首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
Lerat E  Burlet N  Biémont C  Vieira C 《Gene》2011,473(2):100-109
Transposable elements (TEs) are indwelling components of genomes, and their dynamics have been a driving force in genome evolution. Although we now have more information concerning their amounts and characteristics in various organisms, we still have little data from overall comparisons of their sequences in very closely-related species. While the Drosophila melanogaster genome has been extensively studied, we have only limited knowledge regarding the precise TE sequences in the genomes of the related species Drosophila simulans, Drosophila sechellia and Drosophila yakuba. In this study we analyzed the number and structure of TE copies in the sequenced genomes of these four species. Our findings show that, unexpectedly, the number of TE insertions in D. simulans is greater than that in D. melanogaster, but that most of the copies in D. simulans are degraded and in small fragments, as in D. sechellia and D. yakuba. This suggests that all three species were invaded by numerous TEs a long time ago, but have since regulated their activity, as the present TE copies are degraded, with very few full-length elements. In contrast, in D. melanogaster, a recent activation of TEs has resulted in a large number of almost-identical TE copies. We have detected variants of some TEs in D. simulans and D. sechellia, that are almost identical to the reference TE sequences in D. melanogaster, suggesting that D. melanogaster has recently been invaded by active TE variants from the other species. Our results indicate that the three species D. simulans, D. sechellia, and D. yakuba seem to be at a different stage of their TE life cycle when compared to D. melanogaster. Moreover, we show that D. melanogaster has been invaded by active TE variants for several TE families likely to come from D. simulans or the ancestor of D. simulans and D. sechellia. The numerous horizontal transfer events implied to explain these results could indicate introgression events between these species.  相似文献   

2.
Closely related species of Drosophila tend to have similar genome sizes. The strong imbalance in favor of small deletions relative to insertions implies that the unconstrained DNA in Drosophila is unlikely to be passively inherited from even closely related ancestors, and yet most DNA in Drosophila genomes is intergenic and potentially unconstrained. In an attempt to investigate the maintenance of this intergenic DNA, we studied the evolution of an intergenic locus on the fourth chromosome of the Drosophila melanogaster genome. This 1.2-kb locus is marked by two distinct, large insertion events: a nuclear transposition of a mitochondrial sequence and a transposition of a nonautonomous DNA transposon DNAREP1_DM. Because we could trace the evolutionary histories of these sequences, we were able to reconstruct the length evolution of this region in some detail. We sequenced this locus in all four species of the D. melanogaster species complex: D. melanogaster, D. simulans, D. sechellia, and D. mauritiana. Although this locus is similar in size in these four species, less than 10% of the sequence from the most recent common ancestor remains in D. melanogaster and all of its sister species. This region appears to have increased in size through several distinct insertions in the ancestor of the D. melanogaster species complex and has been shrinking since the split of these lineages. In addition, we found no evidence suggesting that the size of this locus has been maintained over evolutionary time; these results are consistent with the model of a dynamic equilibrium between persistent DNA loss through small deletions and more sporadic DNA gain through less frequent but longer insertions. The apparent stability of genome size in Drosophila may belie very rapid sequence turnover at intergenic loci.  相似文献   

3.
Genomic patterns of occurrence of the transposable element hobo are polymorphic in the sibling species Drosophila melanogaster and D. simulans. Most tested strains of both species have apparently complete (3.0 kb) and smaller hobo elements (H lines), but in both species some strains completely lack such canonical hobo elements (E lines). The occurrence of H and E lines in D. simulans as well as in D. melanogaster implies that an hypothesis of recent introduction in the latter species is inadequate to explain the phylogenetic occurrence of hobo. Particular internally deleted elements, the approximately 1.5 kb Th1 and Th2 elements, are abundant in many lines of D. melanogaster, and an analogous 1.1 kb internally deleted element, h del sim, is abundant in most lines of D. simulans. Besides the canonical hobo sequences, both species (and their sibling species D. sechellia and D. mauritiana) have many hobo-hybridizing sequences per genome that do not appear to be closely related to the canonical hobo sequence.  相似文献   

4.
ABSTRACT: BACKGROUND: During the evolutionary history of transposable elements, some processes, such as ancestral polymorphisms and horizontal transfer of sequences between species, can produce incongruences in phylogenies. We investigated the evolutionary history of the transposable elements Bari and 412 in the sequenced genomes of the Drosophila melanogaster group and in the sibling species D. melanogaster and D. simulans using traditional phylogenetic and network approaches. RESULTS: The maximum likelihood (ML) phylogenetic analyses revealed incongruences and unresolved relationships for both the Bari and 412 elements. The DNA transposon Bari within the D. ananassae genome is more closely related to the element of the melanogaster complex than to the sequence in D. erecta, which is inconsistent with the species phylogeny. Divergence analysis and the comparison of the rate of synonymous substitutions per synonymous site of the Bari and host gene sequences explain the incongruence as an ancestral polymorphism inherited stochastically by the derived species. Unresolved relationships were observed in the ML phylogeny of both elements involving D. melanogaster, D. simulans and D. sechellia. A network approach was used to attempt to resolve these relationships. The resulting tree suggests recent transfers of both elements between D. melanogaster and D. simulans. The divergence values of the elements between these species support this conclusion. CONCLUSIONS: We showed that an ancestral polymorphism and recent invasion of genomes due to introgression or horizontal transfer between species occurred during the evolutionary history of the Bari and 412 elements in the melanogaster group. These invasions likely occurred in Africa during the Pleistocene, before the worldwide expansion of D. melanogaster and D. simulans.  相似文献   

5.
Boussy IA  Itoh M 《Genetica》2004,120(1-3):125-136
The transposon hobo is present in the genomes of Drosophila melanogaster and Drosophila simulans (and D. mauritiana and probably D. sechellia, based on Southern blots) as full-size elements and internally deleted copies. The full-size melanogaster, simulans and mauritiana hobo elements are 99.9% identical at the DNA sequence level, and internally deleted copies in these species essentially differ only in having deletions. In addition to these, hobo-related sequences are present and detectable with a hobo probe in all these species. Those in D. melanogaster are 86-94% identical to the canonical hobo, but with many indels. We have sequenced one that appears to be inserted in heterochromatin (GenBank Acc. No. AF520587). It is 87.6% identical to the canonical hobo, but quite fragmented by indels, with remnants of other transposons inserted in and near it, and clearly is defunct. Numerous similar elements are found in the sequenced D. melanogaster genome. It has recently been shown that some are fixed in the euchromatic genome, but it is probable that still more reside in heterochromatic regions not included in the D. melanogaster genome database. They are probably all relics of an earlier introduction of hobo into the ancestral species. There appear to have been a minimum of two introductions of hobo into the melanogaster subgroup, and more likely three, two ancient and one quite recent. The recent introduction of hobo was probably followed by transfers between the extant species (whether 'horizontally' or by infrequent interspecific hybridization).  相似文献   

6.
We determined the nucleotide sequences of two regions in the A+T-rich region of mitochondrial DNA (mtDNA) in the siI and siII types of D. simulans, the maII type of D. mauritiana, and D. sechellia. The sequences were aligned with those of the corresponding regions of siIII of D. simulans and maI of D. mauritiana, D. melanogaster, and D. yakuba. The type I and type II elements and the T-stretches were detected in all eight of the mtDNA types compared, indicating that the three elements are essential in the A+T-rich region of this species subgroup. The alignment revealed several short repetitive sequences and relatively large deletions in the central portions of the region. In the highly conserved sequence elements in the type II elements, the substitution rates were not uniform among lineages and acceleration in the substitution rate might have been due to loss of functional constraint in the stem–loop-forming sequences predicted in the type II elements. Patterns of nucleotide substitutions observed in the A+T-rich region were further compared with those in the coding regions and in the intergenic regions of mtDNA. Substitutions between A and T were particularly repressed in the highly conserved sequence elements and in the intergenic regions compared with those in the A+T-rich region excluding the highly conserved sequence elements and in the fourfold degenerate sites in the coding regions. The functional and structural characteristics of the A+T-rich region that might be involved in this substitutional bias are discussed.  相似文献   

7.
Kern AD  Begun DJ 《Genetics》2008,179(2):1021-1027
Although Drosophila melanogaster has been the subject of intensive analysis of polymorphism and divergence, little is known about the distribution of variation at the most distal regions of chromosomes arms. Here we report a survey of genetic variation on the tip of 3L in D. melanogaster and D. simulans. Levels of single nucleotide polymorphism in the most distal euchromatic sequence are approximately one order of magnitude less than that typically observed in genomic regions of normal crossing over, consistent with what might be expected under models of linked selection in regions of low crossing over. However, despite this reduced level of nucleotide variation, we found abundant deletion polymorphism. These deletions create at least three gene presence/absence polymorphisms within D. melanogaster: the putative G-protein coupled receptor mthl-8 (which is the most distal known or predicted gene on 3L) and the unannotated mRNAs AY060886 and BT006009. Strikingly, D. simulans is also segregating deletions that cause mthl8 presence/absence polymorphism. Breakpoint sequencing and tests of correlations with segregating SNPs in D. melanogaster suggest that each deletion is unique. Cloned breakpoint sequences revealed the presence of Het-A elements just distal to unique, canonical euchromatic sequences. This pattern suggests a model in which repeated telomeric deficiencies cause deletions of euchromatic sequence followed by subsequent "healing" by retrotranposition of Het-A elements. These data reveal the dominance of telomeric dynamics on the evolution of closely linked sequences in Drosophila.  相似文献   

8.
The distribution of 1731 retrotransposon-hybridizing sequences in the family Drosophilidae has been studied using a 1731 probe from Drosophila melanogaster. Squash blot and Southern blot analyses of 42 species reveal that the 1731 sequences are widespread within both the Sophophora and Drosophila subgenera and are also present in the genera Scaptomyza and Zaprionus. Hence the 1731 retrotransposon family appears to have a long evolutionary history in the Drosophilidae genome. Differences of hybridization signal intensity suggested that the 1731 sequence is well conserved only in the three species most closely related to D. melanogaster (D. simulans, D. mauritiana, and D. sechellia). A survey of insertion sites in numerous different populations of the previous four species by in situ hybridization to polytene chromosomes has shown in all cases both chromocentric hybridizations and a low number of sites (0-5) on the chromosomal arms. This number of sites is among the lowest observed in D. melanogaster and D. simulans when 1731 is compared with other retrotransposon families. In addition, we have observed species-specific patterns of the chromocentric hybridization signal, suggesting rapid modifications of the beta-heterochromatin components since the radiation of the melanogaster subgroup.   相似文献   

9.
10.
We constructed and characterized arrayed bacterial artificial chromosome (BAC) libraries of five Drosophila species (D. melanogaster, D. simulans, D. sechellia, D. auraria, and D. ananassae), which are genetically well characterized in the studies of meiosis, evolution, population genetics, and developmental biology. The BAC libraries comprise 8,000 to 12,500 clones for each species, estimated to cover the most of the genomes. We sequenced both ends of most of these BAC clones with a success rate of 91%. Of these, 53,701 clones consisting of non-repetitive BAC end sequences (BESs) were mapped with reference of the public D. melanogaster genome sequences. The BES mapping estimated that the BAC libraries of D. auraria and D. ananassae covered 47% and 57% of the D. melanogaster genome, respectively, and those of D. melanogaster, D. sechellia, and D. simulans covered 94-97%. The low coverage by BESs of D. auraria and D. ananassae may be due to the high sequence divergence with D. melanogaster. From the comparative BES mapping, 111 possible breakpoints of chromosomal rearrangements were identified in these four species. The breakpoints of the major chromosome rearrangement between D. simulans and D. melanogaster on the third chromosome were determined within 20 kb in 84E and 30 kb in 93E/F. Corresponding breakpoints were also identified in D. sechellia. The BAC clones described here will be an important addition to the Drosophila genomic resources.  相似文献   

11.
Schmid KJ  Aquadro CF 《Genetics》2001,159(2):589-598
In genome projects of eukaryotic model organisms, a large number of novel genes of unknown function and evolutionary history ("orphans") are being identified. Since many orphans have no known homologs in distant species, it is unclear whether they are restricted to certain taxa or evolve rapidly, either because of a lack of constraints or positive Darwinian selection. Here we use three criteria for the selection of putatively rapidly evolving genes from a single sequence of Drosophila melanogaster. Thirteen candidate genes were chosen from the Adh region on the second chromosome and 1 from the tip of the X chromosome. We succeeded in obtaining sequence from 6 of these in the closely related species D. simulans and D. yakuba. Only 1 of the 6 genes showed a large number of amino acid replacements and in-frame insertions/deletions. A population survey of this gene suggests that its rapid evolution is due to the fixation of many neutral or nearly neutral mutations. Two other genes showed "normal" levels of divergence between species. Four genes had insertions/deletions that destroy the putative reading frame within exons, suggesting that these exons have been incorrectly annotated. The evolutionary analysis of orphan genes in closely related species is useful for the identification of both rapidly evolving and incorrectly annotated genes.  相似文献   

12.
We have determined the nucleotide sequences of two regions within the A+T-rich region of mitochondrial DNA (mtDNA) in the siIII type of Drosophila simulans and the maI type of D. mauritiana. The sequences of the two regions in siIII and maI are almost identical. The sequences include elements corresponding to the type I and type II repeats elements and the T-stretches as reported in D. melanogaster; an approximately 340-bp region (A region) adjacent to the tRNA(Ile) gene includes a part of the type II repeat element, and an approximately 440- bp region (B region) includes a central portion of the A+T-rich region between the type I and type II repeat arrays. Each sequence of the two species was compared with those of D. melanogaster and D. yakuba. The sequences of the A region are relatively well conserved among the four species. The alignment of the two sequences of the B region with those of D. melanogaster and D. yakuba requires numerous insertions/deletions. For both regions, nucleotide differences between D. simulans or D. mauritiana and D. melanogaster are similar to those between the two and D. yakuba. The tendency is obvious in a subregion within the type II repeat element in the A region. These findings suggest that the rate of nucleotide substitution in the subregion is accelerated in the lineage leading to D. melanogaster. Loss of functional constraint in the stem-loop-forming sequence is proposed for this acceleration.   相似文献   

13.
The origins and divergence of Drosophila simulans and close relatives D. mauritiana and D. sechellia were examined using the patterns of DNA sequence variation found within and between species at 14 different genes. D. sechellia consistently revealed low levels of polymorphism, and genes from D. sechellia have accumulated mutations at a rate that is approximately 50% higher than the same genes from D. simulans. At synonymous sites, D. sechellia has experienced a significant excess of unpreferred codon substitutions. Together these observations suggest that D. sechellia has had a reduced effective population size for some time, and that it is accumulating slightly deleterious mutations as a result. D. simulans and D. mauritiana are both highly polymorphic and the two species share many polymorphisms, probably since the time of common ancestry. A simple isolation speciation model, with zero gene flow following incipient species separation, was fitted to both the simulans/mauritiana divergence and the simulans/sechellia divergence. In both cases the model fit the data quite well, and the analyses revealed little evidence of gene flow between the species. The exception is one gene copy at one locus in D. sechellia, which closely resembled other D. simulans sequences. The overall picture is of two allopatric speciation events that occurred quite near one another in time.  相似文献   

14.
The hobo family of transposable elements, one of three transposable-element families that cause hybrid dysgenesis in Drosophila melanogaster, appears to be present in all members of the D. melanogaster species complex: D. melanogaster, D. simulans, D. mauritiana, and D. sechellia. Some hobo-hybridizing sequences are also found in the other members of the melanogaster subgroup and in many members of the related montium subgroup. Surveys of older isofemale lines of D. melanogaster suggest that complete hobo elements were absent prior to 50 years ago and that hobo has recently been introduced into the species by horizontal transfer. To test the horizontal transfer hypothesis, the 2.6-kb XhoI fragments of hobo elements from D. melanogaster, D. simulans, and D. mauritiana were cloned and sequenced. The DNA sequences reveal an extremely low level of divergence and support the conclusion that the active hobo element has been horizontally transferred into or among these species in the recent past.  相似文献   

15.
Two regions of the genome, a 1-kbp portion of the zeste locus and a 1.1- kbp portion of the yolk protein 2 locus, were sequenced in six individuals from each of four species: Drosophila melanogaster, D. simulans, D. mauritiana, and D. sechellia. The species and strains were the same as those of a previous study of a 1.9-kbp region of the period locus. No evidence was found for recent balancing or directional selection or for the accumulation of selected differences between species. Yolk protein 2 has a high level of amino acid replacement variation and a low level of synonymous variation, while zeste has the opposite pattern. This contrast is consistent with information on gene function and patterns of codon bias. Polymorphism levels are consistent with a ranking of effective population sizes, from low to high, in the following order: D. sechellia, D. melanogaster, D.mauritiana, and D. simulans. The apparent species relationships are very similar to those suggested by the period locus study. In particular, D. simulans appears to be a large population that is still segregating variation that arose before the separation of D. mauritiana and D. sechellia. It is estimated that the separation of ancestral D. melanogaster from the other species occurred 2.5-3.4 Mya. The separations of D. sechellia and D. mauritiana from ancestral D. simulans appear to have occurred 0.58- 0.86 Mya, with D. mauritiana having diverged from ancestral D. simulans 0.1 Myr more recently than D. sechellia.   相似文献   

16.
Drosophila melanogaster belongs to a closely related group of eight species collectively known as the melanogaster subgroup; all are native to sub-Saharan Africa and islands off the east coast of Africa. The phylogenetic relationships of most species in this subgroup have been well documented; however, the three most closely related species, D. simulans, D. sechellia, and D. mauritiana, have remained problematic from a phylogenetic standpoint as no data set has unambiguously resolved them. We present new DNA sequence data on the nullo and Serendipity-alpha genes and combine them with all available nuclear DNA sequence data; the total data encompass 12 genes and the ITS of rDNA. A methodological problem arose because nine of the genes had information on intraspecific polymorphisms in at least one species. We explored the effect of inclusion/exclusion of polymorphic sites and found that it had very little effect on phylogenetic inferences, due largely to the fact that 82% of polymorphisms are autapomorphies (unique to one species). We have also reanalyzed our previous DNA-DNA hybridization data with a bootstrap procedure. The combined sequence data set and the DNA-DNA hybridization data strongly support the sister status of the two island species, D. sechellia and D. mauritiana. This at least partially resolves what had been a paradox of parallel evolution in these two species.   相似文献   

17.
18.
We have investigated the distribution of sequences homologous to Bari-1, a Tc1-like transposable element first identified in Drosophila melanogaster, in 87 species of the Drosophila genus. We have also isolated and sequenced Bari-1 homologues from D. simulans, D. mauritiana, and D. sechellia, the species constituting with D. melanogaster the melanogaster complex, and from D. diplacantha and D. erecta, two phylogenetically more distant species of the melanogaster group. Within the melanogaster complex the Bari-1 elements are extremely similar to each other, showing nucleotide identity values of at least 99.3%. In contrast, Bari-1-like elements from D. diplacantha and D. erecta are on average only 70% similar to D. melanogaster Bari-1 and are usually defective due to nucleotide deletions and/or insertions in the ORFs encoding their transposases. In D. erecta the defective copies are all located in the chromocenter and on chromosome 4. Surprisingly, while D. melanogaster Bari-1 elements possess 26-bp inverted terminal repeats, their D. diplacantha and D. erecta homologues possess long inverted terminal repeats similar to the terminal structures observed in the S elements of D. melanogaster and in several other Tc1-like elements of different organisms. This finding, together with the nucleotide and amino acid identity level between D. diplacantha and D. erecta elements and Bari-1 of D. melanogaster, suggests a common evolutionary origin and a rapid diversification of the termini of these Drosophila Tc1-like elements.  相似文献   

19.
20.
J. A. Coyne 《Genetics》1996,143(1):353-364
Females of Drosophila melanogaster and its sibling species D. simulans have very different cuticular hydrocarbons, with the former bearing predominantly 7,11-heptacosadiene and the latter 7-tricosene. This difference contributes to reproductive isolation between the species. Genetic analysis shows that this difference maps to only the third chromosome, with the other three chromosomes having no apparent effect. The D. simulans alleles on the left arm of chromosome 3 are largely recessive, allowing us to search for the relevant regions using D. melanogaster deficiencies. At least four nonoverlapping regions of this arm have large effects on the hydrocarbon profile, implying that several genes on this arm are responsible for the species difference. Because the right arm of chromosome 3 also affects the hydrocarbon profile, a minimum of five genes appear to be involved. The large effect of the thrid chromosome on hydrocarbons has also been reported in the hybridization between D. simulans and its closer relative D. sechellia, implying either an evolutionary convergence or the retention in D. sechellia of an ancestral sexual dimorphism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号