首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ocelots (Leopardus pardalis) are widely distributed throughout the Americas, being dependent on forested areas to survive. Although ocelot ecology is broadly studied throughout the species range distribution, studies concerning factors that may affect ocelot occupancy in the Atlantic Forest are still scarce. We used camera traps to evaluate factors influencing the probabilities of detection and occupancy of ocelots in a protected area of the Atlantic Forest, the Rio Doce State Park (RDSP), southeastern Brazil. To assess ocelot occupancy and detection probabilities, we measured the distances between sampling stations and rivers, lakes, cities, pasture, and Eucalyptus plantations. In addition, we recorded the mean rainfall levels for each sampling occasion, and native grassland areas within a 500 m‐buffer around each sampling station. We found a strong and positive association between ocelot detection and the dry season, which might be due to a higher number of individuals moving through the Park during this season. Moreover, we found a strong and positive association of ocelot detection with native grassland areas around lakes, which may be related to the ocelot behavior of searching for prey in these areas. Conversely, the ocelot occupancy probability was intermediate (Ψ^ = 0.53, 95% CI = 0.36–0.69) and was not strongly associated with the evaluated covariates, which may be explained by the high‐quality of forest habitats and water resources that are homogeneously distributed within the Park. Our study indicates that the RDSP still provides a structurally suitable forest habitat for ocelots, but because of the current worrying scenario of over fragmentation, reduction of forest cover, and weakness of the protective legislation of this biome, the long‐term persistence of the species in RDSP is uncertain.  相似文献   

2.
Four Neotropical small and medium felids—the ocelot, jaguarundi, margay, and southern tiger cat—have overlapping geographic distributions in the endangered Atlantic Forest. Local studies show that these felids avoid areas with high human impact, but the three smaller ones use human‐modified areas more frequently than do ocelots. To understand how landscape changes affect the habitat distribution of these four felids in the Atlantic Forest of Argentina, we used maximum entropy models to analyze the effect of environmental and anthropogenic factors. We estimated niche breadth and overlap among these felids. The conversion of the native forest to land uses without trees was the most important variable that determined the habitat distribution of the four species. For all four species, the optimal habitat covered about 1/3 of the study area and corresponds mainly to the native forest areas. Nearly 50% of these areas had some level of protection. The niche width was higher for the small felids than for ocelots. Niche overlap was high for all species pairs, but higher among the small felids and lower for each of these with the ocelot. The four felids were negatively affected by native forest loss, with ocelots being more sensitive than the smaller felids. The conversion of unprotected forest areas to other types of land uses would imply a greater habitat loss for these felids. The protection of current remnants of Atlantic Forest in Argentina is important for the long‐term conservation of the four felids. Abstract in Spanish is available with online material.  相似文献   

3.
Forest fragmentation and habitat loss are detrimental to top carnivores, such as jaguars (Panthera onca) and pumas (Puma concolor), but effects on mesocarnivores, such as ocelots (Leopardus pardalis), are less clear. Ocelots need native forests, but also might benefit from the local extirpation of larger cats such as pumas and jaguars through mesopredator release. We used a standardized camera trap protocol to assess ocelot populations in six protected areas of the Atlantic forest in southeastern Brazil where over 80% of forest remnants are < 50 ha. We tested whether variation in ocelot abundance could be explained by reserve size, forest cover, number of free-ranging domestic dogs and presence of top predators. Ocelot abundance was positively correlated with reserve size and the presence of top predators (jaguar and pumas) and negatively correlated with the number of dogs. We also found higher detection probabilities in less forested areas as compared to larger, intact forests. We suspect that smaller home ranges and higher movement rates in smaller, more degraded areas increased detection. Our data do not support the hypothesis of mesopredator release. Rather, our findings indicate that ocelots respond negatively to habitat loss, and thrive in large protected areas inhabited by top predators.  相似文献   

4.
Protected areas – widely recognized as the main strategy for biodiversity conservation – have greatly expanded, covering ∼15% of the Earth; however, we still lack detailed information on biodiversity to evaluate their effectiveness. This is particularly urgent for biodiversity hotspots where protected areas are islands within human modified landscapes. We focus on mammals of the Iguaçu National Park – one of the most important parks in the Atlantic Forest hotspot – to evaluate the effectiveness of protected areas in conserving biodiversity. We monitored 300 km2 with 37 cameras traps during five years to assess if (1) species occupancy declined over time, and (2) if species occupancy/detectability are spatially associated with illegal hunting, proximity to tourism infrastructure and distance from the edge, estimating the proportion of the park where these negative effects are detected. Many species that are rare in most Atlantic Forest remnants presented high occupancy within the park, and no decline in occupancy was observed over time. However, the distribution of 11 species was spatially associated primarily with the distance from the edge and proximity to tourism infrastructure, resulting in a decline, across half of the park area, from 13 to 23% in occupancy and from 19 to 35% in detectability (values averaged among species). These negative effects should be even stronger on smaller protected areas, which are the majority in highly altered hotspots. Re-establishing and properly managing buffer zones and restricting tourism to localized areas are essential to ensure the effectiveness of protected areas for biodiversity conservation.  相似文献   

5.
Interspecific competition among carnivores has been linked to differences in behavior, morphology, and resource use. Insights into these interactions can enhance understanding of local ecological processes that can have impacts on the recovery of endangered species, such as the ocelot (Leopardus pardalis). Ocelots, bobcats (Lynx rufus), and coyotes (Canis latrans) share a small geographic range overlap from South Texas to south‐central Mexico but relationships among the three are poorly understood. From May 2011 to March 2018, we conducted a camera trap study to examine co‐occurrence patterns among ocelots, bobcats, and coyotes on the East Foundation's El Sauz Ranch in South Texas. We used a novel multiseason extension to multispecies occupancy models with ≥2 interacting species to conduct an exploratory analysis to examine interspecific interactions and examine the potential effects of patch‐level and landscape‐level metrics relative to the occurrence of these carnivores. We found strong evidence of seasonal mutual coexistence among all three species and observed a species‐specific seasonal trend in detection. Seasonal coexistence patterns were also explained by increasing distance from a high‐speed roadway. However, these results have important ecological implications for planning ocelot recovery in the rangelands of South Texas. This study suggests a coexistence among ocelots, bobcats, and coyotes under the environmental conditions on the El Sauz Ranch. Further research would provide a better understanding of the ecological mechanisms that facilitate coexistence within this community. As road networks in the region expand over the next few decades, large private working ranches will be needed to provide important habitat for ocelots and other carnivore species.  相似文献   

6.
The bird fauna of the Brazilian Atlantic Forest is exceptionally diverse and threatened, with high levels of endemism. Available lists of the endemic birds of the Atlantic Forest were generated before recent taxonomic revisions lumped or split species and before the recent increase in species occurrence records. Our objective, therefore, was to compile a new list of the endemic birds of the Atlantic Forest, characterize these species in terms of conservation status and natural history traits, and map remaining vegetation and protected areas. We combined GIS analysis with a literature search to compile a list of endemic species and, based on the phylogeny and distribution of these species, characterized areas in terms of species richness, phylogenetic diversity, and endemism. We identified 223 species of birds endemic to the Atlantic Forest, including 12 species not included in previous lists. In addition, 14 species included in previous lists were not considered endemic, either because they occur outside the Atlantic Forest biome or because they are not considered valid species. The typical Atlantic Forest endemic bird is a small forest‐dependent invertivore. Of the species on our list, 31% are considered threatened or extinct. Only ~ 34% of the spatial analysis units had > 10% forest cover, and protected area coverage was consistently low (< 1%). In addition, we found spatial incongruity among the different measures of biodiversity (species richness, relative phylogenetic diversity, restricted‐range species, and irreplaceability). Each of these measures provides information concerning different aspects of biological diversity. However, regardless of which aspect(s) of biodiversity might be considered most important, preservation of the remaining areas of remnant vegetation and further expansion of protected areas are essential if we are to conserve the many endemic species of birds in the Atlantic Forest.  相似文献   

7.
Abstract: Survival and cause-specific mortality estimates are needed to develop effective conservation strategies for the endangered ocelot (Leopardus pardalis) in the United States. We radiomonitored 80 ocelots (36 F, 44 M) from 1983 to 2002 and analyzed survival and cause-specific mortality rates. Pooled estimates of annual survival rates differed between resident (Ŝ = 0.87) and transient (Ŝ = 0.57) ocelots (P = 0.02); therefore, survival and cause-specific mortality analyses were partitioned for resident and transient ocelots. Sex-specific annual survival was similar between resident ocelots (M = 0.92, F = 0.83, P = 0.16) and transient ocelots (M = 0.53, F = 0.63, P = 0.75). Most mortalities were from human (e.g., ocelot-vehicle collisions; M = 45%) and natural (e.g., animal attack, disease; M = 35%) sources. Transient ocelots had higher natural mortality rates (disease, intraspecific mortality; M = 0.26) than resident ocelots (M = 0.04, P = 0.03). Other sources of mortality did not differ (P ≥ 0.10) between resident or transient ocelots or male and female resident or transient ocelots (P ≥ 0.08). Human population expansion within the Lower Rio Grande Valley of southern Texas, USA, will increase transportation-related problems and decrease the quantity of ocelot habitat, leading to increased ocelot-vehicle collisions and possibly cause more transient behavior, thus significantly lowering ocelot survival. Research and development of ocelot road underpasses should be conducted to mitigate ocelot-vehicle collisions.  相似文献   

8.
We aimed to estimate the density, occupancy and detectability of Salvator merianae (Tegu) in one of the largest Atlantic rainforest remnants in Espírito Santo, Brazil, the VNR. Species patch occupancy was modelled and used to predict the response direction of six covariates based on prior knowledge of the Tegu's ecology. A priori, we expected that the covariates measured should represent key habitat features for the species (i.e. temperature, forest edge, open habitats) or elements possibly avoided by the species, based on the hypothesis that poaching would have a negative effect on patch occupancy. We used line‐transect surveys to estimate density and abundance. Camera‐traps were used to estimate patch occupancy by the Tegu. Estimated density for S. merianae was 0.21 ± 0.02 Tegus/ha and estimated population size was 4990 ± 521 individuals. Patch occupancy was best described by two covariates: poaching intensity and distance to the forest edge. Detectability was affected by three covariates: poaching intensity, tree density and temperature. Our study presents robust information on abundance and density, habitat use, and activity of S. merianae in the VNR and is the first study providing data on the effects that poaching has on patch occupancy of this lizard. The data indicated that the occupancy and detectability of this species were influenced by a set of factors, providing information that can be useful in management plans in areas where this species can potentially decline and in areas where it may be introduced.  相似文献   

9.
A common challenge in the conservation of broadly distributed, yet imperiled species is understanding which factors facilitate persistence at distributional edges, locations where populations are often vulnerable to extirpation due to changes in climate, land use, or distributions of other species. For Columbia spotted frogs (Rana luteiventris) in the Great Basin (USA), a genetically distinct population segment of conservation concern, we approached this problem by examining (1) landscape‐scale habitat availability and distribution, (2) water body‐scale habitat associations, and (3) resource management‐identified threats to persistence. We found that areas with perennial aquatic habitat and suitable climate are extremely limited in the southern portion of the species’ range. Within these suitable areas, native and non‐native predators (trout and American bullfrogs [Lithobates catesbeianus]) are widespread and may further limit habitat availability in upper‐ and lower‐elevation areas, respectively. At the water body scale, spotted frog occupancy was associated with deeper sites containing abundant emergent vegetation and nontrout fish species. Streams with American beaver (Castor canadensis) frequently had these structural characteristics and were significantly more likely to be occupied than ponds, lakes, streams without beaver, or streams with inactive beaver ponds, highlighting the importance of active manipulation of stream environments by beaver. Native and non‐native trout reduced the likelihood of spotted frog occupancy, especially where emergent vegetation cover was sparse. Intensive livestock grazing, low aquatic connectivity, and ephemeral hydroperiods were also negatively associated with spotted frog occupancy. We conclude that persistence of this species at the arid end of its range has been largely facilitated by habitat stability (i.e., permanent hydroperiod), connectivity, predator‐free refugia, and a commensalistic interaction with an ecosystem engineer. Beaver‐induced changes to habitat quality, stability, and connectivity may increase spotted frog population resistance and resilience to seasonal drought, grazing, non‐native predators, and climate change, factors which threaten local or regional persistence.  相似文献   

10.
Amazonia forest plays a major role in providing ecosystem services for human and sanctuaries for wildlife. However, ongoing deforestation and habitat fragmentation in the Brazilian Amazon has threatened both. The ocelot is an ecologically important mesopredator and a potential conservation ambassador species, yet there are no previous studies on its habitat preference and spatial patterns in this biome. From 2010 to 2017, twelve sites were surveyed, totaling 899 camera trap stations, the largest known dataset for this species. Using occupancy modeling incorporating spatial autocorrelation, we assessed habitat use for ocelot populations across the Brazilian Amazon. Our results revealed a positive sigmoidal correlation between remote‐sensing derived metrics of forest cover, disjunct core area density, elevation, distance to roads, distance to settlements and habitat use, and that habitat use by ocelots was negatively associated with slope and distance to river/lake. These findings shed light on the regional scale habitat use of ocelots and indicate important species–habitat relationships, thus providing valuable information for conservation management and land‐use planning.  相似文献   

11.
We report the first study to monitor ocelot (Leopardus pardalis) spatial patterns with Global Positioning System (GPS) telemetry. The study area was in southern Texas in areas of dense thornshrub (closed habitat) and open grasslands interspersed with small patches of dense thornshrub cover (open habitat). We used a 200-g GPS-Posrec collar (Televilt, TVP Positioning AB, Lindesberg, Sweden). We obtained 61% of GPS fixes from the ocelot GPS collar. The ocelot preferred closed habitat, even with GPS bias against closed habitat, and used small patches and corridors of dense thornshrub. Due to the success of this pilot study, we recommend that GPS telemetry be used to monitor ocelots.  相似文献   

12.
Habitat loss and fragmentation are serious threats to biodiversity conservation in the Atlantic Forest. A network of protected areas is essential to the protection of native biodiversity. However, internal and external factors may threaten the preservation of biota, thus population viability analyses (PVA) are important tools in protected area design and management planning. A PVA was carried out, using the computer package VORTEX, to assess the effectiveness of the protected area network within the Atlantic Forest in Brazil in retaining viable populations of the endemic primate Brachyteles hypoxanthus. The Brazilian Atlantic Forest has 42 protected areas within B. hypoxanthus geographic distribution area, and only five of those were considered to retain viable populations for 50 generations, whereas 28 were predicted to suffer from genetic decay, seven from both genetic decay and demographic stochasticity, and two of them are probably extinct populations. The model indicates that although the protected area network of the Atlantic Forest will likely keep B. hypoxanthus populations for the next 50 generations, most of them (35 out of 42, or 83%) will be facing some kind of demographic and/or genetic problem and will probably need management actions to be implemented in order to ensure their persistence.  相似文献   

13.
The Red-rumped Agouti (Dasyprocta leporina, Linnaeus, 1758) is considered common in areas where it occurs, and it is listed as Least Concern status in the IUCN red list; however, in recent decades it has been negatively affected by habitat loss and hunting. The conservation status needs to be updated since no recent studies have been conducted in the Atlantic Forest. Therefore, we aimed to estimate the density, occupancy and detectability of D. leporina in one of the larger Atlantic Forest remnants in Espírito Santo, Brazil, the Vale Natural Reserve (VNR). We surveyed four line transects between April 2013 and May 2014 to estimate density and abundance. To model occupancy probability, as well as to document activity pattern, we selected 39 sampling sites with one camera-trap each. Estimated density was 21 ± 3 individuals km–2 and estimated population size was 4935 ± 368 individuals. Occupancy increases with palm density, distance from forest edge, and canopy cover. Occupancy and detectability decreases with distance from water resources. Detectability increases with palm density. The results presented herein can be a starting point to support future action plans for the species, making predictions regarding the ecosystem and management and conservation of D. leporina.  相似文献   

14.
The Brazilian Atlantic Forest has been replaced by homogeneous tree monocultures with potentially drastic effect on ecological interactions. We expect that ecologically‐managed tree monocultures, however, can help to mitigate this impact. Here, we carried out an experiment with Inga vera (Fabaceae), an extrafloral nectary bearing plant, to test if the efficiency of ants as anti‐herbivory defense is affected by the replacement of its natural habitat (Araucaria Forest) by ecologically‐managed tree monocultures (plantations of Araucaria, Pinus, and Eucalyptus). Seedlings of Inga vera were transplanted to three patches of each habitat and ants were excluded from half of the plants. The abundance of ants and herbivores was low, similar among habitats, and exhibited temporal asynchrony. Number of herbivores and accumulated herbivory levels were lower in plant with ants. Rates of herbivory were extremely low and lower for young leaves than for mature leaves. The presence of ants did not affect plant performance traits measured by their growth in height, and their final numbers of leaves and leaflets. Contrary to what might be expected, ant‐protected plants produced fewer leaves and leaflets than unprotected ones. In conclusion, Inga vera‐ant interaction was similar between its natural habitat and the tree monocultures, indicating that potentially both species diversity and ecological processes can be conserved in ecologically‐managed tree monocultures.  相似文献   

15.
Snowshoe hares (Lepus americanus) are an ecologically important herbivore because they modify vegetation through browsing and serve as a prey resource for multiple predators. We implemented a multiscale approach to characterize habitat relationships for snowshoe hares across the mixed conifer landscape of the northern Rocky Mountains, USA. Our objectives were to (1) assess the relationship between horizontal cover and snowshoe hares, (2) estimate how forest metrics vary across the gradient of snowshoe hare use and horizontal cover, and (3) model and map snowshoe hare occupancy and intensity of use. Results indicated that both occupancy and intensity of use by snowshoe hares increased with horizontal cover and that the effect became stronger as intensity of use increased. This underscores the importance of dense horizontal cover to achieve high use, and likely density, of snowshoe hares. Forest structure in areas with high snowshoe hare use and horizontal cover was characterized as multistoried with dense canopy cover and medium‐sized trees (e.g., 12.7–24.4 cm). The abundance of lodgepole pine (Pinus contorta) was associated with snowshoe hare use within a mixed conifer context, and the only species to increase in abundance with horizontal cover was Engelmann spruce (Picea engelmannii) and subalpine fir (Abies lasiocarpa). Our landscape‐level modeling produced similar patterns in that we observed a positive effect of lodgepole pine and horizontal cover on both occupancy and use by snowshoe hares, but we also observed a positive yet parabolic effect of snow depth on snowshoe hare occupancy. This work is among the first to characterize the multiscale habitat relationships of snowshoe hares across a mixed conifer landscape as well as to map their occupancy and intensity of use. Moreover, our results provide stand‐ and landscape‐level insights that directly relate to management agencies, which aids in conservation efforts of snowshoe hares and their associated predators.  相似文献   

16.
The endangered golden‐rumped sengi are found only in Arabuko‐Sokoke Forest with 395.4 km2 of forest habitat, and perhaps in a few isolated forest and thicket fragments of total area less than 30 km2 all within central coastal Kenya. Understanding its habitat use is an important requirement to develop better conservation measures for the species and its remaining forest habitat. A more reliable method for monitoring its status is also needed. We used the Bayesian occupancy modelling with camera trap data and habitat mapping to characterise the species habitat use in the Arabuko‐Sokoke Forest. The species uses 328 km2 (95% CI: 289–364 km2) of Arabuko‐Sokoke Forest habitat, and its site use increases with distance from forest edge, with the highest site use in the Cynometra thicket (0.93; 95% CI: 0.82–1). Its use of the mixed forest habitat has been significantly reduced following years of logging of Afzelia quanzensis. We recommend the use of modelled occupancy, interpreted as the proportion of area used by the species, to monitor the species status. Occupancy models account for detection probability, and heterogeneity in site use and detection can be incorporated. Estimated territory sizes can be combined to obtain abundance estimates.  相似文献   

17.
One of the most intriguing questions in plant ecology is which evolutionary strategy allows widely distributed species to increase their ecological range and grow in changing environmental conditions. Phenotypic plasticity and local adaptations are major processes governing species range margins, but little is known about their relative contribution for tree species distribution in tropical forest regions. We investigated the relative role of phenotypic plasticity and local adaptation in the ecological distribution of the widespread palm Euterpe edulis in the Brazilian Atlantic Forest. Genetic sampling and experiments were performed in old‐growth remnants of two forest types with higher (Seasonal Semideciduous Forests vs. Submontane Rainforest) and lower biogeographic association and environmental similarities (Submontane Rainforest vs. Restinga Forest). We first assessed the molecular genetic differentiation among populations, focusing on the group of loci potentially under selection in each forest, using single‐nucleotide polymorphism (SNPs) outliers. Further, we looked for potential adaptive divergence among populations in a common garden experiment and in reciprocal transplants for two plant development phases: seedling establishment and sapling growth. Analysis with outlier loci indicated that all individuals from the Semideciduous Forest formed a single group, while another group was formed by overlapping individuals from Submontane Rainforest and Restinga Forest. Molecular differentiation was corroborated by reciprocal transplants, which yielded strong evidence of local adaptations for seedling establishment in the biogeographically divergent Rainforest and Semideciduous Forest, but not for Restinga Forest and Submontane Rainforest. Phenotypic plasticity for palm seedling establishment favors range expansion to biogeographically related or recently colonized forest types, while persistence in the newly colonized ecosystem may be favored by local adaptations if climatic conditions diverge over time, reducing gene flow between populations. SNPs obtained by next‐generation sequencing can help exploring adaptive genetic variation in tropical trees, which impose several challenges to the use of reciprocal transplants.  相似文献   

18.
The Amazon and Atlantic Forest are considered the world's most biodiverse biomes. Human and climate change impacts are the principal drivers of species loss in both biomes, more severely in the Atlantic Forest. In response to species loss, the main conservation action is the creation of protected areas (PAs). Current knowledge and research on the PA network's conservation efficiency is scarce, and existing studies have mainly considered a past temporal view. In this study, we tested the efficiency of the current PA network to maintain climatically stable areas (CSAs) across the Amazon and Atlantic Forest. To this, we used an ecological niche modeling approach to biome and paleoclimatic simulations. We propose three categories of conservation priority areas for both biomes, considering CSAs, PAs and intact forest remnants. The biomes vary in their respective PA networks' protection efficiency. Regarding protect CSAs, the Amazon PA network is four times more efficient than the Atlantic Forest PA network. New conservation efforts in these two forest biomes require different approaches. We discussed the conservation actions that should be taken in each biome to increase the efficiency of the PA network, considering both the creation and expansion of PAs as well as restoration programs.  相似文献   

19.
The jaguar (Panthera onca) plays an important role in maintaining biodiversity and ecological processes. We evaluated the status of a jaguar population in one of the last stronghold habitats for its conservation in the Atlantic Forest, the Rio Doce State Park (RDSP). We used a random survey design from 2016/17 to estimate jaguar abundance and density as well as its occupancy and detection probabilities in the entire Park''s area. To monitor for temporal fluctuations in density and abundance, we used a systematic survey design in the southern portion of the Park where jaguars were more recorded when using the random approach. We then conducted two surveys in 2017/18 and 2020. Our 2016/17 random survey revealed that jaguar density (0.11 ± SE 0.28 individuals/100 km2) was the lowest obtained for the species across the Atlantic Forest. We noticed that jaguar density increased three times from 2017/18 (0.55 ± SE 0.45 individuals/100 km2) to 2020 (1.61 ± SE 0.6 individuals/100 km2). Jaguar occupancy and detection probability were 0.40 and 0.08, respectively. The low jaguar occupancy probability was positively associated with smaller distances from lakes and records of potential prey. The detection probability was positively associated with prey detection, the rainy season, and smaller distances from lakes. Our work contributes to a growing awareness of the potential conservation value of a protected area in a human‐dominated landscape as one of the last strongholds for jaguars across the Atlantic Forest.  相似文献   

20.
Golden‐headed lion tamarins (GHLTs; Leontopithecus chrysomelas) are endangered primates endemic to the Brazilian Atlantic Forest, where loss of forest and its connectivity threaten species survival. Understanding the role of habitat availability and configuration on population declines is critical for guiding proactive conservation for this, and other, endangered species. We conducted population viability analysis to assess vulnerability of ten GHLT metapopulations to habitat loss and small population size. Seven metapopulations had a low risk of extirpation (or local extinction) over the next 100 years assuming no further forest loss, and even small populations could persist with immediate protection. Three metapopulations had a moderate/high risk of extirpation, suggesting extinction debt may be evident in parts of the species’ range. When deforestation was assumed to continue at current rates, extirpation risk significantly increased while abundance and genetic diversity decreased for all metapopulations. Extirpation risk was significantly negatively correlated with the size of the largest patch available to metapopulations, underscoring the importance of large habitat patches for species persistence. Finally, we conducted sensitivity analysis using logistic regression, and our results showed that local extinction risk was sensitive to percentage of females breeding, adult female mortality, and dispersal rate and survival; conservation or research programs that target these aspects of the species’ biology/ecology could have a disproportionately important impact on species survival. We stress that efforts to protect populations and tracts of habitat of sufficient size throughout the species’ distribution will be important in the near‐term to protect the species from continuing decline and extinction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号