首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recent studies suggest that phosphoinositide kinases may participate in intracellular trafficking or exocytotic events. Because both of these events ultimately require fusion of biological membranes, the susceptibility of membranes containing polyphosphoinositides (PPIs) to divalent cation-induced fusion was investigated. Results of these investigations indicated that artificial liposomes containing PPI or phosphatidic acid required lower Ca2+ concentrations for induction of membrane fusion than similar vesicles containing phosphatidylserine, phosphatidylinositol, or phosphatidylcholine. This trend was first observed in liposomes composed solely of one type of phospholipid. In addition, however, liposomes designed to mimic the phospholipid composition of the endofacial leaflet of plasma membranes (i.e., liposomes composed of combinations of PPI, phosphatidylethanolamine, and phosphatidylcholine) also required lower Ca2+ concentrations for induction of aggregation and fusion. Liposomes containing PPI and phosphatidic acid also had increased sensitivity to Mg(2+)-induced fusion, an observation that is particularly intriguing given the intracellular concentration of Mg2+ ions. Moreover, the fusogenic effects of Ca2+ and Mg2+ were additive in vesicles containing phosphatidylinositol bisphosphate. These data suggest that enzymatic modification of the PPI content of intracellular membranes could be an important mechanism of fusion regulation.  相似文献   

2.
To identify the specific component(s) in the target membrane involved in fusion of vesicular stomatitis virus (VSV), we examined the interaction of the virus with human erythrocyte membranes with asymmetric and symmetric bilayer distributions of phospholipids. Fusion was monitored spectrofluorometrically by the octadecylrhodamine dequenching assay. Fusion of VSV with lipid-symmetric erythrocyte ghosts was rapid at 37 degrees C and low pH, whereas little or no fusion was observed with lipid-asymmetric ghosts. Conversion of phosphatidylserine in the lipid-symmetric ghost membrane to phosphatidylethanolamine by means of the enzyme phosphatidylserine decarboxylase did not alter the target membrane's susceptibility to VSV fusion. Spin-labeled phospholipid analogues with phosphatidylserine, phosphatidylethanolamine, and phosphatidylcholine headgroups incorporated into the outer leaflet of lipid-asymmetric erythrocytes did not render those membranes fusogenic. Electron spin resonance spectra showed an increased mobility of a phosphatidylcholine spin-label incorporated into the outer leaflet of lipid-symmetric erythrocyte ghosts as compared to that of lipid-asymmetric ghosts. These results indicate that the susceptibility to VSV fusion is not dependent on any particular phospholipid but rather is related to packing characteristics of the target membrane.  相似文献   

3.
Low-pH-induced fusion of liposomes with rat liver endoplasmic reticulum was evidenced. Fusion was inactivated by treatment of microsomes with trypsin or EEDQ (N-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline), indicating the involvement of a protein. The protein was purified 555-fold by chromatographic steps. The identification and purification to homogeneity was obtained by electroelution from a slab gel, which gave a still active protein of about 50 kDa. The protein promoted the fusion of liposomes; laser light scattering showed an increase of mean radius of vesicles from 60 up to about 340 nm. Fusion was studied as mass action kinetics, describing the overall fusion as a two-step sequence of a second order aggregation followed by a first order fusion of liposomes. For phosphatidylcholine containing liposomes aggregation was not rate-limiting at pH 5.0 and fusion followed first order kinetics with a rate constant of 13 · 10−3 sec−1. For phosphatidylethanolamine/phosphatidic acid liposomes aggregation was rate-limiting; however, the overall fusion was first order process, suggesting that fusogenic protein influences both aggregation and fusion of liposomes. The protein binds to the lipid bilayer of liposomes, independently of pH, probably by a hydrophobic segment. Exposed carboxylic groups might be able to trigger pH-dependent aggregation and fusion. It is proposed that the protein inserted in the lipid bilayer bridges with an adjacent liposome forming a fused doublet. Since at endoplasmic reticulum level proton pumps are operating to generate a low-pH environment, the membrane bound fusogenic protein may be responsible for both aggregation and fusion of neighboring membranes and therefore could operate in the exchange of lipidic material between intracellular membranes. Received: 25 August 1997/Revised: 28 April 1998  相似文献   

4.
Synexin, a soluble adrenal medullary and liver protein which causes calcium-dependent aggregation of isolated chromaffin granules, was isolated and purified according to published procedures. The effects of synexin on the kinetics of membrane fusion were examined. Membrane fusion was assayed by following the mixing of aqueous contents of phospholipid vesicles. Synexin lowers the threshold of CA2+ concentration required for fusion of large unilamellar vesicles of phosphatidylserine and a mixture of phosphatidylserine with phosphatidylethanolamine. synexin also increases drastically the initial rate of fusion. the initial rate of fusion increases with the quantity of synexin present in the reaction mixture. In the presence of 1-2 mM Ca2+ and 50 microM phospholipid, synexin at 20 to 40 micrograms/ml increases the rate of fusion by two orders of magnitude. Mg2+ does not support synexin-induced fusion. With vesicles containing a mixture of phosphatidylserine with phosphatidylcholine, synexin enhances aggregation in the presence of CA2+, without promoting fusion. Synexin may play a role in exocytosis by promoting fusion of membranes containing specific phospholipids in the presence of Ca2+.  相似文献   

5.
We have investigated the contribution of various phospholipids to membrane fusion induced by divalent cations. Fusion was followed by means of a new fluorescence assay monitoring the mixing of internal aqueous contents of large (0.1 μm diameter) unilamellar liposomes. The rate and extent of fusion induced by Ca2+ in mixed phosphatidylserine/phosphatidylcholine vesicles were lower compared to those in pure phosphatidylserine vesicles. The presence of 50% phosphatidylcholine completely inhibited fusion, although the vesicles aggregated upon Ca2+ addition. When phosphatidylserine was mixed with phosphatidylethanolamine, however, rapid fusion could be induced by Ca2+ even in mixtures that contained only 25% phosphatidylserine. Phosphatidylethanolamine also facilitated fusion by Mg2+ which could not fuse pure phosphatidylserine vesicles. In phosphatidylserine/phosphatidylethanolamine/phosphatidylcholine mixtures, in which the phosphatidylcholine content was kept at 25%, phosphatidylethanolamine could not substitute for phosphatidylserine, and the fusogenic capacity of Mg2+ was abolished by the presence of merely 10% phosphatidylcholine. The initial rate of release of vesicle contents was slower than the rate of fusion in all the mixtures used. The presence of phosphate effected a considerable decrease in the threshold concentration of Ca2+ and also enhanced  相似文献   

6.
We have used Ca2+-dependent binding to a phospholipid vesicle affinity column to isolate a mixture of three synexin-like proteins from the cytosol of human polymorphonuclear leukocytes (PMN), with relative molecular weights of approximately 67,000, 47,000, and 28,000. Rabbit antibodies raised against bovine liver synexin recognized the 47,000 molecular weight PMN protein. These PMN proteins, like bovine liver synexin, promoted aggregation of isolated PMN specific granules in the presence of Ca2+ and increased the overall rate of Ca2+-induced fusion of liposomes composed of phosphatidate (PA)/phosphatidylethanolamine (PE) (1:3) and phosphatidylserine/PE (1:3), but decreased the rate of spermine-induced fusion of PA/PE (1:3) liposomes. Using fluorescent lipid probes, rapid fusion of PA/PE liposomes with PMN specific granules (50% maximum signal within a few minutes) was observed when 1 mM Ca2+ was added in the presence of both synexin and free arachidonic acid. Dilution of the aqueous contents of liposomes was also observed under the same conditions. The rate of fusion increased monotonically with Ca2+ and arachidonic acid concentrations, but synexin exhibited an optimum concentration. Lack of any one of the components precluded rapid fusion. These results suggest that PMN contain a protein similar to, or identical with, synexin that may be involved in calcium-dependent fusion of intracellular membranes.  相似文献   

7.
alpha-Latrotoxin-induced fusion of liposomes has been described using large unilamellar vesicles composed of phosphatidylcholine/phosphatidylethanolamine/cardiolipin at a molar ratio of 2:3:5. Vesicle fusion was monitored by terbium/dipicolinic acid assay as well as by fluorescence energy transfer measurement. The enhancement of the fusogenic effect of LTX by low concentrations (0.1-3 mM) of CaCl2 has been demonstrated. The efficiency of other divalent cations on the LTX fusogenic activity was shown to decrease in the sequence Ca greater than Cd greater than Sr greater than Mg greater than Ba. LTX-induced fusion was accompanied by the increase of vesicle size measured by laser correlation spectroscopy. It is concluded that fusogenic action of LTX may be involved in its effect on synaptic apparatus.  相似文献   

8.
Synexin enhances the aggregation rate but not the fusion rate of liposomes   总被引:3,自引:0,他引:3  
The effect of synexin on the calcium-induced fusion of large unilamellar liposomes was studied by using two assays for the mixing of aqueous contents. The results were analyzed in terms of the mass action kinetic model, which describes the overall fusion reaction as a two-step sequence consisting of a second-order process of liposome aggregation followed by a first-order fusion reaction. By using several different lipid compositions and varying the electrolyte composition, it was possible to select the rate-limiting step of the overall fusion process. When aggregation was the rate-limiting step, as in the case of Ca2+-induced fusion of phosphatidylserine (PS), phosphatidate (PA)/phosphatidylethanolamine (PE) (1:3), and PS/PE (1:3) liposomes, synexin increased the overall fusion kinetics by increasing the aggregation rate constant (up to 100-fold). When aggregation was rapid compared to destabilization of apposed membranes, i.e., fusion was rate limiting, synexin either had no effect or reduced the overall fusion kinetics. In one such case involving liposomes composed of PA/PS/PE/phosphatidylcholine (PC) (10:15:65:10), synexin reduced the fusion rate constant by 50%. The effect of calcium-induced synexin polymerization was investigated by preincubation of synexin with calcium prior to addition of liposomes. Prepolymerization by Ca2+ always decreased the activity of synexin such that it was less than the activity of an equal amount of untreated monomers. However, it was found that the activity of synexin monomers polymerized to an average hexameric size was greater than that of one-sixth as many untreated monomers, with respect to the liposome aggregation rate constant. Neither polymers nor monomers increased the fusion rate constant.  相似文献   

9.
K Klappe  J Wilschut  S Nir  D Hoekstra 《Biochemistry》1986,25(25):8252-8260
A kinetic and quantitative characterization of the fusion process between Sendai virus and phospholipid vesicles is presented. Membrane fusion was monitored in a direct and continuous manner by employing an assay which relies on the relief of fluorescence self-quenching of the probe octadecylrhodamine B chloride which was located in the viral membrane. Viral fusion activity was strongly dependent on the vesicle lipid composition and was most efficient with vesicles solely consisting of acidic phospholipids, particularly cardiolipin (CL). This result implies that the fusion of viruses with liposomes does not display an absolute requirement for specific membrane receptors. Incorporation of phosphatidylcholine (PC), rather than phosphatidylethanolamine (PE), into CL bilayers strongly inhibited fusion, suggesting that repulsive hydration forces interfere with the close approach of viral and target membrane. Virus-liposome fusion products were capable of fusing with liposomes, but not with virus. In contrast to fusion with erythrocyte membranes, fusion between virus and acidic phospholipid vesicles was triggered immediately, did not strictly depend on viral protein conformation, and did not display a pH optimum around pH 7.5. On the other hand, with vesicles consisting of PC, PE, cholesterol, and the ganglioside GD1a, the virus resembled more closely the fusogenic properties that were seen with erythrocyte target membranes. Upon decreasing the pH below 5.0, the viral fusion activity increased dramatically. With acidic phospholipid vesicles, maximal activity was observed around pH 4.0, while with GD1a-containing zwitterionic vesicles the fusion activity continued to increase with decreasing pH down to values as low as 3.0.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Membranes containing either negatively charged lipids or glycolipids can be aggregated by millimolar concentrations of Ca(2+). In the case of membranes made from the negatively charged phospholipid phosphatidylserine, aggregation leads to vesicle fusion and leakage. However, some glycolipid-containing biological membranes such as plant chloroplast thylakoid membranes naturally occur in an aggregated state. In the present contribution, the effect of Ca(2+)-induced aggregation on membrane stability during freezing and in highly concentrated salt solutions (NaCl+/-CaCl(2)) has been determined in membranes containing different fractions of uncharged galactolipids, or a negatively charged sulfoglucolipid, or the negatively charged phospholipid phosphatidylglycerol (PG), in membranes made from the uncharged phospholipid phosphatidylcholine (PC). In the case of the glycolipids, aggregation did not lead to fusion or leakage even under stress conditions, while it did lead to fusion and leakage in PG-containing liposomes. Liposomes made from a mixture of glycolipids and PG that approximates the lipid composition of thylakoids were very unstable, both during freezing and at high solute concentrations and leakage and fusion were increased in the presence of Ca(2+). Collectively, the data indicate that the effects of Ca(2+)-induced aggregation of liposomes on membrane stability depend critically on the type of lipid involved in aggregation. While liposomes aggregated through glycolipids are highly stable, those aggregated through negatively charged lipids are severely destabilized.  相似文献   

11.
Proton-induced fusion of oleic acid-phosphatidylethanolamine liposomes   总被引:2,自引:0,他引:2  
Liposomes composed of oleic acid and phosphatidylethanolamine (3:7 mole ratio) aggregate, become destabilized, and fuse below pH 6.5 in 150 mM NaCl. Fusion is monitored by (i) the intermixing of internal aqueous contents of liposomes, utilizing the quenching of aminonaphthalene-3,6,8-trisulfonic acid (ANTS) by N,N'-p-xylylenebis(pyridinium bromide) (DPX) encapsulated in two separate populations of vesicles, (ii) a resonance energy transfer assay for the dilution of fluorescent phospholipids from labeled to unlabeled liposomes, (iii) irreversible changes in turbidity, and (iv) quick-freezing freeze-fracture electron microscopy. Destabilization is followed by the fluorescence increase caused by the leakage of coencapsulated ANTS/DPX or of calcein. Ca2+ and Mg2+ also induce fusion of these vesicles at 3 and 4 mM, respectively. The threshold for fusion is at a higher pH in the presence of low (subfusogenic) concentrations of these divalent cations. Vesicles composed of phosphatidylserine/phosphatidylethanolamine or of oleic acid/phosphatidylcholine (3:7 mole ratio) do not aggregate, destabilize, or fuse in the pH range 7-4, indicating that phosphatidylserine and phosphatidylcholine cannot be substituted for oleic acid and phosphatidylethanolamine, respectively, for proton-induced membrane fusion. Freeze-fracture replicas of oleic acid/phosphatidylethanolamine liposomes frozen within 1 s of stimulation with pH 5.3 display larger vesicles and vesicles undergoing fusion, with membrane ridges and areas of bilayer continuity between them. The construction of pH-sensitive liposomes is useful as a model for studying the molecular requirements for proton-induced membrane fusion in biological systems and for the cytoplasmic delivery of macromolecules.  相似文献   

12.
The procedures for purification and reconstitution of rat brain microsomal membrane protein that causes fusion of liposomes at acidic pH are described. A 1,860-fold purification was achieved, starting from the detergent-solubilized microsomal membranes. The fusion process was assayed spectrofluorimetrically by monitoring the formation of terbium-dipicolinic acid complex (Wilschut, J. et al. 1980. Biochemistry 19:6011–6021) evoked by the protein after mixing of two populations of liposomes. The fusogenic activity of the protein inserted into the membrane of Tb3+-containing vesicles was found to be strongly dependent on phospholipid composition and was higher in vesicles enriched with exogenous phosphatidylserine, phosphatidylglycerol and phosphatidylethanolamine than in those prepared with an excess of phosphatidylcholine. The vesicles enriched in negatively charged phospholipids were bound to Concanavalin A coupled to Sepharose-4B and could be released from this column only in the presence of a high concentration of -methylmannopyranoside and detergent, indicating a glycoprotein nature of the fusogenic protein. Furthermore, these data show that protein inserted into membrane has its oligosaccharide chains exposed to the environment.Mr. Carlo Ricci is thanked for his skillful technical assistance. This work was supported by a grant from the Ministry of Education, Rome, Italy.  相似文献   

13.
Ramakrishnan M  Jensen PH  Marsh D 《Biochemistry》2003,42(44):12919-12926
Alpha-synuclein is a small presynaptic protein, which is linked to the development of Parkinson's disease. Alpha-synuclein partitions between cytosolic and vesicle-bound states, where membrane binding is accompanied by the formation of an amphipathic helix in the N-terminal section of the otherwise unstructured protein. The impact on alpha-synuclein of binding to vesicle-like liposomes has been studied extensively, but far less is known about the impact of alpha-synuclein on the membrane. The interactions of alpha-synuclein with phosphatidylglycerol membranes are studied here by using spin-labeled lipid species and electron spin resonance (ESR) spectroscopy to allow a detailed analysis of the effect on the membrane lipids. Membrane association of alpha-synuclein perturbs the ESR spectra of spin-labeled lipids in bilayers of phosphatidylglycerol but not of phosphatidylcholine. The interaction is inhibited at high ionic strength. The segmental motion is hindered at all positions of spin labeling in the phosphatidylglycerol sn-2 chain, while still preserving the chain flexibility gradient characteristic of fluid phospholipid membranes. Direct motional restriction of the lipid chains, resulting from penetration of the protein into the hydrophobic interior of the membrane, is not observed. Saturation occurs at a protein/lipid ratio corresponding to approximately 36 lipids/protein added. Alpha-synuclein exhibits a selectivity of interaction with different phospholipid spin labels when bound to phosphatidylglycerol membranes in the following order: stearic acid > cardiolipin > phosphatidylcholine > phosphatidylglycerol approximately phosphatidylethanolamine > phosphatidic acid approximately phosphatidylserine > N-acyl phosphatidylethanolamine > diglyceride. Accordingly, membrane-bound alpha-synuclein associates at the interfacial region of the bilayer where it may favor a local concentration of certain phospholipids.  相似文献   

14.
We have studied the effect of the polyamines (spermine, spermidine, and putrescine) on the aggregation and fusion of large (approximately 100 nm in diameter) unilamellar liposomes in the presence of 100 mM NaCl, pH 7.4. Liposome fusion was monitored by the Tb/dipicolinic acid fluorescence assay for the intermixing of internal aqueous contents, and the release of contents was followed by carboxyfluorescein fluorescence. Spermine and spermidine at physiological concentrations aggregated liposomes composed of pure phosphatidylserine (PS) or phosphatidate (PA) and mixtures of PA with phosphatidylcholine (PC) but did not induce any fusion. However, liposomes composed of mixtures of acidic phospholipids, cholesterol, and a high mole fraction of phosphatidylethanolamine could be induced to fuse by spermine and spermidine in the absence of divalent cations. Putrescine alone in the physiological concentration range was ineffective for both aggregation and fusion of these liposomes. Liposomes made of pure PC did not aggregate in the presence of polyamines. Addition of aggregating concentrations of spermine caused a drastic increase in the rate of Ca(2+)-induced fusion of PA liposomes and a large decrease in the threshold Ca(2+) concentration required for fusion. This effect was less pronounced in the case of PS or PA/PC vesicles. Preincubation of PA vesicles with spermine before the addition of Ca(2+) resulted in a 30-fold increase in the initial rate of fusion. We propose that polyamines may be involved in the regulation of membrane fusion phenomena accompanying cell growth, cell division, exocytosis, and fertilization.  相似文献   

15.
The effects of proteins on divalent cation-induced phospholipid vesicle aggregation and phospholipid vesicle-monolayer membrane interactions (fusion) were examined. Glycophorin (from human erythrocytes) suppressed the membrane interactions more than N-2 protein (from human brain myelin) when these proteins were incorporated into acidic phospholipid vesicle membranes. The threshold concentrations of divalent cations which induced vesicle aggregation were increased by protein incorporation, and the rate of vesicle aggregation was reduced. A similar inhibitory effect by the proteins, incorporated into lipid vesicle membranes, was observed for Ca2+-induced lipid vesicle-monolayer interactions. However, when these proteins were incorporated only in the acidic phospholipid monolayers, the interaction (fusion) of the lipid vesicle-monolayer membranes, induced by divalent cations, was not appreciably altered by the presence of the proteins.In contrast to these two proteins, the presence of synexin in the solution did enhance the Ca2+-induced aggregation of phosphatidylserine vesicles, but did not seem to affect the degree of Ca2+-induced fusion between phosphatidylserine/phosphatidylcholine (1:1) and phosphatidylserine vesicles and monolayer membranes.  相似文献   

16.
A latrotoxin-like protein isolated from the bovine brain promoted fusion of negatively charged liposomes consisting of phosphatidylcholine, phosphatidylethanolamine, and cardiolipin in a molar ratio of 2:3:5. The fusogenic effect significantly increased at mild acidic pH 6.0 and under denaturation (4 M urea, 0.1% SDS). Using ANS as the fluorescent probe, it was found that hydrophobicity of the latrotoxin-like protein increases along with the fusogenic activity. We hypothesize the existence in the protein molecule of conformational changes promoting the fusion, and the possible participation of the protein in neurosecretion processes.Neirofiziologiya/Neurophysiology, Vol. 25, No. 5, pp. 329–334, September–October, 1993.  相似文献   

17.
(1) The effect of cytochrome c addition on the phospholipid structure of liposomes composed of cardiolipin, phosphatidylserine, phosphatidylglycerol, phosphatidylcholine or phosphatidylethanolamine in a pure form or in mixtures was investigated by 31P-NMR and freeze-fracture techniques. (2) Cytochrome c specifically induces the hexagonal Hii phase and possibly an inverted micellar structure of part of the phospholipids in cardiolipin-containing model membranes. (3) These results are compared with the effect of Ca2+ on cardiolipin and are discussed in relation to the structure and function of the inner mitochondrial membrane.  相似文献   

18.
《The Journal of cell biology》1993,123(6):1845-1855
Synapsin I is a synaptic vesicle-specific phosphoprotein composed of a globular and hydrophobic head and of a proline-rich, elongated and basic tail. Synapsin I binds with high affinity to phospholipid and protein components of synaptic vesicles. The head region of the protein has a very high surface activity, strongly interacts with acidic phospholipids and penetrates the hydrophobic core of the vesicle membrane. In the present paper, we have investigated the possible functional effects of the interaction between synapsin I and vesicle phospholipids. Synapsin I enhances both the rate and the extent of Ca(2+)-dependent membrane fusion, although it has no detectable fusogenic activity per se. This effect, which appears to be independent of synapsin I phosphorylation and localized to the head region of the protein, is attributable to aggregation of adjacent vesicles. The facilitation of Ca(2+)-induced liposome fusion is maximal at 50-80% of vesicle saturation and then decreases steeply, whereas vesicle aggregation does not show this biphasic behavior. Association of synapsin I with phospholipid bilayers does not induce membrane destabilization. Rather, 31P-nuclear magnetic resonance spectroscopy demonstrated that synapsin I inhibits the transition of membrane phospholipids from the bilayer (L alpha) to the inverted hexagonal (HII) phase induced either by increases in temperature or by Ca2+. These properties might contribute to the remarkable selectivity of the fusion of synaptic vesicles with the presynaptic plasma membrane during exocytosis.  相似文献   

19.
The effect of the bacterial cytolytic toxin, streptolysin S, on liposomes composed of various phospholipids was investigated. Large unilamellar vesicles containing [14C]sucrose were prepared by reverse-phase evaporation, and membrane damage produced by the toxin was measured by following the release of labeled marker. The net charge of the liposomes had little or no effect on their susceptibility to steptolysin S and the toxin was about equally effective on liposomes composed of phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine and phosphatidylglycerol. Experiments with liposomes composed of synthetic phospholipids showed that the ability of the toxin to produce membrane damage depended on the degree of unsaturation of the fatty acyl chains. The order of sensitivity was C18 : 2 phosphatidylcholine > C18 : 1 phosphatidylcholine > C18 : 0 phosphatidylcholine = C16 : 0 phosphatidylcholine. Liposomes containing the latter two phospholipids were virtually unaffected by streptolysin S, and experiments with C18 : 0 phosphatidylcholine suggested that toxin activity does not bind to liposomes composed of phospholipids with saturated fatty acyl chains. The inclusion of 40 mol% cholesterol in C16 : 0 phosphatidylcholine and C18 : 0 phosphatidylcholine liposomes made these vesicles sensitive to streptolysin S. Egg phosphatidylcholine liposomes, which were unaffected at 0°C and 4°C became susceptible to the toxin at these temperatures when cholesterol was included. Liposomes composed of C14 : 0 phosphatidylcholine were unaffected by streptolysin S at temperatures below the chain-melting transition temperature (23°C) of this phospholipid, but became increasingly susceptible above this temperature. The results suggest that the fluidity of the phospholipid hydrocarbon chains in the membrane is important in streptolysin S action.  相似文献   

20.
Sarcoplasmic reticulum from the white hind leg muscle of the rabbit was examined with 31P nuclear magnetic resonance as a nonperturbing probe of phospholipid-protein interactions in the intact membrane. The phospholipids of the sarcoplasmic reticulum appear to inhabit two distinct environments: one very similar in behavior to pure phospholipid lamellar dispersions and the other immobilized by the protein in the membrane. Measurement of the population of the latter environment suggests that it is dependent on salt concentration and probably not due to the Ca++ Mg++ ATPase of the sarcoplasmic reticulum. This immobilization can be removed completely by papain proteolysis of the membrane protein, but only partially by trypsin treatment. The phospholipid composition of recombinants with the Ca++ Mg++ ATPase was varied in order to look for effects of the phospholipid-protein interface on enzymatic activity of the Ca++ Mg++ ATPase. Both transphosphatidylated phosphatidylethanolamine (from egg phosphatidylcholine) and bovine brain phosphatidylserine readily partitioned into the putative boundary layer, whereas under the same conditions soybean phosphatidylethanolamine was excluded. Only phosphatidylserine affected the activity of the enzyme, causing an inhibition that was proportional to the phosphatidylserine content, relative to phosphatidylcholine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号