy-2-naphthoate also 3-amino- and 3- and 4-hydroxysalicylate, 5-fluorosalicylate, 3-, 4-, and 5-chlorosalicylate, 3-, 4-, and 5-bromosalicylate, 3-, 4-, and 5-methylsalicylate, and 3,5-dichlorosalicylate. The reactions were analyzed by high pressure liquid chromatography/mass spectrometry, and the reaction products were tentatively identified. For comparison, the putative gentisate 1,2-dioxygenase from C. glutamicum was functionally expressed in E. coli and shown to convert gentisate but not salicylate or 1-hydroxy-2-naphthoate.  相似文献   

3.
1-Hydroxy-2-naphthoate (compound I) is a metabolite of the phenanthrene-degradative pathway in Nocardioides sp. strain KP7. This singly hydroxylated aromatic compound is cleaved by 1-hydroxy-2-naphthoate dioxygenase. In this study, the structure of the ring cleavage product generated by the action of homogeneous 1-hydroxy-2-naphthoate dioxygenase was determined upon separation by high-performance liquid chromatography at pH 2.5 by using nuclear magnetic resonance (NMR) and mass spectroscopic techniques. The ring cleavage product at this pH existed in equilibrium between two forms, 2-oxo-3-(3-oxo-1,3-dihydro-1-isobenzofuranyl)propanoate (compound III) and 2,2-dihydroxy-3-(3-oxo-1,3-dihydro-1-isobenzofuranyl)propanoate (compound IV). After the pH of the solution was raised to 7.5, the structure of the major species became (E)-4-(2-carboxylatophenyl)-2-oxo-3-butenoate (compound II; common name, trans-2′-carboxybenzalpyruvate), which was in equilibrium with compound III. Direct monitoring of the enzymatic formation of the ring cleavage product by 1H-NMR in a deuterated potassium phosphate buffer (pH 7.5) detected only compound II as a product, and the proton on carbon 3 of compound II was not exchanged with deuterium. Thus, compound II is likely to be the first stable product of dioxygenation of 1-hydroxy-2-naphthoate.  相似文献   

4.
The growth of Pseudomonas fluorescens 16N2 on naphthalene was accompanied with accumulation of salicylate in the culture medium and induction of gentisate 1,2-dioxygenase and catechol 1,2-dioxygenase. The transformation of anthracene by the cells growing on hexadecane led to the formation of 3-hydroxy-2-naphthoate and salicylate. Pathways for naphthalene and anthracene degradation are proposed.  相似文献   

5.
The chrysene-degrading bacterium Pseudoxanthomonas sp. PNK-04 was isolated from a coal sample. Three novel metabolites, hydroxyphenanthroic acid, 1-hydroxy-2-naphthoic acid and salicylic acid, were identified by TLC, HPLC and MS. Key enzyme activities, namely 1-hydroxy-2-naphthoate hydroxylase, 1,2-dihydroxynaphthalene dioxygenase, salicylaldehyde dehydrogenase and catechol-1,2-dioxygenase, were noted in the cell-free extract. These results suggest that chrysene is catabolized via hydroxyphenanthroic acid, 1-hydroxy-2-naphthoic acid, salicylic acid and catechol. The terminal aromatic metabolite, catechol, is then catabolized by catechol-1,2-dioxygenase to cis,cis-muconic acid, ultimately forming TCA cycle intermediates. Based on these studies, the proposed catabolic pathway for chrysene degradation by strain PNK-04 is chrysene → hydroxyphenanthroic acid → 1-hydroxy-2-naphthoic acid → 1,2-dihydroxynaphthalene → salicylic acid → catechol →cis,cis-muconic acid.  相似文献   

6.
Five naphthalene- and salicylate-utilizing Pseudomonas putida strains cultivated for a long time on phenanthrene produced mutants capable of growing on this substrate and 1-hydroxy-2-naphthoate as the sole sources of carbon and energy. The mutants catabolize phenanthrene with the formation of 1-hydroxy-2-naphthoate, 2-hydroxy-1-naphthoate, salicylate, and catechol. The latter products are further metabolized by the meta- and ortho-cleavage pathways. In all five mutants, naphthalene and phenanthrene are utilized with the involvement of plasmid-borne genes. The acquired ability of naphthalene-degrading strains to grow on phenanthrene is explained by the fact that the inducible character of the synthesis of naphthalene dioxygenase, the key enzyme of naphthalene and phenanthrene degradation, becomes constitutive.  相似文献   

7.
Five naphthalene- and salicylate-utilizing Pseudomonas putida strains cultivated for a long time on phenanthrene produced mutants capable of growing on this substrate and 1-hydroxy-2-naphthoate as the sole sources of carbon and energy. The mutants catabolize phenanthrene with the formation of 1-hydroxy-2-naphthoate, 2-hydroxy-1-naphthoate, salicylate, and catechol. The latter products are further metabolized by the meta- and ortho-cleavage pathways. In all five mutants, naphthalene and phenanthrene are utilized with the involvement of plasmid-born genes. The acquired ability of naphthalene-degrading strains to grow on phenanthrene is explained by the fact that the inducible character of the synthesis of naphthalene dioxygenase, the key enzyme of naphthalene and phenanthrene degradation, becomes constitutive.  相似文献   

8.
In cell extracts of Pseudaminobacter salicylatoxidans strain BN12, an enzymatic activity was detected which converted salicylate in an oxygen-dependent but NAD(P)H-independent reaction to a product with an absorbance maximum at 283 nm. This metabolite was isolated, purified, and identified by mass spectrometry and (1)H and (13)C nuclear magnetic resonance spectroscopy as 2-oxohepta-3,5-dienedioic acid. This metabolite could be formed only by direct ring fission of salicylate by a 1,2-dioxygenase reaction. Cell extracts from P. salicylatoxidans also oxidized 5-aminosalicylate, 3-, 4-, and 5-chlorosalicylate, 3-, 4-, and 5-methylsalicylate, 3- and 5-hydroxysalicylate (gentisate), and 1-hydroxy-2-naphthoate. The dioxygenase was purified and shown to consist of four identical subunits with a molecular weight of about 45,000. The purified enzyme showed higher catalytic constants with gentisate or 1-hydroxy-2-naphthoate than with salicylate. It was therefore concluded that P. salicylatoxidans synthesized a gentisate 1,2-dioxygenase with an extraordinary substrate range, which also allowed the oxidation of salicylate.  相似文献   

9.
Plasmid vector and allelic exchange mutagenesis systems were established for the genetic analysis of a phenanthrene-degrading mycobacterial strain, Mycobacterium sp. EPa45. Successful application of these systems revealed the necessity of the EPa45 phdI gene for the degradation of 1-hydroxy-2-naphthoate, which has been proposed to be an intermediate product in the degradation pathway of phenanthrene.  相似文献   

10.
The crystallographic structures of the adducts of salicylate 1,2-dioxygenase (SDO) with substrates salicylate, gentisate and 1-hydroxy-2-naphthoate, obtained under anaerobic conditions, have been solved and analyzed. This ring fission dioxygenase from the naphthalenesulfonate-degrading bacterium Pseudaminobacter salicylatoxidans BN12, is a homo-tetrameric class III ring-cleaving dioxygenase containing a catalytic Fe(II) ion coordinated by three histidine residues. SDO is markedly different from the known gentisate 1,2-dioxygenases or 1-hydroxy-2-naphthoate dioxygenases, belonging to the same class, because of its unique ability to oxidatively cleave salicylate, gentisate and 1-hydroxy-2-naphthoate. The crystal structures of the anaerobic complexes of the SDO reveal the mode of binding of the substrates into the active site and unveil the residues which are important for the correct positioning of the substrate molecules. Upon binding of the substrates the active site of SDO undergoes a series of conformational changes: in particular Arg127, His162, and Arg83 move to make hydrogen bond interactions with the carboxyl group of the substrate molecules. Unpredicted concerted displacements upon substrate binding are observed for the loops composed of residues 40-43, 75-85, and 192-198 where several aminoacidic residues, such as Leu42, Arg79, Arg83, and Asp194, contribute to the closing of the active site together with the amino-terminal tail (residues 2-15). Differences in substrate specificity are controlled by several residues located in the upper part of the substrate binding cavity like Met46, Ala85, Trp104, and Phe189, although we cannot exclude that the kinetic differences observed could also be generated by concerted conformational changes resulting from amino-acid mutations far from the active site.  相似文献   

11.
K Valli  H Wariishi    M H Gold 《Journal of bacteriology》1992,174(7):2131-2137
Under secondary metabolic conditions, the white-rot basidiomycete Phanerochaete chrysosporium degraded 2,7-dichlorodibenzo-p-dioxin (I). The pathway for the degradation of I was elucidated by the characterization of fungal metabolites and oxidation products generated by lignin peroxidase (LiP), manganese peroxidase (MnP), and crude intracellular cell-free extracts. The multistep pathway involves the degradation of I and subsequent intermediates by oxidation, reduction, and methylation reactions to yield the key intermediate 1,2,4-trihydroxybenzene (III). In the first step, the oxidative cleavage of the dioxin ring of I, catalyzed by LiP, generates 4-chloro-1,2-benzoquinone (V), 2-hydroxy-1,4-benzoquinone (VIII), and chloride. The intermediate V is then reduced to 1-chloro-3,4-dihydroxybenzene (II), and the latter is methylated to form 1-chloro-3,4-dimethoxybenzene (VI). VI in turn is oxidized by LiP to generate chloride and 2-methoxy-1,4-benzoquinone (VII), which is reduced to 2-methoxy-1,4-dihydroxybenzene (IV). IV is oxidized by either LiP or MnP to generate 4-hydroxy-1,2-benzoquinone, which is reduced to 1,2,4-trihydroxybenzene (III). The other aromatic product generated by the initial LiP-catalyzed cleavage of I is 2-hydroxy-1,4-benzoquinone (VIII). This intermediate is also generated during the LiP- or MnP-catalyzed oxidation of the intermediate chlorocatechol (II). VIII is also reduced to 1,2,4-trihydroxybenzene (III). The key intermediate III is ring cleaved by intracellular cell extracts to produce, after reduction, beta-ketoadipic acid. In this pathway, initial oxidative cleavage of both C-O-C bonds in I by LiP generates two quinone products, 4-chloro-1,2-benzoquinone (V) and 2-hydroxy-1,4-benzoquinone (VIII). The former is recycled by reduction and methylation reactions to generate an intermediate which is also a substrate for peroxidase-catalyzed oxidation, leading to the removal of a second chlorine atom. This unique pathway results in the removal of both aromatic chlorines before aromatic ring cleavage takes place.  相似文献   

12.
Enrichment cultures yielded two strains of Pseudomonas putida capable of growth with orcinol (3,5-dihydroxytoluene) as the sole source of carbon. Experiments with cell suspensions and cell extracts indicate that orcinol is metabolized by hydroxylation of the benzene ring followed successively by ring cleavage and hydrolyses to give 2 mol of acetate and 1 mol of pyruvate per mol of orcinol as shown: orcinol leads to 2,3,5-trihydroxytoluene leads to 2,4,6-trioxoheptanoate leads to acetate + acetylpyruvate leads to acetate + pyruvate. Evidence for this pathway is based on: (i) high respiratory activities of orcinol-grown cells towards 2,3,5-trihydroxytoluene; (ii) transient accumulation of a quinone, probably 2-hydroxy-6-methyl-1,4-benzoquinone, during grouth with orcinol; (iii) formation of pyruvate and acetate from orcinol, 2,3,5-trihydroxytoluene, and acetylpyruvate catalyzed by extracts of orcinol, but not by succinate-grown cells; (iv) characterization of the product of oxidation of 3-methylcatechol (an analogue of 2,3,5-trihydroxytoluene) showing that oxygenative cleavage occurs between carbons bearing methyl and hydroxyl substituents; (v) transient appearance of a compound having spectral properties similar to those of acetylpyruvate during 2,3,5-trihydroxytoluene oxidation by extracts of orcinol-grown cells. Orcinol hydroxylase exhibits catalytic activity when resorcinol or m-cresol is substituted for orcinol; hydroxyquinol and 3-methylcatechol are substrates for the ring cleavage enzyme 2,3,5-trihydroxytoluene-1,2-oxygenase. The enzymes of this pathway are induced by growth with orcinol but not with glucose or succinate.  相似文献   

13.
Strain DCL14, which is able to grow on limonene as a sole source of carbon and energy, was isolated from a freshwater sediment sample. This organism was identified as a strain of Rhodococcus erythropolis by chemotaxonomic and genetic studies. R. erythropolis DCL14 also assimilated the terpenes limonene-1,2-epoxide, limonene-1,2-diol, carveol, carvone, and (-)-menthol, while perillyl alcohol was not utilized as a carbon and energy source. Induction tests with cells grown on limonene revealed that the oxygen consumption rates with limonene-1,2-epoxide, limonene-1,2-diol, 1-hydroxy-2-oxolimonene, and carveol were high. Limonene-induced cells of R. erythropolis DCL14 contained the following four novel enzymatic activities involved in the limonene degradation pathway of this microorganism: a flavin adenine dinucleotide- and NADH-dependent limonene 1, 2-monooxygenase activity, a cofactor-independent limonene-1, 2-epoxide hydrolase activity, a dichlorophenolindophenol-dependent limonene-1,2-diol dehydrogenase activity, and an NADPH-dependent 1-hydroxy-2-oxolimonene 1,2-monooxygenase activity. Product accumulation studies showed that (1S,2S,4R)-limonene-1,2-diol, (1S, 4R)-1-hydroxy-2-oxolimonene, and (3R)-3-isopropenyl-6-oxoheptanoate were intermediates in the (4R)-limonene degradation pathway. The opposite enantiomers [(1R,2R,4S)-limonene-1,2-diol, (1R, 4S)-1-hydroxy-2-oxolimonene, and (3S)-3-isopropenyl-6-oxoheptanoate] were found in the (4S)-limonene degradation pathway, while accumulation of (1R,2S,4S)-limonene-1,2-diol from (4S)-limonene was also observed. These results show that R. erythropolis DCL14 metabolizes both enantiomers of limonene via a novel degradation pathway that starts with epoxidation at the 1,2 double bond forming limonene-1,2-epoxide. This epoxide is subsequently converted to limonene-1,2-diol, 1-hydroxy-2-oxolimonene, and 7-hydroxy-4-isopropenyl-7-methyl-2-oxo-oxepanone. This lactone spontaneously rearranges to form 3-isopropenyl-6-oxoheptanoate. In the presence of coenzyme A and ATP this acid is converted further, and this finding, together with the high levels of isocitrate lyase activity in extracts of limonene-grown cells, suggests that further degradation takes place via the beta-oxidation pathway.  相似文献   

14.
Burkholderia sp. TNFYE-5 was isolated from soil for the ability to grow on phenanthrene as sole carbon and energy source. Unlike most other phenanthrene-degrading bacteria, TNFYE-5 was unable to grow on naphthalene. Growth substrate range experiments coupled with the ring-cleavage enzyme assay data suggest that TNFYE-5 initially metabolizes phenanthrene to 1-hydroxy-2-naphthoate with subsequent degradation through the phthalate and protocatechuate and beta-ketoadipate pathway. A metabolite in the degradation of naphthalene by TNFYE-5 was isolated by high-pressure liquid chromatography (HPLC) and was identified as salicylate by UV-visible spectral and gas chromatography-mass spectrometry analyses. Thus, the inability to degrade salicylate is apparently one major reason for the incapability of TNFYE-5 to grow on naphthalene.  相似文献   

15.
伯克霍尔德氏菌(Burkholderiasp.)JT1500对2-萘酸(2-naphthoate)生物降解的关键步骤之一是通过2-萘酸加单氧酶羟化2-萘酸生成1-羟基-2-萘酸(1-hydroxy-2-naphthoate)。在已确定2-萘酸加单氧酶基因及其功能的基础上对含有该基因的一个4.8kb长度的基因簇进行了克隆测序。该序列上含有4个可能的阅读框orfB、orfC、orfD、orfA。序列比对发现,orfA序列与JaponicumUSDA110和RalstoniaeutrophaHF39中的加单氧酶基因同源性较高,orfB序列与BordetllapertussisTohamaI、RalstoniasolanacearumGMI1000和BordetellabronchisepticaRB50等菌中的黄素还原酶基因有一定的同源性。酶活分析发现只含基因orfA的重组大肠杆菌SA细胞提取液有很低的加氧活性,含基因orfB的重组子SB细胞提取液没有加氧活性,但在反应体系中同时加入SA和SB的细胞提取液后,其加氧活性显著增强,包含片段orfB orfA的重组子SB A在黄素(FMN、FAD)存在的情况下也表现出很强的加氧活性;在厌氧条件下,能检测出SB细胞提取液的黄素还原活性。基于以上信息,认为2-萘酸加单氧酶基因簇含有两个重要的组分黄素还原酶基因(nmoB)和加单氧酶基因(nmoA)。2-萘酸加单氧酶Nmo羟化2-萘酸的过程为先由黄素还原酶(NmoB)在NADH存在的条件下将黄素(FMN、FAD)还原为还原型黄素(FMNH2、FADH2),然后加单氧酶(NmoA)利用还原型黄素和O2羟化底物2-萘酸,生成1-羟基-2-萘酸。NmoB是NmoA的偶联蛋白。  相似文献   

16.
Recognition and binding of anions in water is difficult due to the ability of water molecules to form strong hydrogen bonds and to solvate the anions. The complexation of two different carboxylates with 1-(4-carbomethoxypyrrolidone)-terminated PAMAM dendrimers was studied in aqueous solution using NMR and ITC binding models. Sodium 2-naphthoate and sodium 3-hydroxy-2-naphthoate were chosen as carboxylate model compounds, since they carry structural similarities to many non-steroidal anti-inflammatory drugs and they possess only a limited number of functional groups, making them ideal to study the carboxylate-dendrimer interaction selectively. The binding stoichiometry for 3-hydroxy-2-naphthoate was found to be two strongly bound guest molecules per dendrimer and an additional 40 molecules with weak binding affinity. The NOESY NMR showed a clear binding correlation of sodium 3-hydroxy-2-naphthoate with the lyophilic dendrimer core, possibly with the two high affinity guest molecules. In comparison, sodium 2-naphthoate showed a weaker binding strength and had a stoichiometry of two guests per dendrimer with no additional weakly bound guests. This stronger dendrimer interaction with sodium 3-hydroxy-2-naphthoate is possibly a result of the additional interactions of the dendrimer with the extra hydroxyl group and an internal stabilization of the negative charge due to the hydroxyl group. These findings illustrate the potential of the G4 1-(4-carbomethoxy) pyrrolidone dendrimer to complex carboxylate guests in water and act as a possible carrier of such molecules.  相似文献   

17.
采用硅胶柱层析结合制备液相从巴戟天(Morinda officinalis)中分离得到8个蒽醌类化合物。根据化合物的波谱数据并与文献对照进行了结构鉴定,分别为2-羟甲基-3-羟基蒽醌(2-hydroxymethyl-3-hydroxyanthraquinone,1)、3-羟基-2-羟甲基-1-甲氧基蒽醌(3-hydroxy-2-hydroxymethyl-1-methoxyanthraquinone,2)、2-羟基-1-甲氧基蒽醌(2-hydroxy-1-methoxyanthraquinone,3)、3-羟基-1,2-二甲氧基蒽醌(3-hydroxy-1,2-dimethoxyanthraquinone,4)、甲基异茜草素-1-甲醚(rubiadin-1-methyl ether,5)、1,3-二羟基-2-甲氧基蒽醌(1,3-dihydroxy-2-methoxyanthraquinone,6)、1,3-二羟基-2-乙氧甲基蒽醌(ibericin,7)、1,2-二羟基-3-甲基蒽醌(1,2-dihydroxy-3-methylanthraquinone,8)。其中蒽醌(2)为首次从该植物中分得。利用MTT法对分离出的蒽醌的体外抗癌活性进行筛选,结果显示蒽醌(3)、(5)和(7)对肝癌细胞SMMC-7721增殖有明显的抑制作用,当蒽醌的浓度为400μmol/L时,蒽醌(3)、(5)和(7)对肝癌细胞的抑制率分别为44. 63%、20. 52%、54. 89%。  相似文献   

18.
Several nonylphenol isomers with alpha-quaternary carbon atoms serve as growth substrates for Sphingomonas xenophaga Bayram, whereas isomers containing hydrogen atoms at the alpha-carbon do not. Three metabolites of 4-(1-methyloctyl)-phenol were isolated in mg quantities from cultures of strain Bayram supplemented with the growth substrate isomer 4-(1-ethyl-1,4-dimethyl-pentyl)-phenol. They were unequivocally identified as 4-hydroxy-4-(1-methyl-octyl)-cyclohexa-2,5-dienone, 4-hydroxy-4-(1-methyl-octyl)-cyclohex-2-enone, and 2-(1-methyl-octyl)-benzene-1,4-diol by high pressure liquid chromatography-mass spectrometry and nuclear magnetic resonance spectroscopy. Furthermore, two metabolites originating from 4-n-nonylphenol were identified as 4-hydroxy-4-nonyl-cyclohexa-2,5-dienone and 4-hydroxy-4-nonyl-cyclohex-2-enone by high pressure liquid chromatography-mass spectrometry. We conclude that nonylphenols were initially hydroxylated at the ipso-position forming 4-alkyl-4-hydroxy-cyclohexa-2,5-dienones. Dienones originating from growth substrate nonylphenol isomers underwent a rearrangement that involved a 1,2-C,O shift of the alkyl moiety as a cation to the oxygen atom of the geminal hydroxy group yielding 4-alkoxyphenols, from which the alkyl moieties can be easily detached as alcohols by known mechanisms. Dienones originating from nongrowth substrates did not undergo such a rearrangement because the missing alkyl substituents at the alpha-carbon atom prevented stabilization of the putative alpha-carbocation. Instead they accumulated and subsequently underwent side reactions, such as 1,2-C,C shifts and dihydrogenations. The ipso-hydroxylation and the proposed 1,2-C,O shift constitute key steps in a novel pathway that enables bacteria to detach alpha-branched alkyl moieties of alkylphenols for utilization of the aromatic part as a carbon and energy source.  相似文献   

19.
The crystallographic structure of salicylate 1,2-dioxygenase (SDO), a new ring fission dioxygenase from the naphthalenesulfonate-degrading strain Pseudaminobacter salicylatoxidans BN12, which oxidizes salicylate to 2-oxohepta-3,5-dienedioic acid by a novel ring fission mechanism, has been solved by molecular replacement techniques and refined at 2.9 Å resolution (Rfree 26.1%; R-factor 19.3%). SDO is a homo-tetramer member of type III extradiol-type dioxygenases with a subunit topology characteristic of the bicupin β-barrel folds. The catalytic center contains a mononuclear iron(II) ion coordinated to three histidine residues (His119, His121, and His160), located within the N-terminal domain in a solvent-accessible pocket. SDO is markedly different from the known gentisate 1,2-dioxygenases (GDO) or 1-hydroxy-2-naphthoate dioxygenase because of its unique ability to oxidatively cleave numerous salicylates, gentisates and 1-hydroxy-2-naphthoate with high catalytic efficiency. The comparison of the structure and substrate specificity for a series of different substrates with the corresponding data for several GDOs and the docking of salicylates/gentisates in the active site of SDO, allowed the identification of several active site residues responsible for differences of substrate specificity. In particular, a more defined electron density of the N-terminal region allowed the discovery of a novel structure fragment in SDO previously unobserved in GDO. This region contributes several residues to the active site that influence substrate specificity for both of these enzymes. Implications on the catalytic mechanism are discussed.  相似文献   

20.
Strain DCL14, which is able to grow on limonene as a sole source of carbon and energy, was isolated from a freshwater sediment sample. This organism was identified as a strain of Rhodococcus erythropolis by chemotaxonomic and genetic studies. R. erythropolis DCL14 also assimilated the terpenes limonene-1,2-epoxide, limonene-1,2-diol, carveol, carvone, and (−)-menthol, while perillyl alcohol was not utilized as a carbon and energy source. Induction tests with cells grown on limonene revealed that the oxygen consumption rates with limonene-1,2-epoxide, limonene-1,2-diol, 1-hydroxy-2-oxolimonene, and carveol were high. Limonene-induced cells of R. erythropolis DCL14 contained the following four novel enzymatic activities involved in the limonene degradation pathway of this microorganism: a flavin adenine dinucleotide- and NADH-dependent limonene 1,2-monooxygenase activity, a cofactor-independent limonene-1,2-epoxide hydrolase activity, a dichlorophenolindophenol-dependent limonene-1,2-diol dehydrogenase activity, and an NADPH-dependent 1-hydroxy-2-oxolimonene 1,2-monooxygenase activity. Product accumulation studies showed that (1S,2S,4R)-limonene-1,2-diol, (1S,4R)-1-hydroxy-2-oxolimonene, and (3R)-3-isopropenyl-6-oxoheptanoate were intermediates in the (4R)-limonene degradation pathway. The opposite enantiomers [(1R,2R,4S)-limonene-1,2-diol, (1R,4S)-1-hydroxy-2-oxolimonene, and (3S)-3-isopropenyl-6-oxoheptanoate] were found in the (4S)-limonene degradation pathway, while accumulation of (1R,2S,4S)-limonene-1,2-diol from (4S)-limonene was also observed. These results show that R. erythropolis DCL14 metabolizes both enantiomers of limonene via a novel degradation pathway that starts with epoxidation at the 1,2 double bond forming limonene-1,2-epoxide. This epoxide is subsequently converted to limonene-1,2-diol, 1-hydroxy-2-oxolimonene, and 7-hydroxy-4-isopropenyl-7-methyl-2-oxo-oxepanone. This lactone spontaneously rearranges to form 3-isopropenyl-6-oxoheptanoate. In the presence of coenzyme A and ATP this acid is converted further, and this finding, together with the high levels of isocitrate lyase activity in extracts of limonene-grown cells, suggests that further degradation takes place via the β-oxidation pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号