首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An assay is described for the measurement of mutation induction at the hypoxanthine-guanine phosphoribosyl transferase (HGPRT) locus in Chinese hamster ovary (CHO) cells utilizing resistance to 6-thioguanine (TG). Optimal selection conditions are defined for such parameters as phenotypic expression time prior to selection, and TG concentration and cell density which permits maximum mutant recovery. The nature of the TG-resistant mutants is characterized by several physiological and biochemical methods. The data demonstrate that more than 98% of the mutant clones isolated by this selection procedure contain altered HGPRTase activity. The CHO/HGPRT system thus shows the specificity necessary for a specific gene locus mutational assay.  相似文献   

2.
The induction of mutation by a variety of mutagens has been measured utilizing the hypoxanthine-guanine phosphoribosyl transferase (HGPRT) locus in Chinese hamster ovary (CHO) cells (CHO/HGPRT) system). These mutagens include physical agents such as UV light and X-rays, and chemicals such as alkylating agents, ICR-191, and metallic compounds. This system can also be modified for study of the mutagenicity of promutagens such as dimethylnitrosamine (DMN) which require biotransformation for mutagenic action, either through the addition of a rat liver microsomal activation preparation or through a host-mediated activation step using Balb/c athymic mice.  相似文献   

3.
Using synchronous populations obtained by selectively detaching mitotic cells from cultures grown in monolayer, we demonstrate here that Chinese hamster ovary (CHO) cells exhibit a differential sensitivity to mutation induction by UV as a function of position in the cell cycle. When mutation induction to 6-thioguanine (TG) resistance is monitored, several maxima and minima are displayed during cell-cycle traverse, with a major maximum occurring in early S phase. Although cells in S phase are more sensitive to UV-mediated cell lethality than those in G1 or G2/M phases, there is not a strict correlation with induced mutation frequency. Fluence-response curves obtained at several times during the cell cycle yield Dq values approximating 6 J/m2. The primary survival characteristic which varies with cell cycle position is D0, ranging from 2.5 J/m2 at 6 h after mitotic selection to 5.5 J/m2 at 11 h afterward. Based on studies with asynchronous, logarithmically growing populations, as well as those mitotically selected to be synchronous, the optimum phenotypic expression time for induced TG resistance is 7–9 days and is essentially independent of both UV fluence and position in the cell cycle. All isolated mutants have altered hypozanthine—guanine phosphoribosyl transferase (HGPRT) activity, and no difference in the residual level of activity was detected among isolated clones receiving UV radiation during G1, S, or late S/G2 phases of the cell cycle. Changes in cellular morphology during cell-cycle traverse do not contribute to the differential susceptibility to UV-induced mutagenesis.  相似文献   

4.
We describe an assay for the quantification of reverse mutations at the hypoxanthine-guanine phosphoribosyltransferase (hgprt) locus in Chinese hamster ovary cells utilizing the selective agent L-azaserine (AS). Conditions are defined in terms of optimal AS concentration, cell density, and phenotypic expression time. After treatment, replicate cultures of 106 cells are allowed a 48-h phenotypic expression time in 100-mm plates. AS (10 μM) is then added directly to the growing culture and AS-resistant (ASr) cells form visible colonies. This assay is used to quantify ICR-191-, ICR-170-, and N-ethyl-N-nitrosourea-induced reversion of independently isolated HGPRT? clones. The ASr phenotype is characterized both physiologically and biochemically. All ASr clones isolated are stably resistant to AS and aminopterin but sensitive to 6-thioguanine. They also have re-expressed HGPRT enzyme. In addition, several revertants are shown to contain altered HGPRT. The data provide further evidence that ICR-191 and ICR-170 cause structural gene mutations in mammalian cells and also suggest that ICR-191, ICR-170, and N-ethyl-N-nitrosourea induce similar types of mutations in Chinese hamster ovary cells.  相似文献   

5.
Fluctuation analyses of the spontaneous appearance of 6-thioguanine (TG)-resistant mutants in cultured Chinese hamster ovary (CHO) cells were performed to investigate (1) whether the resistance is induced by the selective agent or is the result of a mutation which occurs prior to the TG selection and (2) to estimate the spontaneous mutation rate at the hypoxanthine—guanine phosphoribosyl transferase (hgprt) locus. The potential problem of phenotypic delay was minimized by allowing an adequate expression time through maintenance of the cultures in a division-arrested, viable state. The results demonstrate that the TG-resistant (TGr) cells arise randomly in the cultures, independently of the selective agent, which is consistent with spontaneous mutations. The average values for mutation rate ± standard deviation, based on 4 independent determinations and 2 methods of calculation, are 3.4 ± 1.2 × 10?7 (median method) and 5.1 ± 1.8 × 10?7 (mean method) mutants/cell/generation.  相似文献   

6.
When CaCl2 was added in increasing concentrations to a rat liver metabolic activation system (S9) buffered with sodium phosphate, the mutagenic activity and cytotoxicity of dimethylnitrosamine (DMN) in the Chinese hamster ovary cell/hypoxanthine-guanine phosphoribosyl transferase (CHO/HGPRT) system were greatly increased. This effect was not observed with an S9 mix buffered with N-2-hydroxyethylpiperazine-N′-2-ethanesulfonic acid (HEPES). The calcium phosphate gel precipitate of the S9 mix possessed approximately built13 of the total activity of the mix, while the supernatant had only slight activity. However, when the calcium phosphate gel precipitate of a solution of S9 salts (without S9 protein) was added to the supernatant, the remaining 23 of the activity was recovered. Commercially obtained calcium phosphate, tricalcium phosphate, and alumina C γ gels could substitute for CaCl2 in the S9 mix, but diethylaminoethyl cellulose (DEAE cellulose) could not. Alumina C γ gel can exert its effect in the absence of both CaCl2 and phosphate in the S9 mix. Increasing the time of contact between the S9 protein and the S9 salts increased the efficacy with which the S9 mix activated DMN; this is indicative of an adsorptive process by calcium phosphate gel.  相似文献   

7.
When seeded in small numbers in medium containing 10?6M aminopterin and fetal calf serum, V79 Chinese hamster cells required dialyzable components from the serum for growth. However, the cells grew in medium containing 10?6M aminopterin and dialyzed serum, provided that the medium was supplemented with 10?5M hypoxanthine and sufficient 5·10?6M) thymidine. A growth-inhibitory property of some batches of dialyzed serum was abolished on heating the serum for 30 min at 56°. Three lines of V79 cells which lacked detectable hypoxanthine-guanine phosphoribosyl transferase (HGPRT) activity were seleccted in medium containing 8-azaguanine (8-AzG). In two of these, no spontaneous reversion to the HGPRT+ phenotype was detectable, and these cells did not cooperate metabolically with HGPRT+ cells to prevent the growth of the latter in HAT medium. One of the HGPRT? lines showed a high rate of spontaneous reversion (118/105 cells) in medium containing undialyzed serum. However, in medium containing dialyzed serum the spontaneous reversion rate fell to 4105cells, suggesting that the revertants arising in medium containing undialyzed serum were biochemically heterogeneous.  相似文献   

8.
Factors influencing the frequency of thioguanine resistant mutations were examined in Chinese hamster lung cells damaged with a carcinogen, N-acetoxy-2-acetyl aminofluorene. Factors such as inoculum density, expression time, and concentration of selective agent were found to have a profound effect on the mutation frequency.Over a range of doses, a longer expression time is required for mutant cells from a more damaged population to reach their maximum frequency. In order to investigate the elements involved in this phenomenon, the increment in the plating efficiency of treated cells as a function of expression time, spontaneous mutation rate per cell per generation, viability of mutant as well as wild type cells, and half life of HGPRTase were evaluated.There was an observed relationship between induced mutation frequency and plating efficiency of treated cells. When treated cells had recovered from effects of the treatment and arrived at the normal level of plating efficiency, they also yielded the maximum frequency of mutations.The estimated mutation rate was 5.5 × 10?8 per cell per generation. This number is too small to account for the increment in mutation frequency with the increase in the expression time. The mutation frequency of spontaneous origin was 4 × 10?6 and that of induction of 10?5 M NA-AAF was 10?4. Lower growth rates of mutant cells cannot explain this increase in the number of mutants recovered, either.Continuous diminution in the level of HGPRTase, at 35% daily, interpreted as an important factor responsible for the recovery of mutation frequency during expression time, was observed in non-dividing cells. None of a large number of mutants sampled from those isolated had HGRPT activity. This indicates that they are true mutants and are not a result of phenocopy. Only cells completely deficient in HGPRT activity are recovered in TG selection medium. It is suggested, therefore, that this cell line is suitable for mutagenicity testing in the induction of mutation at the HGPRT locus.  相似文献   

9.
Induction of 6-thioguanine resistance was studied in human cells treated with the direct-acting chemical carcinogen N-acetoxy-2-acetylaminofluorene (NA-AAF). At low concentrations (2.5–7.5 μM) induction of resistant clones was linear and followed one-hit kinetics, while at 10 μM the yield of resistant clones was higher and appeared to result from the combination of one-hit and two-hit kinetics. A study of about 50 resistant clones revealed that most had reduced levels of hypoxanthine-guanine phosphoribosyl transferase (HGPRT) activity (25–85% of controls) and were able to use exogenous hypoxanthine for growth (“Type II mutants,” deMars, 1974); a few had very low HGPRT activity (1–8% of controls) and were unable to use exogenous hypoxanthine (“Type I mutants”). Use of [914-C]NA-AAF allowed us to examine the frequency of induction of thioguanine resistance as a function of binding to DNA (μmole AAF/mole DNA-P). Calculations from these data suggest that most “hits” on the HGPRT locus do not result in detectable mutations: At three different levels of binding and induced mutation frequency, the yield was 2.5–3 detectable mutants/10 000 molecules of acetylaminofluorene bound to the HGPRT locus. These data suggest that most bound acetylaminofluorene molecules either produce no change in the primary sequence of DNA (possibly as a result of repair or correct “read through” by the DNA polymerase) or result in changes which are phenotypically undetectable.  相似文献   

10.
Low concentrations (?20 μg/ml) of 8-azaguanine are 1000 fold more toxic to V79 Chinese hamster cells in medium containing 10% dialyzed fetal calf serum than in medium containing 10% undialyzed serum. Serum enzyme activity that converts AG to nontoxic 8-azaxanthine degrades AG at the same rate, whether or not the serum is dialyzed. However, cytotoxicity results similar to those obtained with US were produced in medium containing DS and 2.5 μg of hypoxanthine (HX)/ml (DSH). Therefore, serum HX is considered to be responsible for the relatively low cytotoxicity of AG in medium containing US. Colonies that arose in medium containing AG were isolated and characterized. Those that remained resistant to AG (40 μg/ml) and sensitive to aminopterin in the presence of HX and thymidine (HAT) were considered mutants; nonmutants were sensitive to AG and resistant to HAT. Colonies isolated from medium containing DSH of US and low concentrations of AG were not mutants, but those from medium containing high concentrations (? μg/l) of AG were mutants. Spontaneous and N-methyl-N′-nitrosoguanidine induced mutants were detectable in medium containing DSH without replating the cells prior to adding AG (?30 μg/ml), but in order to detect MNNG induced mutations in medium containing DS replating was essential. In DS, the mutation frequency increased as an exponential function of the toxicity of MNNG, but remained two orders of magnitude lower than the induced mutation frequencies that occurred in DSH, HX, in DSH or US, produced profound effects, other than interference with AG toxicity, that distort the results of mutagenesis assays. To study mutation using AG resistance as the endpoint, it is essential to use dialyzed serum.  相似文献   

11.
The induction of mutations by the alkylating agent ethyl methanesulfonate (EMS) was determined with Chinese hamster ovary cells maintained in serum-free medium to arrest DNA synthesis and cell division. The arrested cultures were treated with EMS and maintained in serum-free medium for various time intervals post-treatment before serum containing medium was added to initiate DNA synthesis and cell division. The concentration-dependent increase in 6-thioguanine-resistant mutants in the arrested cultures was similar to that found with exponentially dividing cultures when serum was added to the arrested cultures immediately after the EMS treatment; the time course of phenotypic expression was also similar with both cultures. In addition, maintenance of the arrested cultures in serum-free medium for up to 18 days post-treatment resulted in no change in the mutant frequency. This suggests that the mutagenic damage is not removed in these arrested cultures. Furthermore, maintenance of the arrested state for increasing time intervals before serum addition results in decreases in the time necessary for maximum phenotypic expression. Cultures maintained in serum-free medium for 16 days after mutation treatment show complete expression of the mutations with no need for subculture. This last result suggests that the mutagenic damage induced by EMS in Chinese hamster ovary cells is not removed and that this damage results in both the induction and expression of mutation in the absence of DNA replication.  相似文献   

12.
The lag in phenotype expression of methylnitrosourea(MNU)-induced mutation to 6-thioguanine (6TG) resistance has been studied in a diploid human lymphoblastoid cell line. We find that a considerable period (8–12 days) elapses before new mutants appear in treated cultures; after 2 weeks, however, a stable maximum fraction is attained, as would be expected for a genetic mutation. We present preliminary data linking this phenotypic lag to the slow degradation rate of hypoxanthine-guanine phosphoribosyl transferase (HGPRT) and to an apparent requirement for very low (<0.2% normal) cellular HGPRT content in order for cells to be resistant to 10 μg 6TG/ml. A series of reconstruction experiments are presented, the results of which support the conclusion that selective pressures in the assay procedure do not bias the quantitative estimates of induced mutant fraction.  相似文献   

13.
Induction of 6-thioguanine resistance was studied in human cells treated with the direct-acting chemical carcinogen N-acetoxy-2-acetylaminofluorene (NA-AAF). At low concentrations (2.5–7.5 μM) induction of resistant clones was linear and followed one-hit kinetics, while at 10 μM the yield of resistant clones was higher and appeared to result from the combination of one-hit and two-hit kinetics. A study of about 50 resistant clones revealed that most had reduced levels of hypoxanthine-guanine phosphoribosyl transferase (HGPRT) activity (25–85% of controls) and were able to use exogenous hypoxanthine for growth (“Type II mutants,” deMars, 1974); a few had very low HGPRT activity (1–8% of controls) and were unable to use exogenous hypoxanthine (“Type I mutants”). Use of [9-14C]NA-AAF allowed us to examine the frequency of induction of thioguanine resistance as a function of binding to DNA (μmole AAF/mole DNA-P). Calculations from these data suggest that most “hits” on the HGPRT locus do not result in detectable mutations: At three different levels of binding and induced mutation frequency, the yield was 2.5-3 detectable mutants/10 000 molecules of acetylaminofluorene bound to the HGPRT locus. These data suggest that most bound acetylaminofluorene molecules either produce no change in the primary sequence of DNA (possibly as a result of repair or correct “read through” by the DNA polymerase) or result in changes which are phenotypically undetectable.  相似文献   

14.
As a first step in the development of a multiple-marker, mammalian cell mutagenesis assay system, we have isolated a Chinese hamster ovary (CHO) cell line that is heterozygous for both the adenine phosphoribosyltransferase (aprt) and thymidine kinase (tk) loci. Presumptive aprt+/? heterozygotes with intermediate levels of APRT activity were selected from unmutagenized CHO cell populations on the basis of resistance to low concentrations of the adenine analog, 8-azaadenine. A functional aprt+/? heterozygote with ~50% wild-type APRT activity was subsequently used to derive sublines that were also heterozygous for the tk locus. Biochemical and genetic characterization of one such subline, CHO-AT3-2, indicated that it was indeed heterozygous at both the aprt and tk loci. CHO-AT3-2 cells permitted single-step selection of mutants resistant to 8-azaadenine or 5-fluorodeoxyuridine, allowing quantitation and direct comparison of mutation induction at the autosomal aprt or tk loci, as well as in the gene involved in ouabain resistance or at the X-linked, hypoxanthine-guanine phosphoribosyltransferase (hgprt) locus. Significant dose-dependent increases in mutation frequency were observed for all 4 genetic markers after treatment of CHO-AT3-2 cells with ethyl methanesulfonate.  相似文献   

15.
We have investigated conditions necessary to quantify the relationship between exposure to a mutagen, ethyl methanesulfonate (EMS), and the frequency of mutation induction at the hypoxanthine-guanine phosphoribosyl transferase locus in V79 cells. Maximal expression of potential mutants has been achieved by either subculturing at fewer than 5 X 10(5) cells/100-mm dish at 2-day intervals or by daily feeding of cultures. An expression period of 5 days (measure from 1 day after the initiation of treatment with the chemical mutagen) should be allowed, since at least 4 days of expression is required to reach to steady maximum of mutation frequency. It appears that there is no concentration dependence of expression time necessary to reach a plateau of mutation frequency with increasing concentrations of EMS up to 1.6 mg/ml. About 1.25 X 10(5) cells/100-mm dish or fewer should be plated for selection to avoid the loss of mutants which occurs at 1.5 X 10(5) cells/dish, presumably through cross-feeding (metabolic cooperation). The use of 6-thioguanine in hypoxanthine-free medium (supplemented with dialyzed fetal calf serum) appears to be a very stringent condition for selection. Mutation induction by EMS as a function of EMS exposure (EMS concentration X treatment time) increases linearly with concentration up to 12 h. For these treatment periods, the observed mutation frequencies for EMS are directly proportional to mutagen exposure regardless of the duration of the treatment.  相似文献   

16.
R DeMars 《Mutation research》1974,24(3):335-364
In vitro enumeration of diploid human cell variants that are resistant to purine analogues is a possible method of detecting mutagenesis. Their incidences can be increased by the known mutagens, X-rays and N-methyl-N′-nitro-N-nitrosoguanidine (MNNG). Usefulness of this method depends on the kinds of hereditary changes that confer analogue-resistance on somatic cells. If resistance usually results from changes in genetic material, in vitro studies could be useful indicators of mutagenic effects on somatic cells and germ cells in vivo. If epigenetic changes are primarily responsible for analogue-resistant variants, their enumeration might not provide information relevant to germinal mutations but would still be a useful way to detect induction of general kinds of stable phenotypic changes that could cause cancer. This article outlines hypothetical epigenetic and genetic causes of somatic cell variation and a prospective genetic analysis of human cell variants that are resistant to 8-azaguanine (AG) or 2,6-diaminopurine ( (DAP).Recent evidences and arguments favoring epigenetic origins of resistance to base-analogues are inconclusive. The often cited high rate of changes causing impermeability to BUdR in hamster cells is based on one improperly executed determination. Comparisons of rates of variation conferring BUdR-resistance on cultured haploid and diploid frog cells included diploid variants that did not behave as mutants and ignored major sources of error in estimating mutation rates. AG-resistance could result from recessive mutations in X-chromosomal genes but comparisons of rates of mutation in hamster cells of different ploidies did not provide information about the numbers of X-chromosomes in the variants. Reports that normal rodent HGPRT reappeared in hybrids of enzyme-deficient rodent cells and HGPRT-containing cells of other species or in the rodent cells alone in response to the conditions of cell hybridization did not include adequate controls for reversions in mutant genes of the rodent cells. Questions about the epigenetic and genetic origins of analogue-resistance are mostly unanswered. It remains possible that some kinds of abnormal epigenetic changes cause somatic disease. Specific methods for detecting their occurrence and responsiveness to environmental factors should be devised by focusing efforts on traits that are normally subject to epigenetic regulation. Derepression of genes on the inactive X-chromosome and of liver phenylalanine hydroxylase production are presented as possible examples of abnormal epigenetic changes that could be quantitatively studied by direct selection in vitro.  相似文献   

17.
The development of a system for the detection of somatic cell mutation to hypoxanthine-guanine-phosphoribosyl-transferase (HGPRT) (EC 2.4.2.8) deficiency in L5178Y mouse lymphoma cells is described. The selection of mutant cells was not influenced by the concentration of the selective agent 6-thioguanine (6-TG). In addition, all the mutants selected, spontaneous as well as induced ones, showed a complete loss of HGPRT activity. In reconstruction experiments, in which mutant cells were mixed with wild-type cells, the recovery of mutant cells was only markedly influenced when wild-type cells were seeded in a cell density ten times higher than the one, 5-10(4) cells/ml, used in subsequent induction experiments. X-irradiation and treatment with ethyl methanesulfonate (EMS) increased in the mutation rate above the spontaneous background. A clear-cut dose-dependent mutagenic effect after exposure to X-rays was measured. The rate of induced mutations at the HGPRT locus in lymphoma cells was 1-3-10(-7) per R, as determined after exposures of 200, 300, 400, 500 and 600 R. The time the cells needed to express their mutations was much longer than 48 h. Further study of this phenomenon showed that the optimal expression time for TGr-resistant mutants in L5178Y cells was 6 to 7 days. No indication for a dose-dependent effect on the optimal expression of the mutants was found.  相似文献   

18.
The question as to whether A3 adenosine receptor (A3AR) agonists, N 6-(3-iodobenzyl)-adenosine-5′-N- methyluronamide (IB-MECA) and 2-chloro-N 6-(3-iodobenzyl)-adenosine-5′-N-methyluronamide (Cl-IB-MECA), could exert cytotoxic effects at high concentrations with or without the involvement of A3AR has been a controversial issue for a long time. The initial findings suggesting that A3AR plays a crucial role in the induction of cell death upon treatment with micromolar concentrations of IB-MECA or Cl-IB-MECA were revised, however, the direct and unequivocal evidence is still missing. Therefore, the sensitivity of Chinese hamster ovary (CHO) cells transfected with human recombinant A3AR (A3-CHO) and their counter partner wild-type CHO cells, which do not express any of adenosine receptors, to micromolar concentrations of IB-MECA and Cl-IB-MECA was studied. We observed that IB-MECA and Cl-IB-MECA exhibited a strong inhibitory effect on cell proliferation due to the blockage of cell cycle progression at G1/S and G2/M transitions in both A3-CHO and CHO cells. Further analysis revealed that IB-MECA and Cl-IB-MECA attenuated the Erk1/2 signalling irrespectively to A3AR expression. In addition, Cl-IB-MECA induced massive cell death mainly with hallmarks of a necrosis in both cell lines. In contrast, IB-MECA affected cell viability only slightly independently of A3AR expression. IB-MECA induced cell death that exhibited apoptotic hallmarks. In general, the sensitivity of A3-CHO cells to micromolar concentrations of IB-MECA and Cl-IB-MECA was somewhat, but not significantly, higher than that observed in the CHO cells. These results strongly suggest that IB-MECA and Cl-IB-MECA exert cytotoxic effects at micromolar concentrations independently of A3AR expression.  相似文献   

19.
Chinese hamster ovary (CHO) cells in culture were utilized to determine the cytotoxicity, specific-locus mutation induction, and DNA alkylation which result from treatment of the cells with a range of concentrations of N-methyl-N-nitrosourea (MNU) or N-ethyl-N-nitrosourea (ENU). With [3H]MNU over the concentration range 0.43--13.7 mM, methylation of DNA was found to increase linearly, with a mean value of 56.7 pmol residue per mumol nucleoside per mM. With [1-3H]ENU over the concentration range 1.7--26.8 mM, ethylation was linear, with a mean value of 3.8 pmol residue per mumol nucleotide per mM. Mutation induction at the hypoxanthine-guanine phosphoribosyl transferase (HGPRT) locus was quantified by determination of the frequency of resistance to 6-thioguanine under stringently-defined selection conditions. The mutation frequency increased linearly with MNU or ENU concentration (0.01--2.0 mM); mean values were 2800 and 840 mutants per 10(6) clonable cells per mM, respectively. At equal levels of DNA alkylation, ENU was found to be approx. 4.5 times as mutagenic as MNU.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号