首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In lung tissue, dendritic cells (DC) are found in close association with the epithelial cell layer, and there is evidence of DC regulation by the epithelium; that epithelial dysfunction leads to overzealous immune cell activation. However, dissecting basic mechanisms of DC interactions with epithelial cells in human tissue is difficult. Here, we describe a method to generate a three-dimensional organotypic model of the human airway mucosa in which we have implanted human DC. The model recapitulates key anatomical and functional features of lung mucosal tissue, including a stratified epithelial cell layer, deposition of extracellular matrix proteins, and the production of tight junction and adherence junction proteins. Labeling of fixed tissue model sections and imaging of live tissue models also revealed that DC distribute in close association with the epithelial layer. As functional properties of DC may be affected by the local tissue microenvironment, this system provides a tool to study human DC function associated with lung mucosal tissue. As an example, we report that the lung tissue model regulates the capacity of DC to produce the chemokines CCL17, CCL18, and CCL22, leading to enhanced CCL18 expression and reduced CCL17 and CCL22 expression. This novel tissue model thus provides a tool well suited for a wide range of studies, including those on the regulation of DC functional properties within the local tissue microenvironment during homeostasis and inflammatory reactions.  相似文献   

2.
Culture of airway epithelial cells is a useful model to investigate physiology of airway epithelia and airway disease mechanisms. In vitro models of airway epithelial cells are established for various species. However, earlier published method for isolation and culture of equine tracheal epithelial cells requires significant improvements. In this report, the development of a procedure for efficient isolation, characterization, culture, and passage of primary equine tracheal epithelial cells are described. Epithelial cells were isolated from adult equine trachea by exposing and stripping the mucosal epithelium from the adjacent connective tissue and smooth muscle. The tissue was minced and dissociated enzymatically using 0.25% trypsin-ethylenediaminetetraacetic acid (EDTA) solution for 2 h at 37 degrees C. Cells were collected by sieving and centrifugation, and contaminating fibroblasts were removed by differential adhesion. This procedure resulted in a typical yield of 1 x 10(7) cytokeratin-positive epithelial cells per gram tracheal lining tissue. Viability was 95% by trypan blue exclusion and isolates contained approximately 94% cytokeratin-positive cells of epithelial origin. Cells seeded at a density of 6.9 x 10(4) cells/cm(2) in serum-free airway epithelial cell growth medium formed monolayers near confluency within a week. Confluent cells were dissociated using dispase II and first passages (P1) and second passages (P2) were successfully established in serum-free medium. Collagen coating of tissue culture flask was not required for cell adhesion, and cultures could be maintained at the level of P2 over 30 d. In the present study, we could establish a high-yield protocol for isolation and culture of equine tracheal epithelial cells that can serve for in vitro/ex vivo studies on the (patho-)physiology of equine airway disease as well as pharmacological and toxicological targets relevant to airway diseases.  相似文献   

3.
Summary This study describes the ability of aortic smooth muscle cells to synthesize and accumulate collagen with time in culture. Inasmuch as smooth muscle cell cultures multilayer and continue to divide, albeit slowly, and can be maintained in the same vessels where seeded for extended periods of time, a long-term aging study from a single subcultivated population of cells was carried out. This is different from the usual cell-culture aging achieved by an increase in cell population doublings obtained by repeated subcultivations. The latter process, which is trypsin induced, involves a changing cellular environment including the extracellular matrix that is produced by the cells in culture. Second subcultures of weanling rabbit, aortic media, smooth muscle cells maintained for different periods of time up to 14 wk displayed decreasing hydroxyproline formation with time. Proline hydroxylation was determined by pulsing these second-passage cells with [14C]proline for 24 h at various times during the 14 wk period. The cell layer and medium were evaluated separately for radioactive proline and hydroxyproline and the medium for bacterial collagenase-susceptible protein as well. The percent of hydroxylation in the medium decreased from >31% within 1 wk after plating to 15.2% after 14 wk in culture. The percent of collagenase-susceptible protein in the medium decreased in a comparable manner. The DNA levels increased during the entire period although initially somewhat more rapidly. Accumulation of protein in the extracellular matrix continued during the 14-wk span. The accumulation of hydroxyproline in the extracellular matrix also continued to increase throughout the culture period, but it did slow down significantly. Yet the cells appear not to have lost their ability to accumulate connective tissue and protein in the insoluble cell layer. The data suggest clearly that the percent collagen synthesis relative to total protein synthesis decreases in the older cultures; total protein synthesis also decreases as expected. This study was supported by NIH Program Projects AG00001 and HL 13262.  相似文献   

4.
Electrospinning is a highly adaptable method producing porous 3D fibrous scaffolds that can be exploited in in vitro cell culture. Alterations to intrinsic parameters within the process allow a high degree of control over scaffold characteristics including fiber diameter, alignment and porosity. By developing scaffolds with similar dimensions and topographies to organ- or tissue-specific extracellular matrices (ECM), micro-environments representative to those that cells are exposed to in situ can be created. The airway bronchiole wall, comprised of three main micro-environments, was selected as a model tissue. Using decellularized airway ECM as a guide, we electrospun the non-degradable polymer, polyethylene terephthalate (PET), by three different protocols to produce three individual electrospun scaffolds optimized for epithelial, fibroblast or smooth muscle cell-culture. Using a commercially available bioreactor system, we stably co-cultured the three cell-types to provide an in vitro model of the airway wall over an extended time period.This model highlights the potential for such methods being employed in in vitro diagnostic studies investigating important inter-cellular cross-talk mechanisms or assessing novel pharmaceutical targets, by providing a relevant platform to allow the culture of fully differentiated adult cells within 3D, tissue-specific environments.  相似文献   

5.
Mycoplasma pneumoniae (Mp) has been linked to chronic asthma. Airway remodeling (e.g., airway collagen deposition or fibrosis) is one of the pathological features of chronic asthma. However, the effects of respiratory Mp infection on airway fibrosis in asthma remain unclear. In the present study, we hypothesized that respiratory Mp infection may increase the airway collagen deposition in a murine model of allergic airway inflammation in part through upregulation of transforming growth factor (TGF)-beta1. Double (2 wk apart) inoculations of Mp or saline (control) were given to mice with or without previous allergen (ovalbumin) challenges. On days 14 and 42 after the last Mp or saline, lung tissue and bronchoalveolar lavage (BAL) fluid were collected for analyses of collagen and TGF-beta1 at protein and mRNA levels. In allergen-na?ve mice, Mp did not alter airway wall collagen. In allergen-challenged mice, Mp infections did not change airway wall collagen deposition on day 14 but increased the airway collagen on day 42; this increase was accompanied by increased TGF-beta1 protein in the airway wall and reduced TGF-beta1 protein release from the lung tissue into BAL fluid. Our results suggest that Mp infections could modulate airway collagen deposition in a murine model of allergic airway inflammation with TGF-beta1 involved in the collagen deposition process.  相似文献   

6.
Summary Considerable progress has recently been made in the understanding of airway inflammation by cell culture assays and in vivo provocation studies. Inasmuch as ethical considerations limit experimental work in humans, physiologically relevant in vitro models are required to better understand cellular and molecular tissue interactions in human nasal mucosa. Here we describe a human nasal mucosa culture model utilizing a simple gelatin sponge-supported histoculture system at the air-liquid interface. Viable mucosa was preserved for at least 48 h, as shown by morphology and immunohistochemical staining with Ki-67 as marker for proliferation. Pro-inflammatory mediators (kinins, histamine, thromboxane B2, prostaglandin F, and substance P) are detectable in serum-containing as well as serum-free culture medium. Incubation with 10−8 M substance P increases the number of degranulated mast cells after 48 h by 26% (P<0.01). In this model, biochemical responses can be correlated with histologic alterations of the target tissue. Inflammatory parameters can be examined and compared in various patient groups and different stimulators/inhibitors. This culture method provides a valuable research tool for analyzing all compartments present in nasal mucosa under physiologically relevant conditions, and for studying complex interactions and responses of mucosal cell populations in their natural tissue environment.  相似文献   

7.
FORMATION OF BONE TISSUE IN CULTURE FROM ISOLATED BONE CELLS   总被引:8,自引:4,他引:4       下载免费PDF全文
A system is described for the formation of bone tissue in culture from isolated rat bone cells. The isolated bone cells were obtained from embryonic rat calvarium and periosteum or from traumatized, lifted periosteum of young rats. The cells were cultured for a period of up to 8 wk, during which time the morphological, biochemical, and functional properties of the cultures were studied. Formation of bone tissue by these isolated bone cells was shown, in that the cells demonstrated osteoblastic morphology in light and electron microscopy, the collagen formed was similar to bone collagen, there was mineralization specific for bone, and the cells reacted to the hormone calcitonin by increased calcium ion uptake. Calcification of the fine structure of the cells and the matrix is described. Three stages in the calcification process were observed by electron microscopy. It is concluded that these bone cells growing in vitro are able to function in a way similar to such cells in vivo. This tissue culture system starting from isolated bone cells is therefore suitable for studies on the structure and function of bone.  相似文献   

8.
Summary Injuries to the avascular region of the meniscus occur frequently and may be difficult to repair. This study was designed to determine whether growth factors could diffuse from a collagen sponge or a collagen gel into meniscal tissue and stimulate healing of defects using an in vitro model. The diffusion of platelet-derived growth factor (PDGF) from the collagen carriers into the medium was rapid with approximately 50% being released from the collagen sponge within the first hour. After 5 d of incubation, 8% of the PDGF was present in the meniscus, 11% in the collagen sponge, and 62% had been released into the medium. Similar results were obtained when a collagen gel was used as a carrier. Histological evaluation of the meniscal explants after 2 wk in culture revealed extensive proteoglycan staining in the areas surrounding defects treated with either hepatocyte growth factor (HGF) or PDGF compared with controls without growth factor. The HGF-PDGF treatment resulted in alignment and migration of meniscal cells toward the defect, which was not observed in untreated controls. At 3–7 d, increased number of cells were observed in defects treated with collagen gels (but not the sponge) with PDGF-HGF. At 4 wk, combined HGF-PDGF treatment resulted in the formation of tissue with birefringence by polarized microscopy, suggestive of organized collagen. The data suggest that use of specific PDGF-HGF may enhance the repair of meniscal injuries.  相似文献   

9.
Decorin (Dcn) is an extracellular matrix proteoglycan, which affects airway mechanics, airway-parenchymal interdependence, airway smooth muscle proliferation and apoptosis, and transforming growth factor-β bioavailability. As Dcn deposition is differentially altered in asthma, we questioned whether Dcn deficiency would impact the development of allergen-induced asthma in a mouse model. Dcn(-/-) and Dcn(+/+) mice (C57Bl/6) were sensitized with ovalbumin (OA) and challenged intranasally 3 days/wk × 3 wk. After OA challenge, mice were anesthetized, and respiratory mechanics measured under baseline conditions and after delivery of increasing concentrations of methacholine aerosol. Complex impedance was partitioned into airway resistance and tissue elastance and damping. Bronchoalveolar lavage was performed. Lungs were excised, and tissue sections evaluated for inflammatory cell influx, α-smooth muscle actin, collagen, biglycan, and Dcn deposition. Changes in TH-2 cytokine mRNA and protein were also measured. Airway resistance was increased in OA-challenged Dcn(+/+) mice only (P < 0.05), whereas tissue elastance and damping were increased in both OA-challenged Dcn(+/+) and Dcn(-/-), but more so in Dcn(+/+) mice (P < 0.001). Inflammation and collagen staining within the airway wall were increased with OA in Dcn(+/+) only (P < 0.001 and P < 0.01, respectively, vs. saline). IL-5 and IL-13 mRNA were increased in lung tissue of OA-challenged Dcn(+/+) mice. Dcn deficiency resulted in more modest OA-induced hyperresponsiveness, evident at the level of the central airways and distal lung. Differences in physiology were accompanied by differences in inflammation and remodeling. These findings may be, in part, due to the well-described ability of Dcn to bind transforming growth factor-β and render it less bioavailable.  相似文献   

10.
The identification of a three dimensional constitutive model is useful for describing the complex mechanical behavior of a nonlinear and anisotropic biological tissue such as the esophagus. The inflation tests at the fixed axial extension of 1, 1.125, and 1.25 were conducted on the muscle and mucosa layer of a porcine esophagus separately and the pressure-radius-axial force was recorded. The experimental data were fitted with the constitutive model to obtain the structure-related parameters, including the collagen amount and fiber orientation. Results showed that a bilinear strain energy function (SEF) with four parameters could fit the inflation data at an individual extension very well while a six-parameter model had to be used to capture the inflation behaviors at all three extensions simultaneously. It was found that the collagen distribution was axial preferred in both layers and the mucosa contained more collagen, which were in agreement with the findings through a pair of uniaxial tensile test in our previous study. The model was expected to be used for the prediction of stress distribution within the esophageal wall under the physiological state and provide some useful information in the clinical studies of the esophageal diseases.  相似文献   

11.
The airway epithelium is exposed to a variety of harmful agents during breathing and appropriate cellular responses are essential to maintain tissue homeostasis. Recent evidence has highlighted the contribution of epithelial barrier dysfunction in the development of many chronic respiratory diseases. Despite intense research efforts, the responses of the airway barrier to environmental agents are not fully understood, mainly due to lack of suitable in vitro models that recapitulate the complex in vivo situation accurately. Using an interdisciplinary approach, we describe a novel dynamic 3D in vitro model of the airway epithelium, incorporating fully differentiated primary human airway epithelial cells at the air-liquid interface and a basolateral microfluidic supply of nutrients simulating the interstitial flow observed in vivo. Through combination of the microfluidic culture system with an automated fraction collector the kinetics of cellular responses by the airway epithelium to environmental agents can be analysed at the early phases for the first time and with much higher sensitivity compared to common static in vitro models. Following exposure of primary differentiated epithelial cells to pollen we show that CXCL8/IL–8 release is detectable within the first 2h and peaks at 4–6h under microfluidic conditions, a response which was not observed in conventional static culture conditions. Such a microfluidic culture model is likely to have utility for high resolution temporal profiling of toxicological and pharmacological responses of the airway epithelial barrier, as well as for studies of disease mechanisms.  相似文献   

12.
Summary A new model for organ culture of endocrine tissue is described. Rat anterior pituitary fragments were cultured for 4 wk within semipermeable polyurethane isocyanate hollow fibers. Growth hormone and prolactin, two of the anterior pituitary hormones, were released into the medium during the entire culture period. Electron microscopy of the pituitary fragments after 2 wk in in culture showed a rim of viable tissue in all specimens examined. Individual cells, from this outer rim, exhibited excellent organelle preservation and numerous secretory granules. Experiments involving potassium depolarization and 10−6 M dopamine provided evidence for the normal responsiveness of the cultured pituitary tissue to both stimulatory and inhibitory factors. These studies illustrate the potential utility of the described organ culture system for further investigations of endocrine physiology.  相似文献   

13.
Recent studies have shown that mechanical forces on airway epithelial cells can induce upregulation of genes involved in airway remodeling in diseases such as asthma. However, the relevance of these responses to airway wall remodeling is still unclear since 1). mechanotransduction is highly dependent on environment (e.g., matrix and other cell types) and 2). inflammatory mediators, which strongly affect remodeling, are also present in asthma. To assess the effects of mechanical forces on the airway wall in a relevant three-dimensional inflammatory context, we have established a tissue culture model of the human airway wall that can be induced to undergo matrix remodeling. Our model contains differentiated human bronchial epithelial cells characterized by tight junctions, cilia formation, and mucus secretion atop a collagen gel embedded with human lung fibroblasts. We found that addition of activated eosinophils and the application of 50% strain to the same system increased the epithelial thickness compared with either condition alone, suggesting that mechanical strain affects airway wall remodeling synergistically with inflammation. This integrated model more closely mimics airway wall remodeling than single-cell, conditioned media, or even two-dimensional coculture systems and is relevant for examining the importance of mechanical strain on airway wall remodeling in an inflammatory environment, which may be crucial for understanding and treating pathologies such as asthma.  相似文献   

14.
Undifferentiated progenitor cells of mandibular condyles of neonatal mice were kept in a tissue culture system for up to 9 days. After 2 days in culture, new chondroblasts developed within the explants, whereas the peripheries of the latter were occupied by undifferentiated cells undergoing mitosis. By 4 days in culture, many of the cartilage cells showed signs of hypertrophy, while the matrix revealed positive reactivity for type II collagen and matrix metachromasia. The process of maturation of cartilage cells appeared to have reached its final stages after 6 days in culture, at a time when the initial loci of matrix mineralization could be easily identified. Concomitantly, peripheral areas bordering the cartilaginous core, as well as portions of the cartilage, reacted positively for type I collagen and fibronectin. Light microscopy examination showed signs of new bone formation after 9 days in culture. The extracellular matrix at the upper portion of the explant, facing the medium-air interface, reacted intensely with antibodies against type I collagen and fibronectin, but not with antibodies against type II collagen. Further, the newly formed osteoid was found to have undergone mineralization, thus forming an expanded layer of new bony tissue. A close spatial association was found between mature, mineralized cartilage and new bone. Hence, we hereby introduce a new in vitro system serving as an experimental model for studies related to the differentiation of progenitor cells into chondroblasts, which in turn promote ossification.  相似文献   

15.
Better understanding of the stress/strain environment in airway tissues is very important in order to avoid lung injuries for patients undergoing mechanical ventilation for treatment of respiratory problems. Airway tissue strains responsible for stressing the lung's fiber network and rupturing the lung due to compliant airways are very difficult to measure experimentally. A computational model that incorporates the heterogeneity of the airways was developed to study the effects of airway tissue material properties on strain distributions within each layer of the airway wall. The geometry and boundary conditions of the tissue strain analysis were obtained from the organ-level analysis model. Two sets of airway tissue properties (heterogeneous and homogeneous) were considered in order to estimate the strain levels induced within the tissue. The simulation results showed that the homogeneous model overestimated the maximum strain in the mucosa layer and underestimated the maximum strain in the smooth muscle and cartilage layers. The results of strain levels obtained from the tissue analysis are very important because these strains at the cellular-level can create inflammatory responses, thus damaging the airway tissues.  相似文献   

16.
17.
APCs, including dendritic cells (DC), are central to Ag surveillance in the respiratory tract (RT). Research in this area is dominated by mouse studies on purportedly representative RT-APC populations derived from whole-lung digests, comprising mainly parenchymal tissue. Our recent rat studies identified major functional differences between DC populations from airway mucosal vs parenchymal tissue, thus seriously questioning the validity of this approach. We addressed this issue for the first time in the mouse by separately characterizing RT-APC populations from these two different RT compartments. CD11c(high) myeloid DC (mDC) and B cells were common to both locations, whereas a short-lived CD11c(neg) mDC was unique to airway mucosa and long-lived CD11c(high) macrophage and rapid-turnover multipotential precursor populations were predominantly confined to the lung parenchyma. Airway mucosal mDC were more endocytic and presented peptide to naive CD4+ T cells more efficiently than their lung counterparts. However, mDC from neither site could present whole protein without further maturation in vitro, or following trafficking to lymph nodes in vivo, indicating a novel mechanism whereby RT-DC function is regulated at the level of protein processing but not peptide loading for naive T cell activation.  相似文献   

18.
Although chronic inhalation of endotoxin or lipopolysaccharide (LPS) causes all of the classic features of asthma, including airway hyperreactivity, airway inflammation, and airway remodeling, the mechanisms involved in this process are not clearly understood. The objective of this study was to determine whether intratracheal treatment with LPS antagonist (E5564, a lipid A analog) prevented the development of chronic endotoxin-induced airway disease in a mouse model of environmental airway disease. Pretreatment with 10 and 100 microg of E5564 was found to inhibit the airway response (hyperreactivity and inflammation) for up to 48 h after the administration of the compound. Repeated dosing with 50 microg of E5564 intratracheally did not cause any measurable toxicity. Therefore, in a chronic experiment, mice were treated with either E5564 (50 microg) or vehicle three times weekly for 5 wk and simultaneously daily exposed to either LPS (4.65 +/- 0.30 microg/m3) or saline aerosol. E5564 was effective in decreasing the airway hyperreactivity to methacholine, the air space neutrophilia, the interleukin-6 in the lung lavage fluid, and the neutrophil infiltration of the airways 36 h after 5 wk of LPS inhalation. Less collagen deposition was observed in the airways of E5564-treated mice compared with vehicle-treated mice after a 4-wk recovery period. Our results indicate that E5564, a Toll-like receptor 4 antagonist, minimizes the physiological and biological effects of chronic LPS inhalation, suggesting a therapeutic role for competitive LPS antagonists in preventing or reducing endotoxin-induced environmental airway disease.  相似文献   

19.
Differentiated cultures of primary hamster tracheal airway epithelial cells   总被引:5,自引:0,他引:5  
Summary Primary airway epithelial cell cultures can provide a faithful representation of the in vivo airway while allowing for a controlled nutrient source and isolation from other tissues or immune cells. The methods used have significant differences based on tissue source, cell isolation, culture conditions, and assessment of culture purity. We modified and optimized a method for generating tracheal epithelial cultures from Syrian golden hamsters and characterized the cultures for cell composition and function. Soon after initial plating, the epithelial cells reached a high transepithelial resistance and formed tight junctions. The cells differentiated into a heterogeneous, multicellular culture containing ciliated, secretory, and basal cells after culture at an air-liquid interface (ALI). The, secretory cell populations initially consisted of MUC5AC-positive goblet cells and MUC5AC/CCSP double-positive cells, but the makeup changed to predominantly Clara cell secretory protein (CCSP)-positive Clara cells after 14 d. The ciliated cell populations differentiated rapidly after ALI as judged by the appearance of β tubulin IV-positive cells. The cultures produced mucus, CCSP, and trypsin-like proteases and were capable of wound repair as judged by increased expression of matrilysin. Our method provides an efficient, high-yield protocol for producing differentiated hamster tracheal epithelial cells that can be used for a variety of in vitro studies including tracheal cell differentiation, airway disease mechanisms, and pathogen-host interactions.  相似文献   

20.
Tissues and cell lines derived from an individual with disease are ideal sources to study disease-related cellular phenotypes. Patient-derived fibroblasts in this protocol have been successfully used in the derivation of induced pluripotent stem cells to model disease1. Early passages of these fibroblasts can also be used for cell-based functional assays to study specific disease pathways, mechanisms2 and subsequent drug screening approaches. The advantage of the presented protocol over enzymatic procedures are 1) the reproducibility of the technique from small amounts of tissue derived from older patients, e.g. patients affected with Parkinson''s disease, 2) the technically simple approach over more challenging methodologies using enzymatic treatments, and 3) the time consideration: this protocol takes 15-20 min and can be performed immediately after biopsy arrival. Enzymatic treatments can take up to 4 hr and have the problems of overdigestion, reduction of cell viability and subsequent attachment of cells when not handled properly. This protocol describes the dissection and preparation of a 4-mm human skin biopsy for derivation of a fibroblast culture and has a very high success rate which is important when dealing with patient-derived tissue samples. In this culture, keratinocytes migrate out of the biopsy tissue within the first week after preparation. Fibroblasts appear 7-10 days after the first outgrowth of keratinocytes. DMEM high glucose media supplemented with 20% FBS favors the growth of fibroblasts over keratinocytes and fibroblasts will overgrow the keratinocytes. After 2 passages keratinocytes have been diluted out resulting in relatively homogenous fibroblast cultures which expresses the fibroblast marker SERPINH1 (HSP-47). Using this approach, 15-20 million fibroblasts can be derived in 4-8 weeks for cell banking. The skin dissection takes about 15-20 min, cells are then monitored once a day under the microscope, and media is changed every 2-3 days after attachment and outgrowth of cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号