首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
The RuvB hexamer is the chemomechanical motor of the RuvAB complex that migrates Holliday junction branch-points in DNA recombination and the rescue of stalled DNA replication forks. The 1.6 A crystal structure of Thermotoga maritima RuvB together with five mutant structures reveal that RuvB is an ATPase-associated with diverse cellular activities (AAA+-class ATPase) with a winged-helix DNA-binding domain. The RuvB-ADP complex structure and mutagenesis suggest how AAA+-class ATPases couple nucleotide binding and hydrolysis to interdomain conformational changes and asymmetry within the RuvB hexamer implied by the crystallographic packing and small-angle X-ray scattering in solution. ATP-driven domain motion is positioned to move double-stranded DNA through the hexamer and drive conformational changes between subunits by altering the complementary hydrophilic protein- protein interfaces. Structural and biochemical analysis of five motifs in the protein suggest that ATP binding is a strained conformation recognized both by sensors and the Walker motifs and that intersubunit activation occurs by an arginine finger motif reminiscent of the GTPase-activating proteins. Taken together, these results provide insights into how RuvB functions as a motor for branch migration of Holliday junctions.  相似文献   

2.
Homologous recombination between repeated DNA elements in the genomes of Mycoplasma species has been hypothesized to be a crucial causal factor in sequence variation of antigenic proteins at the bacterial surface. To investigate this notion, studies were initiated to identify and characterize the proteins that form part of the homologous DNA recombination machinery in Mycoplasma pneumoniae as well as Mycoplasma genitalium. Among the most likely participants of this machinery are homologs of the Holliday junction migration motor protein RuvB. In both M. pneumoniae and M. genitalium, genes have been identified that have the capacity to encode RuvB homologs (MPN536 and MG359, respectively). Here, the characteristics of the MPN536- and MG359-encoded proteins (the RuvB proteins from M. pneumoniae strain FH [RuvB(FH)] and M. genitalium [RuvB(Mge)], respectively) are described. Both RuvB(FH) and RuvB(Mge) were found to have ATPase activity and to bind DNA. In addition, both proteins displayed divalent cation- and ATP-dependent DNA helicase activity on partially double-stranded DNA substrates. The helicase activity of RuvB(Mge), however, was significantly lower than that of RuvB(FH). Interestingly, we found RuvB(FH) to be expressed exclusively by subtype 2 strains of M. pneumoniae. In strains belonging to the other major subtype (subtype 1), a version of the protein is expressed (the RuvB protein from M. pneumoniae strain M129 [RuvB(M129)]) that differs from RuvB(FH) in a single amino acid residue (at position 140). In contrast to RuvB(FH), RuvB(M129) displayed only marginal levels of DNA-unwinding activity. These results demonstrate that M. pneumoniae strains (as well as closely related Mycoplasma spp.) can differ significantly in the function of components of their DNA recombination and repair machinery.  相似文献   

3.
In Escherichia coli, the RuvA and RuvB proteins interact at Holliday junctions to promote branch migration leading to the formation of heteroduplex DNA. RuvA provides junction-binding specificity and RuvB drives ATP-dependent branch migration. Since RuvB contains sequence motifs characteristic of a DNA helicase and RuvAB exhibit helicase activity in vitro, we have analysed the role of DNA unwinding in relation to branch migration. A mutant RuvB protein, RuvB(D113E), mutated in helicase motif II (the DExx box), has been purified to homogeneity. The mutant protein forms hexameric rings on DNA similar to those formed by wild-type protein and promotes branch migration in the presence of RuvA. However, RuvB(D113E) exhibits reduced ATPase activity and is severely compromised in its DNA helicase activity. Models for RuvAB-mediated branch migration that invoke only limited DNA unwinding activity are proposed.  相似文献   

4.
Martinez-Salazar JM  Romero D 《Gene》2000,243(1-2):125-131
The Rhizobium etli ruvA and ruvB genes were cloned through a PCR-based approach, using degenerate primers matching conserved sectors in the amino acid sequences of RuvB from eight bacterial species. Comparative analysis of the predicted polypeptides for RuvA and RuvB of R. etli showed highly conserved blocks with the corresponding homologs in other bacteria; RuvB depicts characteristic motifs for DNA helicases (ATP-binding and DEXH-box motifs). An R. etli ruvB::loxP Sp mutant was constructed by interposon mutagenesis. This mutant was highly sensitive to DNA-damaging agents, such as methyl methanesulfonate and nitrofurantoin, implying a deficiency in DNA repair. Homologous and homeologous conjugational recombination was reduced almost tenfold in the ruvB::loxP Sp mutant; a recombination defect was also observed in assays employing recombination between small plasmids, albeit at a smaller magnitude. Although the ruvA and ruvB genes are contiguous in R. etli, complementation studies suggest that they are expressed independently.  相似文献   

5.
The RecG protein of Escherichia coli is a structure-specific DNA helicase that targets strand exchange intermediates in genetic recombination and drives their branch migration along the DNA. Strains carrying null mutations in recG show reduced recombination and DNA repair. Suppressors of this phenotype, called srgA, were located close to metB and shown to be alleles of priA. Suppression depends on the RecA, RecBCD, RecF, RuvAB, and RuvC recombination proteins. Nine srgA mutations were sequenced and shown to specify mutant PriA proteins with single amino acid substitutions located in or close to one of the conserved helicase motifs. The mutant proteins retain the ability to catalyze primosome assembly, as judged by the viability of recG srgA and srgA strains and their ability to support replication of plasmids based on the ColE1 replicon. Multicopy priA+ plasmids increase substantially the recombination- and repair-deficient phenotype of recG strains and confer similar phenotypes on recG srgA double mutants but not on ruvAB or wild-type strains. The multicopy effect is eliminated by K230R, C446G, and C477G substitutions in PriA. It is concluded that the 3'-5' DNA helicase/translocase activity of PriA inhibits recombination and that this effect is normally countered by RecG.  相似文献   

6.
The Escherichia coli RuvA and RuvB proteins promote the branch migration of Holliday junctions during the late stages of homologous recombination and DNA repair (reviewed in [1]). Biochemical and structural studies of the RuvAB-Holliday junction complex have shown that RuvA binds directly to the Holliday junction [2] [3] [4] [5] [6] and acts as a specificity factor that promotes the targeting of RuvB [7] [8], a hexameric ring protein that drives branch migration [9] [10] [11]. Electron microscopic visualisation of the RuvAB complex revealed that RuvA is flanked by two RuvB hexamers, which bind DNA arms that lie diametrically opposed across the junction [8]. ATP-dependent branch migration occurs as duplex DNA is pumped out through the centre of each ring. Because RuvB possesses well-conserved helicase motifs and RuvAB exhibits a 5'-3' DNA helicase activity in vitro [12], the mechanism of branch migration is thought to involve DNA opening within the RuvB ring, which provides a single strand for the unidirectional translocation of the protein along DNA. We have investigated whether the RuvB ring can translocate along duplex DNA containing a site-directed interstrand psoralen crosslink. Surprisingly, we found that the crosslink failed to inhibit branch migration. We interpret these data as evidence against a base-by-base tracking model and suggest that extensive DNA opening within the RuvB ring is not required for DNA translocation by RuvB.  相似文献   

7.
8.
A J van Gool  R Shah  C Mézard    S C West 《The EMBO journal》1998,17(6):1838-1845
Homologous recombination generates genetic diversity and provides an important cellular pathway for the repair of double-stranded DNA breaks. Two key steps in this process are the branch migration of Holliday junctions followed by their resolution into mature recombination products. In E.coli, branch migration is catalysed by the RuvB protein, a hexameric DNA helicase that is loaded onto the junction by RuvA, whereas resolution is promoted by the RuvC endonuclease. Here we provide direct evidence for functional interactions between RuvB and RuvC that link these biochemically distinct processes. Using synthetic Holliday junctions, RuvB was found to stabilize the binding of RuvC to a junction and to stimulate its resolvase activity. Conversely, RuvC facilitated interactions between RuvB and the junction such that RuvBC complexes catalysed branch migration. The observed synergy between RuvB and RuvC provides new insight into the structure and function of a RuvABC complex that is capable of facilitating branch migration and resolution of Holliday junctions via a concerted enzymatic mechanism.  相似文献   

9.
There are seven conserved motifs (IA, IB, and II to VI) in DNA helicase II of Escherichia coli that have high homology among a large family of proteins involved in DNA metabolism. To address the functional importance of motifs II to VI, we employed site-directed mutagenesis to replace the charged amino acid residues in each motif with alanines. Cells carrying these mutant alleles exhibited higher UV and methyl methanesulfonate sensitivity, increased rates of spontaneous mutagenesis, and elevated levels of homologous recombination, indicating defects in both the excision repair and mismatch repair pathways. In addition, we also changed the highly conserved tyrosine(600) in motif VI to phenylalanine (uvrD309, Y600F). This mutant displayed a moderate increase in UV sensitivity but a decrease in spontaneous mutation rate, suggesting that DNA helicase II may have different functions in the two DNA repair pathways. Furthermore, a mutation in domain IV (uvrD307, R284A) significantly reduced the viability of some E. coli K-12 strains at 30 degrees C but not at 37 degrees C. The implications of these observations are discussed.  相似文献   

10.
In bacterial cells, processing of double-stranded DNA breaks for repair by homologous recombination is dependent upon the recombination hotspot sequence Chi and is catalysed by either an AddAB- or RecBCD-type helicase-nuclease. Here, we report the crystal structure of AddAB bound to DNA. The structure allows identification of a putative Chi-recognition site in an inactivated helicase domain of the AddB subunit. By generating mutant protein complexes that do not respond to Chi, we show that residues responsible for Chi recognition are located in positions equivalent to the signature motifs of a conventional helicase. Comparison with the related RecBCD complex, which recognizes a different Chi sequence, provides further insight into the structural basis for sequence-specific ssDNA recognition. The structure suggests a simple mechanism for DNA break processing, explains how AddAB and RecBCD can accomplish the same overall reaction with different sets of functional modules and reveals details of the role of an Fe-S cluster in protein stability and DNA binding.  相似文献   

11.
The ruvA and ruvB genes of Escherichia coli constitute an operon which belongs to the SOS regulon. Genetic evidence suggests that the products of the ruv operon are involved in DNA repair and recombination. To begin biochemical characterization of these proteins, we developed a plasmid system that overproduced RuvB protein to 20% of total cell protein. Starting from the overproducing system, we purified RuvB protein. The purified RuvB protein behaved like a monomer in gel filtration chromatography and had an apparent relative molecular mass of 38 kilodaltons in sodium dodecyl sulfate-polyacrylamide gel electrophoresis, which agrees with the value predicted from the DNA sequence. The amino acid sequence of the amino-terminal region of the purified protein was analyzed, and the sequence agreed with the one deduced from the DNA sequence. Since the deduced sequence of RuvB protein contained the consensus sequence for ATP-binding proteins, we examined the ATP-binding and ATPase activities of the purified RuvB protein. RuvB protein had a stronger affinity to ADP than to ATP and weak ATPase activity. The results suggest that the weak ATPase activity of RuvB protein is at least partly due to end product inhibition by ADP.  相似文献   

12.
During the late stage of homologous recombination in prokaryotes, RuvA binds to the Holliday junction intermediate and executes branch migration in association with RuvB. The RuvA subunits form two distinct complexes with the Holliday junction: complex I with the single RuvA tetramer on one side of the four way junction DNA, and complex II with two tetramers on both sides. To investigate the functional roles of complexes I and II, we mutated two residues of RuvA (L125D and E126K) to prevent octamer formation. An electron microscopic analysis indicated that the mutant RuvA/RuvB/Holliday junction DNA complex formed the characteristic tripartite structure, with only one RuvA tetramer bound to one side of the Holliday junction, demonstrating the unexpected stability of this complex. The novel bent images of the complex revealed an intriguing morphological similarity to the structure of SV40 large T antigen, which belongs to the same AAA+ family as RuvB.  相似文献   

13.
K Hiom  S C West 《Nucleic acids research》1995,23(18):3621-3626
The Escherichia coli RuvA and RuvB proteins interact specifically with Holliday junctions to promote ATP-dependent branch migration during genetic recombination and DNA repair. In the work described here, glycerol gradient centrifugation was used to investigate the requirements for the formation of pre-branch migration complexes. Since gradient centrifugation provides a simple and gentle method to analyse relatively unstable protein-DNA complexes, we were able to detect RuvA- and RuvAB-Holliday junction complexes without the need for chemical fixation. Using 35S-labelled RuvA protein and 3H-labelled Holliday junctions, we show that RuvA acts as a helicase accessory factor that loads the RuvB helicase onto the Holliday junction by structure-specific interactions. The resulting complex contained both RuvA and RuvB, as detected by Western blotting using serum raised against RuvA and RuvB. The stoichiometry of binding was estimated to be approximately four RuvA tetramers per junction. Formation of the RuvAB-Holliday junction complex required the presence of divalent metal ions and occurred without the need for ATP. However, the stability of the complex was enhanced by the presence of ATP gamma S, a non-hydrolysable ATP analogue. The data support a model for branch migration in which structure-specific binding of Holliday junctions by RuvA targets the assembly of hexameric RuvB rings on DNA. Specific loading of the RuvB ring helicase by RuvA is likely to be the initial step towards ATP-dependent branch migration.  相似文献   

14.
A 47k protein (p47) in a high-salt buffer extract of a rat liver nuclear matrix fraction was purified by means of a wheat germ agglutinin affinity column, reversed phase HPLC, and SDS-PAGE, and partial amino acid sequences were analyzed. Based on these sequences, the mouse cDNA of the protein was cloned and sequenced, and its amino acid sequence was deduced. Mouse p47 consists of 463 amino acid residues with a molecular weight of 51,112. The amino acid sequences of human and Saccharomyces cerevisiae p47s were also deduced from the nucleotide sequences of "expressed sequence tag" fragments and genomic DNA, respectively. These sequences contain helicase motifs and show homology to bacterial RuvB DNA helicases acting in homologous recombination. They also show homology with the putative mammalian helicases p50/TIP49 and RUVBL1. Comparison of the amino acid sequences of p47 group proteins and those of p50/TIP49 group proteins revealed the p47 group proteins to comprise a group distinct from the p50/TIP49 proteins. Ultracentrifugation and gel filtration analyses showed that p47 in the rat liver cytosol fraction exists as large complexes of 697k.  相似文献   

15.
The MPH1 (mutator pHenotype 1) gene of Saccharomyces cerevisiae was identified on the basis of elevated spontaneous mutation rates of haploid cells deleted for this gene. Further studies showed that MPH1 functions to channel DNA lesions into an error-free DNA repair pathway. The Mph1 protein contains the seven conserved motifs of the superfamily 2 (SF2) family of nucleic acid unwinding enzymes. Genetic analyses have found epistasis of the mph1 deletion with mutations in the RAD52 gene group that mediates homologous recombination and DNA repair by homologous recombination. To begin dissecting the biochemical functions of the MPH1-encoded product, we have expressed it in yeast cells and purified it to near homogeneity. We show that Mph1 has a robust ATPase function that requires single-stranded DNA for activation. Consistent with its homology to members of the SF2 helicase family, we find a DNA helicase activity in Mph1. We present data to demonstrate that the Mph1 DNA helicase activity is fueled by ATP hydrolysis and has a 3' to 5' polarity with respect to the DNA strand on which this protein translocates. The DNA helicase activity of Mph1 is enhanced by the heterotrimeric single-stranded DNA binding protein replication protein A. These results, thus, establish Mph1 as an ATP-dependent DNA helicase, and the availability of purified Mph1 should facilitate efforts at deciphering the role of this protein in homologous recombination and mutation avoidance.  相似文献   

16.
RuvA plays an essential role in branch migration of the Holliday junction by RuvAB as part of the RuvABC pathway for processing Holliday junctions in Escherichia coli. Two types of RuvA-Holliday junction complexes have been characterized: 1) complex I containing a single RuvA tetramer and 2) complex II in which the junction is sandwiched between two RuvA tetramers. The functional differences between the two forms are still not clear. To investigate the role of RuvA octamerization, we introduced three amino acid substitutions designed to disrupt the E. coli RuvA tetramer-tetramer interface as identified by structural studies. The mutant RuvA was tetrameric and interacted with both RuvB and junction DNA but, as predicted, formed complex I only at protein concentrations up to 500 nm. We present biochemical and surface plasmon resonance evidence for functional and physical interactions of the mutant RuvA with RuvB and RuvC on synthetic junctions. The mutant RuvA with RuvB showed DNA helicase activity and could support branch migration of synthetic four-way and three-way junctions. However, junction binding and the efficiency of branch migration of four-way junctions were affected. The activity of the RuvA mutant was consistent with a RuvAB complex driven by one RuvB hexamer only and lead us to propose that one RuvA tetramer can only support the activity of one RuvB hexamer. Significantly, the mutant failed to complement the UV sensitivity of E. coli DeltaruvA cells. These results indicate strongly that RuvA octamerization is essential for the full biological activity of RuvABC.  相似文献   

17.
The Escherichia coli ruvA and ruvB genes constitute an SOS-regulated operon. The products of these genes form a protein complex that promotes branch migration of the Holliday junction, an intermediate of homologous recombination. RuvA protein binds specifically to the Holliday junction and recruits RuvB protein to the junction. RuvB is an ATP-driven motor protein involved in branch migration. We previously cloned the ruvB gene of the thermophilic bacterium Thermus thermophilus HB8 (Tth) and found that, in contrast to the operon structure in most mesothermic bacteria, the ruvA gene is absent from the vicinity of ruvB. In this work, we cloned the ruvA gene from T. thermophilus HB8 and analyzed its nucleotide sequence. Tth RuvA is a protein of 20,414 Da consisting of 191 amino acid residues, and is 37% identical in amino acid sequence to E. coli RuvA. Tth ruvA complemented the DNA repair defect of E. coli deltaruvA mutants. The purified Tth RuvA protein stimulated Tth RuvB activities, such as hydrolysis of ATP and promotion of branch migration of the Holliday junction, in a manner similar to the RuvA-RuvB interactions observed in E. coli. In addition, Tth RuvA stimulated the E. coli RuvB activities in vitro, which was well consistent with the results of in vivo hetero-complementation experiments.  相似文献   

18.
DNA helicase B is a major DNA helicase in mouse FM3A cells. A temperature-sensitive mutant defective in DNA replication, tsFT848, isolated from FM3A cells, has a heat-labile DNA helicase B. In this study, we purified DNA helicase B from mouse FM3A cells and determined partial amino acid sequences of the purified protein. By using a DNA probe synthesized according to one of the partial amino acid sequences, a cDNA was isolated, which encoded a 121.5 kDa protein containing seven conserved motifs for DNA/RNA helicase superfamily members. A database search revealed similarity between DNA helicase B and the α subunit of exodeoxyribonuclease V of a number of prokaryotes including Escherichia coli RecD protein, but no homologous protein was found in yeast. The cDNA encoding DNA helicase B from tsFT848 was sequenced and a mutation was found between DNA/RNA helicase motifs IV and V.  相似文献   

19.
Based on partial amino acid sequences of p50 purified from a high-salt buffer extract of a rat liver nuclear matrix fraction, p50 cDNA was cloned and sequenced, and its amino acid sequence was predicted. The sequence contained helicase motifs, and showed homology with RuvB DNA helicase of Thermus thermophilus and an open reading frame for an unknown 50.5 k protein of Saccharomyces cerevisiae. p50 was expressed as a GST-fusion protein and antiserum against the protein was generated. p50 was localized to the nuclear matrix by cell fractionation and immunoblotting. p50 bound to ATP-Sepharose beads. Ultracentrifugation and gel filtration analyses showed that p50 in rat liver and Xenopus egg mitotic extracts exists as large complexes corresponding to 697 k and 447 k, respectively. A 50 k protein reactive with p50 antibodies was detected not only in rat liver nuclei, but also in a Xenopus egg cytoplasm fraction and a S. cerevisiae extract. This suggests that this putative DNA helicase is present in a wide variety of species ranging from yeast to mammals.  相似文献   

20.
The RuvABC proteins of Escherichia coli process recombination intermediates during genetic recombination and DNA repair. RuvA and RuvB promote branch migration of Holliday junctions, a process that extends heteroduplex DNA. Together with RuvC, they form a RuvABC complex capable of Holliday junction resolution. Branch migration by RuvAB is mediated by RuvB, a hexameric ring protein that acts as an ATP-driven molecular pump. To gain insight into the mechanism of branch migration, random mutations were introduced into the ruvB gene by PCR and a collection of mutant alleles were obtained. Mutation of leucine 268 to serine resulted in a severe UV-sensitive phenotype, characteristic of a ruv defect. Here, we report a biochemical analysis of the mutant protein RuvBL268S. Unexpectedly, the purified protein is fully active in vitro with regard to its ATPase, DNA binding and DNA unwinding activities. It also promotes efficient branch migration in combination with RuvA, and forms functional RuvABC-Holliday junction resolvase complexes. These results indicate that RuvB may perform some additional, and as yet undefined, function that is necessary for cell survival after UV-irradiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号