首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The cytochromes in microsomal fractions of germinating mung beans.   总被引:11,自引:1,他引:10       下载免费PDF全文
Detailed studies of microsomal cytochromes from mung-bean radicles showed the presence of cytochrome P-420, particularly in dark-grown seedlings, accompanied by smaller quantities of cytochrome P-450. Similar proportions of cytochrome P-420 to cytochrome P-450 were found spectrophotometrically in vivo with whole radicles and hypocotyls. Assayed in vitro, maximum concentrations of both cytochromes were attained after 4 days of growth, before undergoing rapid degradation. Illumination of seedlings stabilized cytochrome P-450 and decreased the amount of cytochrome P-420. Three b cytochromes were present in the microsomal fraction, namely cytochromes b-562.5 (Em + 105 +/- 23 mV), b-560.5 (Em + 49 +/- 13 mV) and b5 (Em - 45 +/- 14 mV), all at pH 7.0. Of the b cytochromes, cytochrome b5 alone undergoes a rapid degradation after day 4, Changes in cytochrome b concentrations were confined to the microsomal fraction: mitochondrial b cytochrome concentrations were unaltered with age. Protohaem degradation (of exogenous methaemalbumin) was detected in microsomal fractions of mung beans. The rates of degradation were highest in extracts of young tissue and declined after day 4. The degradation mechanism and products did not resemble those of mammalian haem oxygenase.  相似文献   

2.
In order to identify the b-type cytochrome involved in the nitrate reduction in a photodenitrifier, Rhodopseudomonas sphaeroides forma sp. denitrificans, the b-type cytochromes in the spheroplast membranes were characterized. Difference spectra at 77K of spheroplast membranes indicated the presence of two b-type cytochromes with a bands at 556.5 and 562 nm. Three components considered to be of the b-type cytochrome were resolved by anaerobic potentiometric titration at 560-572 nm. Their midpoint potentials at pH 7, Em,7, were - 135 mV, +40 mV and +175 nm and their approximate reduced minus oxidized maxima were determined to be at 565 nm (562 nm at 77K), 560 nm (556.5 nm) and 560 nm (556.5 nm), respectively. These values are almost the same as those reported for R. sphaeroides. The Em,7 value of the cytochrome c involved in the nitrate reductase of this denitrifier was determined to be 250 mV. A b-type cytochrome reduced with NADH and FMN was oxidized by nitrate in chromatophore membranes. The possibility that cytochrome b (Em,7 = 175 mV) is involved in the nitrate reduction is discussed.  相似文献   

3.
A combination of potentiometric analysis and electrochemically poised low-temperature difference spectroscopy was used to examine a mutant strain of Escherichia coli that was previously shown by immunological criteria to be lacking the cytochrome d terminal oxidase. It was shown that this strain is missing cytochromes d, a1, and b558 and that the cytochrome composition of the mutant is similar to that of the wild-type strain grown under conditions of high aeration. The data indicate that the high-aeration branch of the respiratory chain contains two cytochrome components, b556 (midpoint potential [Em] = +35 mV) and cytochrome o (Em = +165 mV). The latter component binds to CO and apparently has a reduced-minus-oxidized split-alpha band with peaks at 555 and 562 nm. When the wild-type strain was grown under conditions of low aeration, the components of the cytochrome d terminal oxidase complex were observed: cytochrome d (Em = +260 mV), cytochrome a1 (Em = +150 mV) and cytochrome b558 (Em = +180 mV). All cytochromes appeared to undergo simple one-electron oxidation-reduction reactions. In the absence of CO, cytochromes b558 and o have nearly the same Em values. In the presence of CO, the Em of cytochrome o is raised, thus allowing cytochromes b558 and o to be individually quantitated by potentiometric analysis when they are both present.  相似文献   

4.
Several members of the genus Methanosarcina were investigated by room-temperature and low-temperature difference spectroscopy for the presence of cytochromes. In combination with potentiometric titrations two membrane-bound b-cytochromes and one membrane-bound c-cytochrome could be detected in cells grown on methanol or trimethylamine. Very probably acetate-grown cells contained an additional cytochrome b. The midpoint potentials of the two b-type cytochromes were Em1 = -325 mV and Em2 = -183 mV, respectively. The additional b cytochrome formed during growth on acetate exhibited a midpoint potential of Em3 = -250 mV.  相似文献   

5.
The EPR spectra of cytochrome b-562 isolated from the cytochrome b-c1 complex of Rhodopseudomonas sphaeroides were measured at liquid helium temperature. The purified cytochrome b-562 gives a high spin signal at g = 6.0. Anaerobic titration of this signal confirmed the presence of two redox components with Em = 40 and -110 mV at pH 7.5. These values are consistent with the published ones, Em = 55 and -100 mV at pH 7.0, that were optically estimated for the same type of preparation (Iba et al. (1985) FEBS Lett. 183, 151-154). The power saturation behavior of the g = 6.0 signal at different redox potentials indicated a direct spin-spin interaction between these two redox centers.  相似文献   

6.
The midpoint potentials of the mitochondrial respiratory chain cytochromes of the protozoan Crithidia fasciculata at pH 7.2, Em7.2, show great similarity to those measured in higher organisms. Values of Em7.2 for cytochromes a and a3 are +165 and +340 mV. Both c cytochromes have Em7.2 = +230 mV. There are two b cytochromes with the same spectral characteristics with Em7.2 = -20 and -135 mV. These values are compatible with two sites of energy conservation for oxidative phosphorylation in these mitochondria. All cytochrome components show potentiometric titrations with n = 1. There is a fluorescent flavoprotein in these mitochondria with Em7.2 = -40 mV and n =2, whose function is not known.  相似文献   

7.
EPR studies of the cytochrome-d complex of Escherichia coli   总被引:2,自引:0,他引:2  
We have examined the thermodynamic and EPR properties of one of the ubiquinol oxidase systems (the cytochrome d complex) of Escherichia coli, and have assigned the EPR-detectable signals to the optically identified cytochromes. The axial high spin g = 6.0 signal has been assigned to cytochrome d based on the physicochemical properties of this signal and those of the optically defined cytochrome d. A rhombic low spin species at gx,y,z = 1.85, 2.3, 2.5 exhibited similar properties but was present at only one-fifth the concentration of the axial high spin species. Both species have an Em7 of 260 mV and follow a -60 mV/pH unit dependence from pH 6 to 10. The rhombic high spin signal with gy,z = 5.5 and 6.3 has been assigned to cytochrome b-595. This component has an Em7 of 136 mV and follows a -30 mV/pH unit dependence from pH 6 to 10. Lastly, the low spin gz = 3.3 signal which titrates with an Em7 of 195 mV and follows a -40 mV/pH unit dependence from pH 6 to 10 has been assigned to cytochrome b-558. Spin quantitation of the high-spin signals indicates that cytochrome d and b-595 are present in approximately equal amounts. These observations are discussed in terms of the stoichiometry of the prosthetic groups and its implications on the mechanism of electron transport.  相似文献   

8.
1. Cytochrome b-562 is more reduced in submitochondrial particles of mutant 28 during the aerobic steady-state respiration with succinate than in particles of the wild type. When anaerobiosis is reached, the reduction of cytochrome b is preceded by a rapid reoxidation in the mutnat. A similar reoxidation is observed in the wild type in the present of low concentrations of antimycin. 2. In contrast to the wild type, inhibition of electron transport in the mutant has a much higher antimycin titre than effects on cytochromes b (viz., aerobic steady-state reduction; reduction in the presence of substrate, cyanide and oxygen; the 'red shift' and lowering of E'-o of cytochrome b-562). Moreover, the titration curve of electron transport is hyperbolic whereas the curves for the reduction are sigmoidal. The conclusion is, that in both mutant and wild type, the actions of antimycin on electron transport and cytochromes b are separable. 3. The red shift in the mutant is more extensive than in the wild type. 4. Cytochrome b-558 and cytochrome b-566 (that absorbs in mutant and wild type at 564.5 nm) do not respond simultaneously to addition of antimycin, indicating that they are two separate cytochromes. 5. The difference between the effect of antimycin on electron transport and cytochromes b reduction is also found in intact cells of the mutant. 6. A model is suggested for the wild-type respiratory chain in which (i) the cytochromes b lie, in an uncoupled system, out of the main electron-transfer chain, (ii) antimycin induces a conformation change in QH-2-cytochrome c reductase resulting in effects on cytochrome b and inhibition of electron transport, (iii) a second antimycin-binding site with low affinity to the antibiotic is present, capable of inhibiting electron transport.  相似文献   

9.
Spectral and potentiometric analysis of cytochromes from Bacillus subtilis   总被引:4,自引:0,他引:4  
Bacillus subtilis cytoplasmic membranes contain several cytochromes which are linked to the respiratory chain. At least six different cytochromes have been separated and identified by ammonium sulphate fractionation and ion-exchange chromatography. They include two terminal oxidases with CO-binding properties and cyanide sensitivity. One of these is an aa3-type cytochrome c oxidase which has characteristic absorption maxima in the reduced-oxidized difference spectrum at 601 nm in the alpha-band and at 443 nm in the Soret band regions. In the alpha-band two separate electron transitions with Em = +205 mV and Em = +335 mV can be discriminated by redox potentiometric titration. The other CO-binding cytochrome c oxidase contains two cytochrome b components with alpha-band maxima at 556 nm and 559 nm. Cytochrome b556 can be reduced by ascorbate and has an Em + +215 mV, whereas cytochrome b559 has an Em = +140 mV. Furthermore a complex consisting of a cytochrome b564 (Em = +140 mV) associated with a cytochrome c554 (Em = +250 mV) was found. This cytochrome c554, which can be reduced by ascorbate, appears to have an asymmetrical alpha-peak and stains for heme-catalyzed peroxidase activity on SDS-containing polyacrylamide gels. A protein with a molecular mass of about 30 kDa is responsible for this activity. A cytochrome b559 (Em = +65 mV) appears to be an essential part of succinate dehydrogenase. Finally a cytochrome c550 component with an apparent mid-point potential of Em = +195 mV has been detected.  相似文献   

10.
Methanosarcina strain G?1 was tested for the presence of cytochromes. Low-temperature spectroscopy, hemochrome derivative spectroscopy, and redox titration revealed the presence of two b-type (b559 and b564) and two c-type (c547 and c552) cytochromes in membranes from Methanosarcina strain G?1. The midpoint potentials determined were Em,7 = -135 +/- 5 and -240 +/- 11 mV (b-type cytochromes) and Em,7 = -140 +/- 10 and -230 +/- 10 mV (c-type cytochromes). The protoheme IX and the heme c contents were 0.21 to 0.24 and 0.09 to 0.28 mumol/g of membrane protein, respectively. No cytochromes were detectable in the cytoplasmic fraction. Of various electron donors and acceptors tested, only the reduced form of coenzyme F420 (coenzyme F420H2) and the heterodisulfide of coenzyme M and 7-mercaptoheptanoylthreonine phosphate (CoM-S-S-HTP) were capable of reducing and oxidizing the cytochromes at a high rate, respectively. Addition of CoM-S-S-HTP to reduced cytochromes and subsequent low-temperature spectroscopy revealed the oxidation of cytochrome b564. On the basis of these results, we suggest that one or several cytochromes participate in the coenzyme F420H2-dependent reduction of the heterodisulfide.  相似文献   

11.
We have examined the effects of eight inhibitors of the bovine-heart mitochondrial Complex III on the catalytic activity of the analogous complex from yeast mitochondria. All eight compounds were inhibitory, with potent inhibition being obtained with antimycin, myxothiazol and UHDBT (5-N-undecyl-6-hydroxy-4,7-dioxobenzothiazole). These three inhibitors, and also funiculosin, have been further studied by characterizing their effects on the visible absorbance, magnetic circular dichroism and EPR spectra of the complex and also on the potentiometric properties of the individual metal centers present in the complex. All four inhibitors had little or no effect on either the absorbance or magnetic circular dichroism spectra. Funiculosin produced a change in the EPR lineshape of the iron-sulfur cluster; EPR spectra recorded at 12 K also revealed complete reduction of cytochrome b-562 by ascorbate. UHDBT also changed the lineshape of the iron-sulfur cluster and this change could be partially reversed by myxothiazol. Neither antimycin nor myxothiazol affected the iron-sulfur cluster and produced only small changes in the EPR absorption envelope of the b cytochromes. Both funiculosin and UHDBT raised the midpoint potential of the iron-sulfur cluster, by about 150 and 70 mV, respectively. Only UHDBT changed the potential of c1, lowering it by about 30 mV. Funiculosin raised the potential of b-562 by about 30 mV, while myxothiazol had no effect; the other two compounds produced only small changes. All four compounds had only small effects on the midpoint potential of b-566. The relative contributions of the two b cytochromes to the magnetic circular dichroism amplitudes could be changed by the addition of inhibitors, even though the absolute magnetic circular dichroism spectra of oxidized and reduced complex were unaffected.  相似文献   

12.
Oxidation-reduction midpoint potentials (Ems) were determined at pH 7.0 for cytochromes in the anaerobic respiratory chain of Ascaris mitochondria by redox titration techniques. Cytochrome b558, which is associated with complex II that functions as fumarate reductase in the terminal step of the respiratory chain, was shown to have an Em of -34 mV in the isolated complex II and -54 mV in mitochondria. These values are much higher than the value of Ascaris cytochrome b558. In contrast, Ems of cytochromes C + C1 and cytochrome b559.5 were determined in situ to be 235 mV and 78 mV, respectively, which are comparable to those of their mammalian counterparts.  相似文献   

13.
The oxidation-reduction midpoint potential of the cytochrome b found in the plasma membrane of human neutrophils has been determined at pH 7.0 (Em,7.0) from measurements of absorption spectra at fixed potentials. In both unstimulated and phorbol myristate acetate-stimulated cells Em,7.0 was -245 mV. Changes in pH affected the Em of the cytochrome b, with a slope of approx. 25 mV/pH unit change. The Em,7.0 of the haem group(s) of the membrane-bound myeloperoxidase of human neutrophils was found to be +34 mV. The plasma membranes contained no detectable ubiquinone, and no iron-sulphur compounds were detected by e.p.r. spectroscopy at 5-20 K. No flavins were detected by e.p.r. spectroscopy. The cytochrome b-245 was not reduced by added NADH or NADPH. Dithionite-reduced cytochrome b-245 formed a complex with CO, supplied as a saturated solution, which was dissociated with 26 microseconds illumination from a xenon flash lamp, and the recombination with CO had a half-time of approx. 6 ms. Partly (80%) reduced cytochrome b-245 was oxidized by added air-saturated buffer with a half-time faster than 1 s at 20 degrees C, a resolution limited by mixing time. These results are compatible with cytochrome b-245 acting as an oxidase.  相似文献   

14.
The electron transport components of the microsomal fraction of cauliflower buds and mung bean hypocotyls were investigated using split-beam and dual wavelength spectrophotometry under a variety of reducing conditions. Cauliflower microsomes were found to contain an ascorbate-reducible component, termed cytochrome b-559.5 [E'0 = +135 +/- 20 mV; lambdamax (reduced minus oxidised) = 559.5, 527 and 429 nm at 23 degrees C], cytochrome b5 [E'0 = -20 +/- 20 mV; lambdamax (reduced minus oxidised) = 556, 526 and 425 nm at 23 degrees C], cytochromes P-450 and P-420. On the basis of binding studies with ethyl isocyanide, degradation of cytochrome P-450 to P-420, redox potential, aniline binding, and relative rates of reduction by NADPH and NADH, it is suggested that the cytochrome P-450 system is analogous to that mammalian microsomes. Other components, reducible only by dithionite, may also be present. Mung bean microsomes were found to contain an ascorbate-reducible component, termed cytochrome b-562 [E'0 = +120 +/- 20 mV; lambdamax (reduced minus oxidised) = 562, 528 and 430 nm at 23 degrees C], cytochrome b5, and a low potential component which was reducible only by sodium dithionite. No cytochrome P-450 or P-420 could be detected. A general method of analysis of the cytochromes was developed and applied to the microsomes from a variety of plant sources. The results indicate that large variations, both in type and amount of components, occur between the microsomes from different plant materials.  相似文献   

15.
Assignment of ESR signals of Escherichia coli terminal oxidase complexes   总被引:1,自引:0,他引:1  
The ESR signals of all the major components of the aerobic respiratory chain of Escherichia coli were measured and assigned at liquid helium temperature. Cytochrome b-556 gives a weak high-spin signal at g = 6.0. The terminal oxidase cytochrome b-562 . o complex gives signals at g = 6.0, 3.0 and 2.26, and the terminal oxidase cytochrome b-558 . d complex gives signals at g = 6.0, 2.5 and 2.3. A signal derived from cupric ions in the purified cytochrome b-562 . o complex was observed near g = 2.0. It was shown by the effects of KCN or NaN3 on cytochromes under the air-oxidized conditions that cytochrome o has a high-spin heme and cytochrome d has a low-spin heme. The E'm values for cytochromes b-558 and d, respectively, determined by potentiometric titration of the ESR signals were 140 and 240 mV in the membrane preparation, and 30 and 240 mV in the purified preparation. The oxidized cytochrome d gave intense low-spin signals at g = 2.5 and 2.3, while cytochrome d under the air-oxidized conditions gave corresponding signals of only very low intensity. These results suggested that most of the cytochrome d under the air-oxidized conditions contains a diamagnetic iron atom with a bound dioxygen.  相似文献   

16.
A new simple method for the purification of the bc1-complex has been developed. The polypeptide composition of the complex was analysed by dodecyl sulfate-polyacrylamide gel electrophoresis. The content of chain components and phospholipids was determined. The b-type cytochromes were further characterized by their absorbance spectra and midpoint potentials. (1) Starting from a Triton X-100 extract of submitochondrial particles supplemented with antimycin, the bc1-complex is purified by adsorption chromatography on hydroxyapatite with citrate as specific eluant. (2) The complex splits in dodecyl sulfate into five main polypeptides with apparent molecular weight of 47, 44, 31, 11 and less than 10 kdalton. (3) The purified complex has a heme-b content of 8.0 mumol/g protein and a cytochrome c1 content of 3.8 mumol/g protein. (4) The cytochromes show the typical absorbance spectra of cytochromes b-562 and b-565 and are present in approximately equal amounts with midpoint potentials of Em7 = + 100 mV and Em7 = + mV respectively. Carbon monoxide does not bind to the cytochromes. (5) The nonheme iron protein content of the complex is diminished to 0.6 mumol/g protein. (6) The use of the nonionic surfactant Triton X-100 leads to a complete loss of lipids and ubiquinone of the bc1-complex. (7) The complex contains no succinate dehydrogenase as indicated by the absence of the 69 kdalton subunit in the dodecyl sulfate gel electrophoresis. In addition, it lacks an ubiquinone cytochrome c reductase activity and other electron transferring activities. This may be inferred from an inhibition by antimycin and depletion of ubiquinone and phospholipids. The highly purified and relative stable complex can be prepared giving 50% yield and may be suitable for protein chemistry studies.  相似文献   

17.
The nature and number of physiological electron donors to the photochemical reaction center of Rhodobacter capsulatus have been probed by deleting the genes for cytochromes c1 and b of the cytochrome bc1 complex, alone or in combination with deletion of the gene for cytochrome c2. Deletion of cytochrome c1 renders the organism incapable of photosynthetic growth, regardless of the presence or absence of cytochrome c2, because in the absence of the bc1 complex there is no cyclic electron transfer, nor any alternative source of electrons to rereduce the photochemically oxidized reaction center. While cytochrome c2 is capable of reducing the reaction center, there appears no alternative route for its rereduction other than the bc1 complex. The deletion of cytochromes c1 and c2 reveals previously unrecognized membrane-bound and soluble high potential c-type cytochromes, with Em7 = +312 mV and Em6.5 = +316 mV, respectively. These cytochromes do not donate electrons to the reaction center, and their roles are unknown.  相似文献   

18.
EPR characteristics of cytochrome c1, cytochromes b-565 and b-562, the iron-sulfur cluster, and an antimycin-sensitive ubisemiquinone radical of purified cytochrome b-c1 complex of Rhodobacter sphaeroides have been studied. The EPR specra of cytochrome c1 shows a signal at g = 3.36 flanked with shoulders. The oxidized form of cytochrome b-562 shows a broad EPR signal at g = 3.49, while oxidized cytochrome b-565 shows a signal at g = 3.76, similar to those of two b cytochromes in the mitochondrial complex. The distribution of cytochromes b-565 and b-562 in the isolated complex is 44 and 56%, respectively. Antimycin and 2,5-dibromo-3-methyl-6-isopropyl-1,4-benzoquinone (DBMIB) have little effect on the g = 3.76 signal, but they cause a slight downfield and upfield shifts of the g = 3.49 signal, respectively. 5-Undecyl-6-hydroxyl-4,7-dioxobenzothiazole (UHDBT) shifts the g = 3.49 signal downfield to g = 3.56 and sharpens the g = 3.76 signal slightly. Myxothiazol causes an upfield shift of both g = 3.49 and g = 3.76 signals. EPR characteristics of the reduced iron-sulfur cluster in bacterial cytochrome b-c1 complex are: gx = 1.8 with a small shoulder at g = 1.76, gy = 1.89 and gz = 2.02, similar to those observed with the mitochondrial enzyme. The gx = 1.8 signal decreased and the shoulder increased concurrently as the redox potential decreased, indicating that the environment of the iron-sulfur cluster is sensitive to the redox state of the complex. UHDBT sharpens the gz and and shifts it downfield from g = 2.02 to 2.03, and shifts gx upfield from g = 1.80 to 1.78. UHDBT also causes an upfield shift of gy but to a much lesser extent compared to the other two signals. Addition of DBMIB causes a downfield shift of the gy from 1.89 to 1.94 and broadens the gx signal with an upfield to g = 1.75. Myxothiazol and antimycin show little effect on the gy and gz signals, but they broaden and shift the gx signal upfield to g = 1.74. However, the myxothiazol effect is partially reversed by UHDBT. An antimycin-sensitive ubisemiquinone radical was detected in the cytochrome b-c1 complex. At pH 8.4, the antimycin-sensitive ubisemiquinone radical has a maximal concentration of 0.66 mol per mol complex at 100 mV.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

19.
Changes are described that are brought about by antimycin, NoHOQnO, funiculosin, myxothiazol and mucidin in the alpha-, beta- and gamma-absorption bands of reduced and oxidized cytochromes b in the isolated complex bc1 form beef heart mitochondria. The inhibitors can be divided into 2 groups. Antimycin, funiculosin and NoHOQnO are likely to shift the spectrum of b-562 and compete for specific binding with complex bc1, with each other but not with myxothiazol and mucidin. The spectral effects of the latter two inhibitors are more difficult to interpret and may involve contributions not only from b-562 but from b-566 as well. The existence of 2 independent inhibitor binding-sites in the complex bc1 corroborates the Q-cycle hypothesis.  相似文献   

20.
Mitochondria from glucagon-treated rats oxidize succinate, but not ascorbate plus tetramethylphenylenediamine, faster in the uncoupled state than do control mitochondria. The rate of O(2) uptake in the presence of both substrates is equal to the sum of the rates of the O(2) uptake in the presence of either substrate alone. It is concluded that the mitochondrial respiratory chain is limited at some point between cytochromes b and c and that this step is regulated by glucagon. Measurement of the cytochrome spectra under uncoupled conditions in the presence of succinate and rotenone demonstrates a crossover between cytochromes c and c(1) when control mitochondria are compared with those from glucagon-treated rats, cytochrome c being more oxidized and cytochrome c(1) more reduced in control mitochondria. Under conditions where pyruvate metabolism is studied the control mitochondria are generally more oxidized than those from glucagon-treated rats, the redox state of cytochrome b-566 correlating with the rate of pyruvate metabolism in sucrose medium. However, when the redox state of the mitochondria is taken into account, a crossover between cytochromes c and c(1) is again apparent. The spectra of the b cytochromes are complex, but cytochrome b-562 appears to become more reduced relative to cytochrome b-566 in mitochondria from glucagon-treated rats than in control mitochondria. This can be explained by the existence of a more alkaline matrix in glucagon-treated rats, the redox potential for cytochrome b being pH-sensitive. It is concluded that glucagon stimulates electron flow between cytochromes c(1) and c. The physiological significance of these findings is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号