首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
During the absorption of phosphate by yeast, the cells acquire the capacity to absorb Mn++ and Mg++, a capacity which is retained even after phosphate is no longer present in the medium. Cells pretreated with phosphate and then washed, slowly lose their ability to absorb Mn++, the rate of loss depending on the temperature and on the metabolic state. The fermentation of sugars induces a very rapid loss of absorptive capacity, whereas the respiration of ethyl alcohol, lactate, or pyruvate has little effect. Inhibitor studies with sodium acetate, redox dyes, and arsenate, reveal parallel effects on Mn++ absorption, and on phosphate absorption. It is concluded that the synthesis of a carrier for the transport of Mg++ and Mn++ involves a phosphorylation step closely coupled with reactions involved in the absorption of phosphate.  相似文献   

2.
Summary To understand the earliest phases of epidermal cell spreading we have sought a defined in vitro system. We studied the divalent cation dependence of guinea pig epidermal cell spreading in media containing varying concentrations of cations. No spreading occurred in calcium-magnesium-free Dulbecco's modified Eagle's medium (CMF-DME) in the presence of cation-free fetal bovine serum; however, significant spreading occurred if the medium was supplemented with Mg++ plus Ca++ or Mg++ alone. Supplementing with Ca++ alone led to much less spreading. These cations in CMF-DME did not support spreading in the absence of serum or the presence of serum albumin. Assaying cell spreading in a simple salt solution consisting of NaCl, KCl, Tris buffer, pH 7.4 plus dialyzed serum and a series of divalent cation supplements (Ca++, Mg++, Mn++, Co++, Zn++, Ni++), showed that only Mg++ and Mn++, and to a lesser extent, Ca++, supported cell spreading. In contrast to Mg++, however, Mn++ could support spreading in the absence of whole serum if serum albumin were present. Although Mn++ plus serum albumin supported more rapid spreading at lower cation concentrations than Mg++ plus serum, equal concentrations of Ca++ completely blocked the Mn++ effect. In contrast to the increasing cell spreading, which occurred in Mg++-containing medium with time, cell death occurred in Mn++-containing medium by 24 h. Consonant with studies from other laboratories, human foreskin fibroblasts spread in Mn++-containing salt solution in the absence of protein supplements. These experiments indicate for epidermal cell spreading that Mg++ is the important cation in tissue culture media, that under proper cation conditions epidermal cells do not need a specific spreading protein (i.e. a protein that has been demonstrated to support cell spreading), that Mn++ and Mg++-induced spreading seem to represent different mechanisms, that fibroblastic and epidermal cells have different cation requirements for in vitro spreading, and that the crucial role cations play in cell spreading remains to be elucidated. This work was supported in part by Public Health Service grant CA34470-01 (KSS) awarded by the National Cancer Institute, Bethesda, Md.  相似文献   

3.
G. F. Wildner  J. Henkel 《Planta》1979,146(2):223-228
Ribulose-1,5-bisphosphate carboxylase-oxygenase is deactivated by removal of Mg++. The enzyme activities can be restored to a different extent by the addition of various divalent ions in the presence of CO2. Incubation with Mg++ and CO2 restores both enzyme activities, whereas, the treatment of the enzyme with the transition metal ions (Mn++, Co++, and Ni++) and CO2 fully reactivates the oxygenase: however, the carboxylase activity remains low. In experiments where CO2-free conditions were conscientiously maintained, no reactivation of RuBP oxygenase was observed, although Mn++ ions were present. Other divalent cations such as Ca++ and Zn++, restore neither the carboxylase nor the oxygenase reaction. Furthermore, the addition of Mn++ to the Mg++ and CO2 preactivated enzyme significantly inhibited carboxylase reactions, but increased the oxygenase reaction.Abbreviation RuBP ribulose-1,5-bisphosphate. The enyme unit for RuBP carboxylase is defined as mol CO2 fixed·min-1 and for the RuBP oxygenase as mol O2 consumed · min-1  相似文献   

4.
The activation of desoxyribonuclease on desoxyribonucleate, known to occur with Mg++ and Mn++, has been shown to occur equally well with Co++, to nearly the same extent with Fe++, and to a lesser extent with Ca++, Ba++, Sr++, Ni++, Cd++, and Zn++. The conditions under which the optimal activation is revealed vary among these ions. Thus, Mg++, Mn++, and Co++ may show marked activation under conditions in which Fe++ is nearly ineffective. Since too high a concentration of an ion may be as ineffective as too little, concentration-activation curves were determined for each ion. Per micromole of nucleic acid phosphorus, the optimal effective amount of each ion in micromoles is as follows: Mg++ 3, Mn++ 3, Co++ 3, Fe++ 0.3, Ni++ 0.3, Ba++ 1.7, Ca++ 3, Sr++ 3, Zn++ 0.3, and Cd++ 0.3.The optimum pH for the activation with Mg++, Co++, and Ca++ is about 6.5, that with Fe++ is at 5.7, while Mn++ shows two optima at pH 6.8 and 8.0.Experiments conducted in Pyrex and in quartz vessels showed the same results, and indicated that there was no activation of desoxy-ribonuclease in the absence of added salts.  相似文献   

5.
The antogonist [3H]-mepyramine is used to label histamine H1-receptors in guinea pig lung. Scatchard analysis reveals two classes of binding sites. Monovalent cations decrease steady-state binding (Na+ > Li+ > K+), while divalent cations (Mg++, Ca++, Mn++, Ba++) exhibit a biphasic curve, increasing binding at low concentrations and decreasing it at higher levels. Na+ decreases both affinity and number of binding sites. Dissociation curve shows two components, and Na+ accelerates the rate of dissociation of the slower component. GTP does not affect the binding of the antagonist 3H-Mepyramine.  相似文献   

6.
The coupling of ion binding to the single strand helix—coil transition in poly (A) and poly(C) is used to obtain information about both processes by ion titration and field-jump relaxation methods. Characterisation of the field-jump relaxation in poly(C) at various concentrations of monovalent ions leads to the evaluation of a stability constant K = 71 M?1 for the ion binding to the polymer. The rate constant of helix formation is found to be 1.3 × 107 s?1, whereas the dissociation rate is 1.0 × 106 s?1. Similar data are presented for poly (A) and poly (dA).The interaction of Mg++ and Ca++ with poly (A) and poly (C) is measured by a titration method using the polymer absorbance for the indication of binding. The data can be represented by a model with independent binding “sites”. The stability constants increase with decreasing salt concentration from 2.7 × 104 M?1 at medium ionic strengths up to 2.7 × 107 M?1 at low ionic strength. The number of ions bound per nucleotide residue is in the range 0.2 to 0.3. Relaxation time constants associated with Mg++ binding are characterised over a broad range of Mg++ concentrations from 5 μM to 500 μM. The observed concentration dependence supports the conclusion on the number of binding places inferred from equilibrium titrations. The rate of Mg++ and Ca++ association to the polymer is close to the limit of diffusion control (kR = 1 × 1010 to 2 × 1010 M?1 s?1). This high rate demonstrates that Mg++ and Ca++ ions do not form inner-sphere complexes with the polynucleotides. Apparently the distance between two adjacent phosphates is too large for a simultaneous site binding of Mg++ or Ca++, and inner sphere complexation at a single phosphate seems to be too weak. The data support the view that the ions like Mg++ and Ca++ surround the polynucleotides in the form of a mobile ion cloud without site binding.  相似文献   

7.
White erythrocyte membranes, or ghosts, were monoconcave discocytes when incubated in 50mM N-tris (hydroxymethyl) methyl-2-aminoethane sulfonic acid titrated to pH 7.4 with triethanolamine. If 3mM MgCl2 was included in the incubation medium, the ghosts were predominantly echinocytes. The echinocytic form could also be induced by Co++, Ni++, Li+, Na+, K+, NH4+ and tetramethylammonium ion, all as chloride salts. The concentration of cation necessary for 50% of the ghosts to be echinocytes was correlated with the hydrated charge density of the cation with the most highly charged cations being the most effective. The cations Ca++, Sr++, Ba++ and La+++, (also as chloride salts) did not induce the normal echinocytic form, but at high levels induced a few misshapen forms with some resemblance to echinocytes. Instead Ca++, Sr++, Ba++ and La+++ suppressed the formation of echinocytes in the presence of Mg++ and other ions. This suggests the presence of a specific Ca++ binding site important to shape control in the erythrocyte membrane.  相似文献   

8.
The magnesium chelate of the N(3)H tautomer of orotate, L3Mg, is the true substrate in the biosynthesis of orotidine 5′-monophosphate (OMP) catalyzed by yeast orotate phosphoribosyltransferase (OPRTase, E.C. 2.4.210) with a Michaelis constant KmL3Mg equal to 12(2) μM. It is postulated that Mg++ cations activate the transport of orotate to the active site by neutralizing the orotate charges; the ligand N(3)H is then exchanged between the incoming cation and the cation bound to the enzyme, thus ensuring the stabilization of the appropriate isomeric structure of orotate. This scheme, together with kinetic and thermodynamic data on orotate complexation by Mg++ and Ca++, accounts for the role of Ca++ cations that neither activate nor inhibit OMP synthesis.Cu++ and Ni++ inhibiting properties arise from the formation of inert complexes of orotate. Ni++ complexes have a poor affinity for the protein, whereas Cu++ complexes have a Michaelis constant similar to that of the L3Mg active species. The inertness of these complexes is tentatively understood in terms of low phosphoribosyl transfer rates as postulated from the kinetic study of the protonation of the complexes in water.  相似文献   

9.
d-Xylose isomerase requires manganese ions for its action, but l-arabinose isomerase has a less specific on metal requirement. l-Arabinose isomerase is activated by addition of Mn++ or Co++, less effectively by addition of Zn++, Ca++, Mg++, Sr++ or Cd++. Moreover, manganese and potassium ions for d-xylose isomerase, and manganese and cobaltous ions for l-arabinose isomerase were also shown to have protective effect on respective enzymes against thermal inactivation.  相似文献   

10.
Summary The use of the fluorescent chelate probe, chlorotetracycline, in mitochondria is described. The probe shows a high fluorescence in the presence of mitochondria which may be ascribed to binding of the probe to membrane-associated Ca++ and Mg++. The fluorescence excitation and emission spectra are diagnostic of binding of the probe to Ca++ in coupled mitochondria and Mg++ in uncoupled mitochondria. The fluorescence polarization spectra are diagnostic of the cations having a moderately high mobility in the membrane environment. The effects of exogenous EDTA and of endogenous Mn++ indicate that the probe is primarily visualizing actively accumulated Ca++ on the inner surface of the inner membrane. By employing the Ca++ transport inhibitor, Tb+++, the fluorescence changes associated with metabolic alterations are shown to arise partly from cation transport and partly through alterations in the binding properties of the inner surface of the membrane. Chlorotetracycline is a probe for divalent cations associated with the membrane and is of general utility in the study of cation migrations in cellular and subcellular systems.  相似文献   

11.
Mg++ like Ca++ induces a conformational change in the Ca++-binding component of troponin. However, this change is only 36 % of the change in fluorescence intensity and 80 % of the change in optical rotation induced by Ca++. The apparent binding constant of Mg++ to the Ca++-binding component is 5 × 103 M−1, much smaller than that of Ca++. Circular dichroism measurements show that these changes are simple helix-coil transitions. Unlike the Ca++-induced conformational change, the Mg++-induced change cannot be propagated to other muscle proteins, and therefore has no physiological meaning.  相似文献   

12.
The binding of Mg2+ and Mn2+ by DNA by a divalent cation specific electrode and by ultracentrifugation. Both techniques give similar results for the stoichiometry of the reaction. An oscillating densiemete allowed us to detect small changes of volume accompanying the binding. The reaction was also followed by circular dichroism measurements. Interpretation of the results is only possible if one assumes an electrostate site-binding of Mg2+ to phosphate group, and a chelation Mn2+ between the phosphate group and the N7 of the guanine. Physical modifications accompanying these two types of binding are discused and compared to the role of these cations in some biological systems involving DNA.  相似文献   

13.
Binding of [65Zn++] and [45Ca++] to the acetylcholine (ACh)-receptor, purified from the Torpedo electric organ, was studied by equilibrium dialysis. Whereas [65Zn++] bound to 56 nmoles of sites per mg protein with a dissociation constant of 2.5 × 10−6M, no binding of [45Ca++] at concentrations up to 10−3M could be detected with this method. However, the binding of [acetyl-3H]choline to the receptor was blocked equally by very high Zn++ or Ca++ concentrations, and the Ki for this low affinity binding was 7 × 10−3M. The high affinity binding of [65Zn++] to the receptor was blocked best by Cd++ then Co++ and Mn++, but least by Mg++ and Ca++. When the purified ACh-receptor itself was analyzed for the presence of cations by atomic absorption, it was discovered that 4.7% of its weight was due to bound Ca++ that could not be removed even by extensive dialysis. When Ca++-free solutions (containing 1 mM EDTA) were used during purification, 0.6% of the molecular weight of the receptor was still due to bound Ca++. This was equivalent to 15 moles of Ca++ for each mole of ACh bound at saturation. It is suggested that the source of this Ca++ is endogenous, and that it is tightly bound to the ACh-receptor molecule.  相似文献   

14.
Binding of cations by microsomes from rabbit skeletal muscle   总被引:6,自引:0,他引:6  
Fragmented sarcoplasmic reticulum and transverse tubular system, as isolated in the microsomal fraction from rabbit skeletal muscle, bind H+, Na+, K+, Ca++, Mg++, and Zn++. The binding depends on a cation exchange type of interaction between these cations and the chemical components of the membranous systems of the muscle cell. The monovalent and divalent cations exchange quantitatively for each other at the binding sites on an equivalent basis. Scatchard plots of the H+ binding data indicate that the binding groups can be resolved into two major components in terms of their pK values. Component 1 has a pK value of 6.6 and a capacity for H+ binding of 2.2 meq/g N . The second component has a much higher H+ binding capacity (7–8 meq/g N ), but its pK value, 3.4, is non-physiological. The binding of cations other than H+ at a neutral pH occurs at the binding sites making up component 1. The order of affinity of the cations for the microsome binding sites is H+ » Zn++ > Ca++ > Mg++ » Na+ = K+ as reflected by the apparent respective pKM values: 6.6, 5.2, 4.7, 4.2, 1.3, 1.3. Caffeine, which causes contracture and potentiates the twitch of skeletal muscle, does not interfere with the binding of Ca++ by the microsomes at neutral pH.  相似文献   

15.
The binding isotherms of Ca2+ and Sr2+ to human blood coagulation Factor IX have been obtained at 25 °C and pH 7.4. In the case of both cations, a Scatchard plot of the data reveals that a single class of binding sites exist. For Ca2+, a total of 16.0 ± 1.0 sites, of KD 7.3 ± 0.2 × 10?4m, are present on human Factor IX. Similar analysis of the Sr2+ data indicates that Factor IX contains 11.0 ± 1.0 binding sites, with a KD of 1.9 ± 0.1 × 10?3m. Both Sr2+ and Mn2+ effectively displace Ca2+ from human Factor IX; whereas Mg2+ is considerably less potent in this regard. Conversely, Ca2+ is capable of nearly complete displacement of Sr2+ from its binding sites on human Factor IX. The activation of human Factor IX, by human Factor XIa, shows a complex dependence on the Ca2+ concentration. Sr2+ can substitute for Ca2+ in this activation process. Mn2+ cannot, in itself, substitute for Ca2+ in activation of Factor IX, but does significantly enhance the activation of Factor IX by Factor XIa at suboptimal levels of Ca2+. The rate of activation of human Factor IX by the coagulant protein of Russell's viper venom also shows a dependence on the presence of divalent cations. Here, however, a rigid specificity is not noted, since Ca2+, Sr2+, and Mn2+ all allow activation to proceed equally well.  相似文献   

16.
Electrical properties of the muscle fiber membrane were studied in the barnacle, Balanus nubilus Darw. by using intracellular electrode techniques. A depolarization of the membrane does not usually produce an all-or-none spike potential in the normal muscle fiber even though a mechanical response is elicited. The intracellular injection of Ca++-binding agents (K2SO4 and K salt of EDTA solution, K3 citrate solution, etc.) renders the fiber capable of initiating all-or-none spikes. The overshoot of such a spike potential increases with increasing external Ca concentration, the increment for a tenfold increase in Ca concentration being about 29 mv. The threshold membrane potential for the spike and also for the K conductance increase shifts to more positive membrane potentials with increasing [Ca++]out. The removal of Na ions from the external medium does not change the configuration of the spike potential. In the absence of Ca++ in the external medium, the spike potential is restored by Ba++ and Sr++ but not by Mg++. The overshoot of the spike potential increases with increasing [Ba++]out or [Sr++]out. The Ca influx through the membrane of the fiber treated with K2SO4 and EDTA was examined with Ca45. The influx was 14 pmol per sec. per cm2 for the resting membrane and 35 to 85 pmol per cm2 for one spike. From these results it is concluded that the spike potential of the barnacle muscle fiber results from the permeability increase of the membrane to Ca++ (Ba++ or Sr++).  相似文献   

17.
Bacterial biofilms adapt and shape their structure in response to varied environmental conditions. A statistical methodology was adopted in this study to empirically investigate the influence of nutrients on biofilm structural parameters deduced from confocal scanning laser microscope images of Paracoccus sp.W1b, a denitrifying bacterium. High concentrations of succinate, Mg++, Ca++, and Mn++ were shown to enhance biofilm formation whereas higher concentration of iron decreased biofilm formation. Biofilm formed at high succinate was uneven with high surface to biovolume ratio. Higher Mg++ or Ca++ concentrations induced cohesion of biofilm cells, but contrasting biofilm architectures were detected. Biofilm with subpopulation of pillar-like protruding cells was distributed on a mosaic form of monolayer cells in medium with 10 mM Mg++. 10 mM Ca++ induced a dense confluent biofilm. Denitrification activity was significantly increased in the Mg++- and Ca++-induced biofilms. Chelator treatment of various biofilm ages indicated that divalent cations are important in the initial stages of biofilm formation.  相似文献   

18.
Behaviour of different water soluble and exchangeable bases in a brackishwater fish pond soil was studied under four levels of water salinity, in combination with and without organic matter application. The results showed average content of water soluble bases to increase with increase in water salinity. The bases were dominated by Na+ followed by Mg++, Ca++ and K+ in decreasing order. SAR values of water increased with increase in water salinity and decreased slightly on organic matter treatment.Total content of exchangeable bases in soils was fairly high and was dominated by Ca++ and Mg++, followed by Na+ and K+ respectively. Amount of exchangeable Ca++ + Mg++ decreased while that of Na+ increased with increase in water salinity levels. Amount of exchangeable K+ did not show any appreciable change. Application of organic matter tended to increase the exchangeable Ca++ + Mg++ content and decrease the amount of exchangeable Na+ in the soil, while exchangeable K+ content remained practically unaffected due to organic matter treatment.Formed part of a Ph.D. thesis submitted to Bidhan Chandra Agricultural University, India in 1978Formed part of a Ph.D. thesis submitted to Bidhan Chandra Agricultural University, India in 1978  相似文献   

19.
The effect of morphine on ATPase of synaptic plasma membranes (SPM) and synaptic vesicles isolated from the mouse brain was studied. The activity of synaptic vesicle Mg++-dependent ATPase from mice rendered morphine tolerant and dependent by pellet implantation was 40% higher than that from placebo implanted mice. However, the activities of Mg++-dependent ATPase and Na+, K+ activated ATPase of SPM of tolerant and nontolerant mice were not significantly different. The activity of synaptic vesicular Mg++-dependet ATPase was dependent on the concentration of Mg++ but not of Ca++; maximum activity was obtained with 2 mM MgCl2. On the other hand, Mg++-dependent ATPase activity of SPM was dependent on both Mg++ and Ca++, activity being maximum using 2 mM MgCl2 and 10?5 M CaCl2. It is suggested that this stimulation of ATPase activity may alter synaptic transmission and may thus be involved in some aspects of morphine tolerance and dependence.  相似文献   

20.
The authors examined the effects of manganese salts on the interaction of the AIDS-related pathogen,Cryptosporidium parvum, with human ileoadenocarcinoma (HCT-8) cells in vitro. Manganese (Mn) inhibited binding ofC. parvum sporozoite membrane antigens to intact, fixed HCT-8 cells in a dose-dependent fashion, whereas Ca++, Mg++, and Zn++ salts had no effect. Manganese was also found to affect sporozoite penetration of live HCT-8 cells, which resulted in a dose-dependent inhibition of parasite development. However, the levels of Mn++ needed in the live cell assays was approx 10-fold greater than in the fixed-cell assays. This inhibition of parasite development was not reversible when Ca++ or Mg++ were used as competitors. Oral supplementation of suckling mice infected withC. parvum with MnSO4 resulted in significant reductions and, in some cases, elimination of intestinally derived oocysts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号