首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Comparative analysis of tooth development in the main vertebrate lineages is needed to determine the various evolutionary routes leading to current dentition in living vertebrates. We have used light, scanning and transmission electron microscopy to study tooth morphology and the main stages of tooth development in the scincid lizard, Chalcides viridanus, viz., from late embryos to 6-year-old specimens of a laboratory-bred colony, and from early initiation stages to complete differentiation and attachment, including resorption and enamel formation. In C. viridanus, all teeth of a jaw have a similar morphology but tooth shape, size and orientation change during ontogeny, with a constant number of tooth positions. Tooth morphology changes from a simple smooth cone in the late embryo to the typical adult aspect of two cusps and several ridges via successive tooth replacement at every position. First-generation teeth are initiated by interaction between the oral epithelium and subjacent mesenchyme. The dental lamina of these teeth directly branches from the basal layer of the oral epithelium. On replacement-tooth initiation, the dental lamina spreads from the enamel organ of the previous tooth. The epithelial cell population, at the dental lamina extremity and near the bone support surface, proliferates and differentiates into the enamel organ, the inner (IDE) and outer dental epithelium being separated by stellate reticulum. IDE differentiates into ameloblasts, which produce enamel matrix components. In the region facing differentiating IDE, mesenchymal cells differentiate into dental papilla and give rise to odontoblasts, which first deposit a layer of predentin matrix. The first elements of the enamel matrix are then synthesised by ameloblasts. Matrix mineralisation starts in the upper region of the tooth (dentin then enamel). Enamel maturation begins once the enamel matrix layer is complete. Concomitantly, dental matrices are deposited towards the base of the dentin cone. Maturation of the enamel matrix progresses from top to base; dentin mineralisation proceeds centripetally from the dentin–enamel junction towards the pulp cavity. Tooth attachment is pleurodont and tooth replacement occurs from the lingual side from which the dentin cone of the functional teeth is resorbed. Resorption starts from a deeper region in adults than in juveniles. Our results lead us to conclude that tooth morphogenesis and differentiation in this lizard are similar to those described for mammalian teeth. However, Tomes processes and enamel prisms are absent.  相似文献   

2.
Conodont elements are the earliest vertebrate dental structures. The dental tools on elements responsible for food fracture—cusps and denticles—are usually composed of lamellar crown tissue (a putative enamel homologue) and the enigmatic tissue known as ‘white matter’. White matter is unique to conodonts and has been hypothesized to be a functional adaptation for the use of elements as teeth. We test this quantitatively using finite-element analysis. Our results indicate that white matter allowed cusps and denticles to withstand greater tensile stresses than do cusps comprised solely of lamellar crown tissue. Microstructural variation is demonstrably associated with dietary and loading differences in teeth, so secondary loss of white matter through conodont phylogeny may reflect changes in diet and element occlusal kinematics. The presence, development and distribution of white matter could thus provide constraints on function in the first vertebrate dental structures.  相似文献   

3.
4.
Current interest in tetracycline staining of teeth and other enamel defects led to this review. In the handicapped child structural defects that were seen in the dental enamel may provide a most accurate etiological clue. The method of determining the time of insult is described. Comments are made on seven states in which enamel dysplasia may be frequently observed. A simple means of identifying tetracycline pigment incorporated in dental enamel is outlined. Bilirubin staining of teeth is also shown and warnings are given about the indelible nature of these pigments.  相似文献   

5.
Four teeth were recovered from the Petralona cave site in Greece. These specimens were considered to be hominid remains and have become part of the dental data base for the Pleistocene hominids of Europe. SEM analysis of the anamel structure of these remains reveals an enamel prism pattern which is not hominid. A walled hexagonal prism was obtained which is representative of the carnivores.Subsequent analysis of a fragment of enamel from the Petralona hominid cranium revealed a keyhole enamel prism, typical of modern man, while analysis of a number of cave bear teeth revealed an identical walled hexagonal prism, as was found in the four isolated teeth.The conclusion is that the four isolated teeth are those of the Pleistocene cave bear which frequently populated the cave.  相似文献   

6.
The prevalence of enamel hypoplasia in the deciduous teeth of great apes has the potential to reveal episodes of physiological stress in early stages of ontogenetic development. However, little is known about enamel defects of deciduous teeth in great apes. Unresolved questions addressed in this study are: Do hypoplastic enamel defects occur with equal frequency in different groups of great apes? Are enamel hypoplasias more prevalent in the deciduous teeth of male or female apes? During what phase of dental development do enamel defects tend to form? And, what part of the dental crown is most commonly affected? To answer these questions, infant and juvenile skulls of two sympatric genera of great apes (Gorilla and Pan) were examined for dental enamel hypoplasias. Specimens from the Powell‐Cotton Museum (Quex Park, UK; n = 107) are reported here, and compared with prior findings based on my examination of juvenile apes at the Cleveland Museum of Natural History (Hamman‐Todd Collection; n = 100) and Smithsonian Institution (National Museum of Natural History; n = 36). All deciduous teeth were examined by the author with a ×10 hand lens, in oblique incandescent light. Defects were classified using Fédération Dentaire International (FDI)/Defects of Dental Enamel (DDE) standards; defect size and location on the tooth crown were measured and marked on dental outline charts. Enamel defects of ape deciduous teeth are most common on the labial surface of canine teeth. While deciduous incisor and molar teeth consistently exhibit similar defects with prevalences of ~10%, canines average between 70–75%. Position of enamel defects on the canine crown was analyzed by dividing it into three zones (apical, middle, and cervical) and calculating defect prevalence by zone. Among gorillas, enamel hypoplasia prevalence increases progressively from the apical zone (low) to the middle zone to the cervical zone (highest), in both maxillary and mandibular canine teeth. Results from all three study collections reveal that among the great apes, gorillas (87–92%) and orangutans (91%) have a significantly higher prevalence of canine enamel defects than chimpanzees (22–48%). Sex differences in canine enamel hypoplasia are small and not statistically significant in any great ape. Factors influencing intergroup variation in prevalence of enamel defects and their distribution on the canine crown, including physiological stress and interspecific dento‐gnathic morphological variation, are evaluated. Am J Phys Anthropol 116:199–208, 2001. © 2001 Wiley‐Liss, Inc.  相似文献   

7.
The concentration of trace elements has been measured for dental enamel from 86 healthy human teeth using particle-induced X-ray emission (PIXE). The majority of the teeth (n = 70) were collected from dentists in the county of Oxfordshire in the United Kingdom, although a smaller group (n = 16) were collected from Cornwall. The elements K, Ca, Mn, Fe, Co, Ni, Cu, Zn, Sr, Pb, and Hg have been detected and statistically analyzed by grouping according to sex, age, and geographical location. The concentrations of Fe and Cu were found to be lower in the teeth from female donors (P < 5%) and are believed to result from the continued burden of blood loss during menstruation. Strong positive correlations (P < 0.1%) were found between Ca, Co, Ni, and Zn for all groups; these elements were also found to exhibit a negative correlation (P < 1%) with age for teeth from female donors. This is believed to be related to decalcification during the menopause. Pb was found to exhibit a positive correlation (P < 5%) with age for both sexes, and is believed to substitute for Ca in the Ca hydroxy apatite (HAP) within the dental enamel.  相似文献   

8.
The number and spacing of incremental markings at the enamel surface, known as perikymata, are considered important indicators of dental growth patterns, as they provide information on crown formation times and the underlying developmental processes. This study explores the potential of a new three‐dimensional technique for the reconstruction of dental growth profiles, using teeth from a medieval child from Abingdon, Oxfordshire. The crowns of three anterior teeth were imaged and analyzed using the Alicona 3D InfiniteFocus imaging microscope. Individual perikyma grooves can be unambiguously identified on a profile of the reconstructed enamel surface and direct distances between successive pairs of perikyma grooves can be calculated from coordinate data. This quantitative approach constitutes a more objective way to record perikymata spacing than current methods. Am J Phys Anthropol 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

9.
Buccal microwear patterns on teeth are good indicators of the abrasiveness of foodstuffs and have been used to trace the dietary habits of fossil species, including primates and hominids. However, few studies have addressed the variability of this microwear. The abrasiveness of dietary components depends not only on the hardness of the particles ingested, but also on the presence of dust and other exogenous elements introduced during food processing. These elements are responsible for the microwear typology observed on the enamel surfaces of primate teeth. Here we analyzed the variability of buccal microwear patterns in African Great Apes (Gorilla gorilla and Pan troglodytes), using tooth molds obtained from the original specimens held in several osteological collections. Our results suggest that ecological adaptations at subspecies or population level account for differences in microwear patterns, which are attributed to habitat and ecological conditions within populations rather than differences between species. The findings from studies on the variability of buccal dental microwear in extant species will contribute to a better understanding of extinct hominids’ diet and ecology.  相似文献   

10.
This study was performed to elucidate the relationship between dental caries and the levels of Sr and Ca eluted from enamel, and to examine whether these elements are useful as factors to assess caries risk. The available 103 (Sr) and 108 (Ca) samples were obtained among 111 collected deciduous teeth. The healthy regions of enamel were decalcified in artificial saliva at pH 6.2 and 5.5. The eluted levels of these elements from enamel were determined using atomic absorption spectrophotometry. Sr and Ca levels were not affected by the sex nor tooth type. Sr levels of the caries-experienced tooth (CE) group were 2.6-fold (pH 6.2) and 2.2-fold (pH 5.5) higher than those of the sound tooth (ST) group, respectively. Furthermore, the Sr levels were significantly higher in the teeth with treated than in those with untreated caries. Only at pH 6.2 was a significant difference found in Ca levels between the ST and CE groups. In the ST group, at pH 5.5, both the Sr and Ca levels significantly increased when the children had six or more carious teeth. The Sr and Ca elution levels were significantly inhibited in the teeth receiving fluoride application every 3 or 4 months compared to those that were not. These findings indicate that Sr can be an indicator of the acid resistance of teeth, and a useful factor to assess future caries risk.  相似文献   

11.
Tooth enamel, a highly mineralized tissue covering the outermost area of teeth, is always damaged by dental caries or trauma. Tooth enamel rarely repairs or renews itself, due to the loss of ameloblasts and dental epithelial stem cells (DESCs) once the tooth erupts. Unlike human teeth, mouse incisors grow continuously due to the presence of DESCs that generate enamel-producing ameloblasts and other supporting dental epithelial lineages. The ready accessibility of mouse DESCs and wide availability of related transgenic mouse lines make mouse incisors an excellent model to examine the identity and heterogeneity of dental epithelial stem/progenitor cells; explore the regulatory mechanisms underlying enamel formation; and help answer the open question regarding the therapeutic development of enamel engineering. In the present review, we update the current understanding about the identification of DESCs in mouse incisors and summarize the regulatory mechanisms of enamel formation driven by DESCs. The roles of DESCs during homeostasis and repair are also discussed, which should improve our knowledge regarding enamel tissue engineering.  相似文献   

12.
In tooth morphogenesis, the dental epithelium and mesenchyme interact reciprocally for growth and differentiation to form the proper number and shapes of teeth. We previously identified epiprofin (Epfn), a gene preferentially expressed in dental epithelia, differentiated ameloblasts, and certain ectodermal organs. To identify the role of Epfn in tooth development, we created Epfn-deficient mice (Epfn-/-). Epfn-/- mice developed an excess number of teeth, enamel deficiency, defects in cusp and root formation, and abnormal dentin structure. Mutant tooth germs formed multiple dental epithelial buds into the mesenchyme. In Epfn-/- molars, rapid proliferation and differentiation of the inner dental epithelium were inhibited, and the dental epithelium retained the progenitor phenotype. Formation of the enamel knot, a signaling center for cusps, whose cells differentiate from the dental epithelium, was also inhibited. However, multiple premature nonproliferating enamel knot-like structures were formed ectopically. These dental epithelial abnormalities were accompanied by dysregulation of Lef-1, which is required for the normal transition from the bud to cap stage. Transfection of an Epfn vector promoted dental epithelial cell differentiation into ameloblasts and activated promoter activity of the enamel matrix ameloblastin gene. Our results suggest that in Epfn-deficient teeth, ectopic nonproliferating regions likely bud off from the self-renewable dental epithelium, form multiple branches, and eventually develop into supernumerary teeth. Thus, Epfn has multiple functions for cell fate determination of the dental epithelium by regulating both proliferation and differentiation, preventing continuous tooth budding and generation.  相似文献   

13.
We have studied the expression patterns of the newly isolated homeobox gene, Hox-8 by in situ hybridisation to sections of the developing heads of mouse embryos between E9 and E17.5, and compared them to Hox-7 expression patterns in adjacent sections. This paper concentrates on the interesting expression patterns of Hox-8 during initiation and development of the molar and incisor teeth. Hox-8 expression domains are present in the neural crest-derived mesenchyme beneath sites of future tooth formation, in a proximo-distal gradient. Tooth development is initiated in the oral epithelium which subsequently thickens in discrete sites and invaginates to form the dental lamina. Hox-8 expression in mouse oral epithelium is first evident at the sites of the dental placodes, suggesting a role in the specification of tooth position. Subsequently, in molar teeth, this patch of Hox-8 expressing epithelium becomes incorporated within the buccal aspect of the invaginating dental lamina to form part of the external enamel epithelium of the cap stage tooth germ. This locus of Hox-8 expression becomes continuous with new sites of Hox-8 expression in the enamel navel, septum, knot and internal enamel epithelium. The transitory enamel knot, septum and navel were postulated, long ago, to be involved in specifying tooth shape, causing the inflection of the first buccal cusp, but this theory has been largely ignored. Interestingly, in the conical incisor teeth, the enamel navel, septum and knot are absent, and Hox-8 has a symmetrical expression pattern. Our demonstration of the precise expression patterns of Hox-8 in the early dental placodes and their subsequent association with the enamel knot, septum and navel provide the first molecular clues to the basis of patterning in the dentition and the association of tooth position with tooth shape: an association all the more intriguing in view of the evolutionary robustness of the patterning mechanism, and the known role of homeobox genes in Drosophila pattern formation. At the bell stage of tooth development, Hox-8 expression switches tissue layers, being absent from the differentiating epithelial ameloblasts and turned on in the differentiating mesenchymal odontoblasts. Hox-7 is expressed in the mesenchyme of the dental papilla and follicle at all stages. This reciprocity of expression suggests an interactive role between Hox-7, Hox-8 and other genes in regulating epithelial mesenchymal interactions during dental differentiation.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

14.
Recent humans and their fossil relatives are classified as having thick molar enamel, one of very few dental traits that distinguish hominins from living African apes. However, little is known about enamel thickness in the earliest members of the genus Homo, and recent studies of later Homo report considerable intra- and inter-specific variation. In order to assess taxonomic, geographic, and temporal trends in enamel thickness, we applied micro-computed tomographic imaging to 150 fossil Homo teeth spanning two million years. Early Homo postcanine teeth from Africa and Asia show highly variable average and relative enamel thickness (AET and RET) values. Three molars from South Africa exceed Homo AET and RET ranges, resembling the hyper thick Paranthropus condition. Most later Homo groups (archaic European and north African Homo, and fossil and recent Homo sapiens) possess absolutely and relatively thick enamel across the entire dentition. In contrast, Neanderthals show relatively thin enamel in their incisors, canines, premolars, and molars, although incisor AET values are similar to H. sapiens. Comparisons of recent and fossil H. sapiens reveal that dental size reduction has led to a disproportionate decrease in coronal dentine compared with enamel (although both are reduced), leading to relatively thicker enamel in recent humans. General characterizations of hominins as having ‘thick enamel’ thus oversimplify a surprisingly variable craniodental trait with limited taxonomic utility within a genus. Moreover, estimates of dental attrition rates employed in paleodemographic reconstruction may be biased when this variation is not considered. Additional research is necessary to reconstruct hominin dietary ecology since thick enamel is not a prerequisite for hard-object feeding, and it is present in most later Homo species despite advances in technology and food processing.  相似文献   

15.
The teeth of every primate, living and extinct, are covered by a hard, durable layer of enamel. This is not unique: Almost all mammals have enamel-covered teeth. In addition, all of the variations in enamel structure that occur in primates are also found in other groups of mammals. Nevertheless, the very complexity of enamel and the variation we see in it on the teeth of living and fossil primates raise questions about its evolutionary significance. Is the complex structure of primate enamel adaptive? What, if anything, does enamel structure tell us about primate phylogeny? To answer these questions, we need to look more closely at the characteristics of prismatic enamel in primates and at the distribution of those characteristics, both in relation to our knowledge of primate dental function and feeding ecology and from a phylogenetic perspective.  相似文献   

16.
Teeth fragments from members of a family clinically and genetically diagnosed as having amelogenesis imperfecta were studied by scanning electron microscopy and X-ray microprobe analysis to establish the morphological patterns and the quantitative concentration of calcium in the enamel of anterior (canine, incisor) and posterior (premolar and molar) teeth. The prism patterns in the enamel of teeth from both regions were parallel or irregularly decussate, with occasional filamentous prisms accompanied by small, irregularly rounded formations. Prismless enamel showed the R- and P-type patterns. Calcium levels in enamel of amelogenesis imperfecta and control teeth differed significantly between anterior and posterior teeth, indicating that the factors that influence normal mineralization in different regions of the dental arch are not altered in the process of amelogenesis imperfecta.  相似文献   

17.
邢松 《人类学学报》2019,38(4):499-512
上世纪70年代在许家窑-侯家窑地点发现的人类化石对了解东亚中晚更新世过渡时期古人类的形态演化起到了重要作用。除形态特征外,针对许家窑人病理表现也开展过相关研究,其中许家窑人幼年个体前部牙齿上出现的黄色小坑被认为是患有氟斑牙病的证据,且可能代表世界范围内该牙病的最早实例。然而,经电子显微镜和显微断层扫描显示,这些黄色小坑或凹陷是釉质发育不良表现,而不是代表个体患有氟斑牙病后牙齿受咀嚼压力而产生的物理破损。同步辐射扫描显示,许家窑幼年个体前部牙齿釉质密度均匀,没有出现浅层釉质矿化减小的现象,不支持该个体因釉质矿化过程受影响而患有典型氟斑牙的结论。尽管如此,后部牙齿上大量坑状的釉质缺陷和坑状缺陷底部的加重生长线特征不排除是个体氟摄入过量而影响釉质形成的分泌期而导致的。除表面坑状釉质缺陷外,许家窑幼年个体恒齿不同部位的釉质内部出现缺失(空间结构一般为圆球状)。缺失主要集中在浅层区域,沿齿尖-齿颈方向的密集程度变化与釉质发育不良位置具有一定相关性。釉质内部缺失有时互连并与釉质表面垂直。以上特征显示釉质内部缺失是釉质形成过程受影响所致,且影响因素和发生机理可能与釉质发育不良的类似。许家窑幼年个体不同牙齿在外部釉质缺陷和内部釉质缺失密集程度上的差别可能反映的是个体在发育过程中所需应对的外界扰动因素程度不同。未来研究可对包含许家窑人化石的堆积物中以及许家窑人牙齿中的氟含量进行测定,以进一步研究许家窑人个体的生活环境中是否有过量的氟以及许家窑人是否摄入了过量氟元素,从而对许家窑人的牙齿发育缺陷机理有一个进一步的了解。  相似文献   

18.
The ring-tailed lemurs at Beza Mahafaly Special Reserve, Madagascar, exhibit a high frequency of severe wear and antemortem tooth loss. As part of a long-term study, we collected dental data on 83 living adult ring-tailed lemurs during 2003 and 2004. Among these individuals, 192 teeth were scored as absent. The most frequently missing tooth position is M1 (24%). As M1 is the first tooth to erupt, its high frequency of absence (primarily a result of wear) is not remarkable. However, the remaining pattern of tooth loss does not correlate with the sequence of eruption. We suggest that this pattern is a function of 1) feeding ecology, as hard, tough tamarind fruit is a key fallback food of ring-tailed lemurs living in gallery forests; 2) food processing, as tamarind fruit is primarily processed in the P3-M1 region of the mouth; and 3) tooth structure, as ring-tailed lemurs possess thin dental enamel. The incongruity between thin enamel and use of a hard, tough fallback food suggests that ring-tailed lemurs living in riverine gallery forests may rely on resources not used in the past. When comparing dental health in the same individuals (n=50) between 2003 and 2004, we found that individual tooth loss can show a rapid increase over the span of one year, increasing by as much as 20%. Despite this rapid loss, individuals are able to survive, sometimes benefiting from unintentional assistance from conspecifics, from which partially processed tamarind fruit is obtained. Although less frequent in this population, these longitudinal data also illustrate that ring-tailed lemurs lose teeth due to damage and disease, similar to other nonhuman primates. The relationship between tooth loss, feeding ecology, dental structure, and individual life history in this population has implications for interpreting behavior based on tooth loss in the hominid fossil record.  相似文献   

19.
Trace elements in the dental enamel of 43 prehistoric Indians from Illinois, Maryland and Virginia show concentration differences by age, sex and geographical locality. Sample areas on an incisor or first molar were blocked off with paraffin, washed twice with distilled water and etched 7 times with 6N HCl. An optical emission spectrophotometer was used to analyze the 9 samples, representing surface contamination and sequential enamel layers. Al, B, Ba, Cu, Fe, K, Mg, Mn, Na, Si, Sr, and Ti were present in most samples in micro or trace quantities; other elements were detected with less regularity. Comparisons of the 2 water washes with the 3 superficial, 4 deep and 7 total acid etches, suggest that during burial the residual inorganic portion of the enamel exchanged little or nothing with the soil. Enamel from archeological teeth may therefore be utilized in host factor studies in dental paleopathology. The Jy 50 Illinois Indians differ from the Potomac Creek, Virginia, Indians both in quantities of elements present and in internal sample variability. In each group, the sexes differ in 4 or more elements, both as to content and variability. Similarly, the older half of each sample differs from the younger. Patterns of sex and age difference are irregular, suggesting cultural differences, rather than physiological, in utilizing the environment during enamel-forming years. Enamel composition, as affected by differential environment utilization, may partially explain sex, age and geographical differences in dental pathology rates.  相似文献   

20.
Studies of dinosaur teeth have focused primarily on external crown morphology and thus, use shed or in situ tooth crowns, and are limited to the enamel and dentine dental tissues. As a result, the full suites of periodontal tissues that attach teeth to the jaws remain poorly documented, particularly in early dinosaurs. These tissues are an integral part of the tooth and thus essential to a more complete understanding of dental anatomy, development, and evolution in dinosaurs. To identify the tooth attachment tissues in early dinosaurs, histological thin sections were prepared from the maxilla and dentary of a partial skull of the early theropod Coelophysis bauri from the Upper Triassic (Rhaetian‐ 209–201 Ma) Whitaker Quarry, New Mexico, USA. As one of the phylogenetically and geologically oldest dinosaurs, it is an ideal candidate for examining dental tissues near the base of the dinosaurian clade. The teeth of C. bauri exhibited a fibrous tooth attachment in which the teeth possessed five tissues: enamel, dentine, cementum, periodontal ligament (PDL), and alveolar bone. Our findings, coupled with those of more recent studies of ornithischian teeth, indicate that a tripartite periodontium, similar to that of crocodilians and mammals, is the plesiomorphic condition for dinosaurs. The occurrence of a tripartite periodontium in dinosaurs adds to the growing consensus that the presence of these tissues is the plesiomorphic condition for the major amniote clades. Furthermore, this study establishes the relative timing of tissue development and growth directions of periodontal tissues and provides the first comparative framework for future studies of dinosaur periodontal development, tooth replacement, and histology. J. Morphol. 277:916–924, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号