首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 33 毫秒
1.
Stimulations of cell growth and macromolecular synthesis of HeLa cells by insulin and low density lipoprotein (LDL) were studied in relation to the effect of intracellular K+. After replacement of the culture medium by a chemically defined medium (K-CDM), addition of insulin plus LDL stimulated their growth. Protein synthesis was fast for the first 18 hrs. and then slowed to a constant rate with or without these agents. DNA synthesis began to increase from 15 hrs., attaining a maximum at 18 hrs. After change from K-CDM to CDM containing RbCl (Rb-CDM), Rb+ replaced about 80% of the intracellular K+ in 2 hrs. Cell growth in Rb-CDM was very slow but was markedly enhanced by insulin plus LDL. No initially rapid protein synthesis was observed. DNA synthesis decreased with time, but addition of insulin plus LDL resulted in transient increase. Thus, the initial rapid protein synthesis in K-CDM may be a prerequisite for inducing DNA synthesis that stimulates subsequent cell growth. In Rb-CDM, insulin plus LDL stimulated cell growth by increasing DNA synthesis without changing the synthesis of bulk protein, implying that they induced synthesis of growth-related proteins.  相似文献   

2.
Addition of serum to density-arrested BALB/c-3T3 cells causes a rapid increase in uptake of Na+ and K+, followed 12 h later by the onset of DNA synthesis. We explored the role of intracellular univalent cation concentrations in the regulation of BALB/c-3T3 cell growth by serum growth factors. As cells grew to confluence, intracellular Na+ and K+ concentrations ([Na+]i and [K+]i) fell from 40 and 180 to 15 and 90 mmol/liter, respectively. Stimulation of growth of density-inhibited cells by the addition of serum growth factors increased [Na]i by 30% and [K+]i by 13-25% in early G0/G1, resulting in an increase in total univalent cation concentration. Addition of ouabain to stimulated cells resulted in a concentration-dependent steady decrease in [K+]i and increase in [Na+]i. Ouabain (100 microM) decreased [K+]i to approximately 60 mmol/liter by 12 h, and also prevented the serum- stimulated increase in 86Rb+ uptake. However, 100 microM ouabain did not inhibit DNA synthesis. A time-course experiment was done to determine the effect of 100 microM ouabain on [K+]i throughout G0/G1 and S phase. The addition of serum growth factors to density-inhibited cells stimulated equal rates of entry into the S phase in the presence or absence of 100 microM ouabain. However, in the presence of ouabain, there was a decrease in [K+]i. Therefore, an increase in [K+]i is not required for entry into S phase; serum growth factors do not regulate cell growth by altering [K+]i. The significance of increased total univalent cation concentration is discussed.  相似文献   

3.
The role of Na + transport systems in the mitogenic signal induced by growth factors was studied, and it was shown that two Na + transport systems contribute to the early increase in cytoplasmic Na + in response to serum growth factors, namely the amiloride-sensitive Na+/H+ antiport and the bumetanide-sensitive Na+/K+/Cl- cotransport. Bumetanide or amiloride, when added separately, inhibited part of the increase in cytoplasmic Na +, as a response to the addition of serum to quiescent BALB/c mouse 3T3 fibroblasts. Each drug also suppressed part of the stimulation of the ouabain-sensitive Rb + influx, which was controlled by intracellular Na +. However, when both drugs were added together with serum growth factors, a complete inhibition of the early increase in [Na +], and subsequently a complete blockage of Na+/K+ pump stimulation was obtained. Amiloride or bumetanide, when added separately, only partially inhibited DNA synthesis induced by serum, 24% and 8% respectively. However, when both drugs were added together, at the time of serum addition to the quiescent cells, cell entry into S-phase was completely inhibited. To investigate the mode of cell-cycle inhibition, analysis was done of the possible role of early Na + fluxes in the mitogenic signal transduced from cell membrane receptors to the nucleus. The effects of the two drugs amiloride and bumetanide on induction of three genes--c-fos, c-myc, and ornithin decarboxylase (ODC)--was measured during cell transition through the G1-phase. Amiloride and bumetanide, when added separately or in combination, did not inhibit the induction of c-fos, c-myc, and ODC mRNAs. These results suggest that stimulation of Na + fluxes by serum growth factors is essential for cell transition into the S-phase of cell cycle, but it plays no apparent role in the growth factor signal transduced from the cell surface to the interior of the cell, as manifested by c-fos, c-myc, and ODC genes induction.  相似文献   

4.
Rat astroglial cells respond to fetal calf serum (FCS) and gangliosides, including GM1, by undergoing proliferation. Here, we show that addition of FCS but not GM1 causes an increase in Na+, K+-pump activity, as measured by ouabain-sensitive 86Rb+ influx. The increase of Na+, K+-pump activity by FCS was due to increased Na+ influx (measured with 22Na+). This increased Na+ influx was sensitive to amiloride, an inhibitor of Na+/H+ exchange. Amiloride also blocked the FCS-stimulated incorporation of [3H]thymidine into DNA. Two defined polypeptide growth factors, epidermal growth factor and fibroblast growth factor were also able to elicit an amiloride-sensitive Na+ influx and an ouabain-sensitive K+ uptake in these astroglial cells, in the presence of FCS or insulin. Thus, GM1 differs from serum and growth factors in the mechanisms by which these agents stimulate the proliferation of the astroglial cells used here.  相似文献   

5.
In the absence of Na+ in the medium, the membrane potential of obligately alkalophilic Bacillus cells was found to be decreased by the addition of K+ to the medium, whereas K+ addition in the presence of Na+ had no effect. Rb+ showed essentially the same effect as K+. The decreased membrane potential was quickly restored by lowering the K+ concentration in the medium or by adding Na+ or Li+ to the medium. Thus, in the absence of Na+, the membrane potential of alkalophilic Bacillus seems to be affected by the concentration difference of K+ between inside and outside of the cell, and Na+ or Li+ in the medium suppresses the K+ effect. An exchange between extracellular Rb+ and intracellular K+ was observed in the absence of Na+. However, the exchange was greatly suppressed by the addition of Na+ or Li+ to the medium, indicating that Na+ in the medium modulates the K+ permeability of the alkalophilic Bacillus cell membrane. The K+-induced decrease in the membrane potential of alkalophilic Bacillus in the absence of Na+ is accounted for by the increased K+-permeability of the cell membrane.  相似文献   

6.
The bumetanide-sensitive transport system performed a net efflux of K+ in serum deprived quiescent cells. The addition of partially purified fibroblast growth factor (FGF) to G0/G1 phase 3T3 fibroblasts induced a transient net influx of K+, carried out by the bumetanide-sensitive transport system for 2-6 minutes. The stimulation of the bumetanide-sensitive K+ influx by FGF was followed by stimulation of the ouabain-sensitive K+ influx. In addition, both the bumetanide-sensitive and the ouabain-sensitive K+ influxes were found to be similarly stimulated when the G0/G1 3T3 cells were treated with insulin. These results suggest that growth factors such as FGF and insulin induce a change in the action of the bumetanide-sensitive transporter from performing net K+ efflux along its concentration gradient to an uphill transport pumping of K+ into the cell. We propose, therefore, that the bumetanide-sensitive transporter contributes to the increase in the intracellular K+ (and probable Na+) stimulated by growth factors such as FGF and insulin in early G1 phase of the cell cycle.  相似文献   

7.
Insulin stimulated the uptake of 86Rb+ (a K+ analog) in rat adipocytes and increased the steady state concentration of intracellular potassium. Half-maximal stimulation occurred at an insulin concentration of 200 pM. Both basal- and insulin-stimulated 86Rb+ transport rates depended on the concentration of external K+, external Na+, and were 90% inhibited by 10(-3) M ouabain and 10(-3) M KCN, indicating that the hormone was activating the (Na+,K+)-ATPase. Insulin had no effect on the entry of 22Na+ or exit of 86Rb+. Kinetic analysis demonstrated that insulin acted by increasing the maximum velocity, Vmax, of 86Rb+ entry. Inhibition of the rate of Rb+ uptake by ouabain was best described by a biphasic inhibition curve. Scatchard analysis of ouabain binding to intact cells indicated binding sites with multiple affinities. Only the rubidium transport sites which exhibited a high affinity for ouabain were stimulated by insulin. Stimulation required insulin binding to an intact cell surface receptor, as it was reversible by trypsinization. We conclude that the uptake of 86Rb+ by the (Na+,K+)-ATPase is an insulin-sensitive membrane transport process in the fat cell.  相似文献   

8.
Mouse 3T3 cells transformed by a conditional mutant of Rous sarcoma virus (LA90) can assume either a normal or a transformed phenotype, depending on the temperature of cultivation. These cells (LA90) were arrested at the G0/G1 phase of the cell cycle by starvation for serum growth factors at the nonpermissive temperature (39 degrees C). Release from the G0/G1 phase by serum growth factors resulted in a rapid stimulation of Rb+ influx. To investigate whether the stimulation of Rb+ influx is obligatory for cell proliferation, the cultures were released from the G0/G1 phase by a temperature decrease in the absence of serum. A temperature decrease from 39 to 32 degrees C activated the viral pp60src gene mitogenic activity. Under these conditions, no rapid stimulation of Rb+ influx was observed. These results suggest that the rapid stimulation of Rb+ influx induced by serum growth factors is not an essential signal for cell release from the G0/G1 phase. However, a delayed increase in Rb+ influx concomitant with an increase in the cell content of K+ was observed in the cultures released from the G0/G1 phase by temperature decrease in the absence of serum growth factors. We found that the LA90 cells incubated at the permissive temperature (32 degrees C) secreted a mitogenic activity into the medium. Moreover, the conditioned medium from cultures incubated at 32 degrees C, but not at 39 degrees C, stimulate Rb+ influx in G0/G1 cells. These results indicate that Rous sarcoma virus pp60src induces a slow autocrine secretion of a mitogenic activity. This mitogenic activity slowly modulates the K+ content. Therefore, the slow elevation in cellular content of K+ is proposed to be an obligatory event for proliferation in normal and transformed cells.  相似文献   

9.
Insulin affects the sodium affinity of the rat adipocyte (Na+,K+)-ATPase   总被引:12,自引:0,他引:12  
The K0.5 for intracellular sodium of the two forms of (Na+,K+)-ATPase which exist in rat adipocytes (Lytton, J., Lin, J. C., and Guidotti, G. (1985) J. Biol. Chem. 260, 1177-1184) has been determined by incubating the cells in the absence of potassium in buffers of varying sodium concentration; these conditions shut off the Na+ pump and allow sodium to equilibrate into the cell. The activity of Na+,K+)-ATPase was then monitored with 86Rb+/K+ pumping which was initiated by adding isotope and KCl to 5 mM, followed by a 3-min uptake period. Atomic absorption and 22Na+ tracer equilibration were used to determine the actual intracellular [Na+] under the different conditions. The K0.5 values thus obtained were 17 mM for alpha and 52 mM for alpha(+). Insulin treatment of rat adipocytes had no effect on the intracellular [Na+] nor on the Vmax of 86Rb+/K+ pumping, but did produce a shift in the sodium ion K0.5 values to 14 mM for alpha (p less than 0.025 versus control) and 33 mM for alpha(+) (p less than 0.005 versus control). This change in affinity can explain the selective stimulation of alpha(+) by insulin under normal incubation conditions. Measurement of the K0.5 for sodium ion of (Na+,K+)-ATPase in membranes isolated from adipocytes revealed only a single component of activation with a low K0.5 of 3.5 or 12 mM in the presence of 10 or 100 mM KCl, respectively. Insulin treatment of the isolated membranes or of the cells prior to membrane separation had no effect on these values.  相似文献   

10.
Effects of a switched, time-varying 1.7 T magnetic field on Rb(+)(K+) uptake by HeLa S3 cells incubated in an isosmotic high K(+) medium were examined. The magnetic flux density was varied intermittently from 0.07-1.7 T at an interval of 3 s. K(+) uptake was activated by replacement of normal medium by high K(+) medium. A membrane-permeable Ca(2+) chelating agent (BAPTA-AM) and Ca(2+)-dependent K(+) channel inhibitors (quinine, charibdotoxin, and iberiotoxin) were found to reduce the Rb(+)(K+) uptake by about 30-40%. Uptake of K(+) that is sensitive to these drugs is possibly mediated by Ca(2+)-dependent K(+) channels. The intermittent magnetic field partly suppress ed the drug-sensitive K(+) uptake by about 30-40% (P < 0.05). To test the mechanism of inhibition by the magnetic fields, intracellular Ca(2+) concentration ([Ca(2+)]c) was measured using Fura 2-AM. When cells were placed in the high K(+) medium, [Ca(2+)]c increased to about 1.4 times the original level, but exposure to the magnetic fields completely suppressed the increase (P < 0.01). Addition of a Ca(2+) ionophore (ionomycin) to the high K(+) medium increased [Ca(2+)]c to the level of control cells, regardless of exposure to the magnetic field. But the inhibition of K(+) uptake by the magnetic fields was not restored by addition of ionomycin. Based on our previous results on magnetic field-induced changes in properties of the cell membrane, these results indicate that exposure to the magnetic fields partly suppresses K(+) influx, which may be mediated by Ca(2+)-dependent K(+) channels. The suppress ion of K(+) fluxes could relate to a change in electric properties of cell surface and an inhibition of Ca(2+) influx mediated by Ca(2+) channels of either the cell plasma membrane or the inner vesicular membrane of intracellular Ca(2+) stores.  相似文献   

11.
The mode of influx of 86Rb+, a K+ congener, to exponentially proliferating L1210 murine leukemia cells, incubated in a Krebs-Ringer buffer, has been characterised. The influx was composed of a ouabain-sensitive fraction (approx. 40%), a loop diuretic-sensitive fraction (approx. 40%) and a fraction which was insensitive to both types of inhibitor (approx. 15%). The fraction of ouabain-insensitive 86Rb+ influx, which was fully inhibited by furosemide (1 mM) or bumetanide (100 microM), was completely inhibited when Cl- was completely substituted by nitrate or gluconate ions, but was slightly (29 +/- 12%) stimulated if the Cl- was substituted by Br-. The substitution of Na+ by Li+, choline or tetramethylammonium ions inhibited the loop diuretic-sensitive fraction of 86Rb+ uptake. These results suggested that a component of 86Rb+ influx to L1210 cells was mediated via a Na+/K+/Cl- cotransporter. 86Rb+ efflux from L1210 cells which had been equilibrated with 86Rb+ and incubated in the presence or absence of 1 mM ouabain, was insensitive to the loop diuretics. Additionally, efflux rates were found to be independent of the external concentration of K+, suggesting that efflux was not mediated by K+-K+ exchange. The initial rate of 86Rb+ influx to L1210 cells in the plateau phase of growth was reduced to 44% of that of exponentially dividing cells, the reduction being accounted for by significant decreases in both ouabain- and loop diuretic-sensitive influx; these cells were reduced in volume compared to cells in the exponential phase of cell growth. In cells which had been deprived of serum for 18 h, and which showed an increase of the proportion of cells in the G1 phase of the cell cycle, the addition of serum stimulated an immediate increase in the furosemide-sensitive component of 86Rb+ influx. Diuretic-sensitive 86Rb+ influx was not altered by the incubation of the cells with 100 microM dibutyryl cyclic AMP, but was inhibited by 10 microM of the cross-linking agent nitrogen mustard (bis(2-chloro-ethyl)methylamine, HN2).  相似文献   

12.
The correspondence between K+ uptake in platelets to their responsiveness was studied using 86Rb+ as an analogue of K+. An average 86Rb+ uptake rate of 0.73 (+/- 0.140) x 10(-15) mole Rb+/min-plt (n = 20) was observed. By the use of K(+)-influx inhibitors, we were able to distinguish three distinct 86Rb+ uptake pathways: an ouabain-sensitive (61% +/- 2% inhibitable) pump and two equivalent channels, only one of which is sensitive to furosemide. Other platelet parameters were also examined in conjunction with K(+)-uptake. Platelets incubated with ouabain exhibited an overall rise in their cell volume (MPV) with incubation time (delta MPV = 7.4 x 10(-17) L/min-1 plt-1). Concomitantly, over 24 hours, a steady decrease in platelet number was recorded by blood cell coulter, which correlated inversely with the counts of particles, which by their size resemble white blood cells (r = 0.89). On a cellular level, incubation with ouabain induced greater expression of surface fibrinogen-receptor (GPIIb), increased binding of FITC-labelled fibrinogen, and increased responsiveness to ADP. Our observations suggest the following sequence of events: Ouabain turns off the Na+/K(+)-ATPase pump, which leads to water accumulation in platelets and concomitant increased MPV. Greater expression of fibrinogen receptors on the distended platelet surface corresponds to spontaneous microaggregate formation as well as greater responsiveness to agonists. Our model links volume regulation, the expression of fibrinogen receptors, and the sensitivity of platelets to agonists to the activity of the Na+/K(+)-ATPase pump.  相似文献   

13.
The effects of nerve growth factor (NGF) on induction of Na+,K+-ATPase were examined in a rat pheochromocytoma cell line, PC12h. Na+,K+-ATPase activity in a crude particulate fraction from the cells increased from 0.37 +/- 0.02 (n = 19) to 0.55 +/- 0.02 (n = 20) (means +/- SEM, mumol Pi/min/mg of protein) when cultured with NGF for 5-11 days. The increase caused by NGF was prevented by addition of specific anti-NGF antibodies. Epidermal growth factor and insulin had only a small effect on induction of Na+,K+-ATPase. A concentration of basic fibroblast growth factor three times higher than that of NGF showed a similar potency to NGF. The molecular form of the enzyme was judged as only the alpha form in both the untreated and the NGF-treated cells by a simple pattern of low-affinity interaction with cardiotonic steroids: inhibition of enzyme activity by strophanthidin (Ki approximately 1 mM) and inhibition of Rb+ uptake by ouabain (Ki approximately 100 microM). As a consequence, during differentiation of PC12h cells to neuron-like cells, NGF increases the alpha form of Na+,K+-ATPase, but does not induce the alpha(+) form of the enzyme, which has a high sensitivity for cardiotonic steroid and is a characteristic form in neurons.  相似文献   

14.
1. Cultured cerebellar granule neurons maintained in medium containing 26 mM potassium (high K+ or HK+) undergo cell death when switched to medium with 5 mM potassium (low K+ or LK+). This low K(+)-induced cell death has typical features of apoptosis. The intracellular signaling pathway of low K(+)-induced apoptosis has been investigated. 2. Cerebellar granule neurons become committed to undergo apoptosis between 2 and 5 h after K+ deprivation, judging from the inability of high K+ to rescue them after this time. Although the levels of most mRNAs decrease markedly concomitant with commitment, expression of c-jun mRNA increases 2-3 h after K+ deprivation. Among the family of caspases, a caspase-3-like protease is activated within 4 h of lowering the K+ concentration. A caspase-1-like protease is also activated within 2 h of K+ deprivation. 3. Inhibition of phosphatidylinositol 3-kinase (PI3-K) activity by LY294002 or wortmannin also induces apoptosis in cerebellar granule neurons. The intracellular signaling pathway of LY294002-induced apoptosis has been investigated. The activity of c-Jun N-terminal kinase (JNK) increases 8 h after addition of LY294002 to high K+ medium or low K+ medium containing BDNF. Expression of c-Jun protein also increases almost simultaneously. 4. The low K(+)-induced apoptosis of cerebellar granule neurons is prevented by high K+ (membrane depolarization by high K+), BDNF, IGF-1, bFGF or cAMP. The intracellular signaling pathways by which these agents prevent low K(+)-induced apoptosis have been investigated. Agents other than cAMP prevent apoptosis through PI3-K and a Ser/Thr kinase, Akt/PKB. The survival-promoting effect of cAMP does not depend on the PI3-K-Akt pathway.  相似文献   

15.
Activation of ribosomal protein S6 kinase by epidermal growth factor (EGF), insulin, and insulin-like growth factor 1 (IGF1) was studied in the human mammary tumor cell line ZR-75-1 in isotonic buffers. In contrast to growth factor-dependent S6 phosphorylation which is strongly dependent on extracellular pH (Chambard, J. C., and J. Pouyssegur. 1986. Exp. Cell Res. 164:282-294.) preincubation of cells in buffers with different pH values ranging from 7.5 to 6.5 had no effect on basal or EGF-stimulated S6 kinase activity. Replacement of extracellular Na+ with choline or replacement of extracellular Ca++ with EGTA also did not inhibit stimulation of S6 kinase by EGF. When intracellular Ca++ was buffered with the permeable Ca++ chelator quin2, EGF stimulation was reduced 50%. A similar inhibition of the EGF response was observed when cells were incubated in buffers with high K+ concentrations or in the presence of the K+ ionophore valinomycin. Insulin and IGF1 stimulation of S6 kinase were also inhibited by high K+ concentrations and by buffering intracellular Ca++. In contrast to the responses to EGF, insulin- and IGF1-activation of S6 kinase was enhanced when glucose was present and depended on the presence of bicarbonate in the medium. The results indicate that ionic signals generated by growth factors and insulin, such as increases in intracellular pH or Na+, do not seem to be involved in the activation of S6 kinase. However, effects of growth factors or insulin on membrane potential and/or K+ fluxes and redistribution of intracellular Ca++ may play a role in the activation process. Furthermore, the mechanism of insulin activation of S6 kinase is distinct from the growth factors by its dependency on extracellular bicarbonate.  相似文献   

16.
Stable cell lines expressing the gastric proton pump alpha- and/or beta-subunits were constructed. The cell line co-expressing the alpha- and beta-subunits showed inward Rb(+) transport, which was activated by Rb(+) in a concentration-dependent manner. In the alpha+beta-expressing cell line, rapid recovery of intracellular pH was also observed after acid load, indicating that this cell line transported protons outward. These ion transport activities were inhibited by a proton pump inhibitor, 2-methyl-8-(phenylmethoxy)imidazo[1,2-a]pyridine-3-acetonitrile (SCH 28080). In a membrane fraction of the alpha+beta-expressing cell line, K(+)-stimulated ATPase (K(+)-ATPase) activity and the acylphosphorylation of the alpha-subunit were observed, both of which were also inhibited by SCH 28080. The specific activity and properties of the K(+)-ATPase were comparable to those found in the native gastric proton pump. In the stable cell lines, the alpha-subunit was retained in the intracellular compartment and was unstable in the absence of the beta-subunit, but it was stabilized and reached the cell surface in the presence of the beta-subunit. On the other hand, the beta-subunit was stable and able to travel to the cell surface in the absence of the alpha-subunit. These cell lines are ideal for the structure-function study of ion transport by the gastric proton pump as well as for characterization of the cellular regulation of surface expression of the functional proton pump.  相似文献   

17.
1. The cytoplasmic membrane ionic current of cells of Rhodobacter capsulatus, washed to lower the endogenous K+ concentration, had a non-linear dependence on the membrane potential measured during photosynthetic illumination. Treatment of the cells with venturicidin, an inhibitor of the H(+)-ATP synthase, increased the membrane potential and decreased the membrane ionic current at values of membrane potential below a threshold. 2. The addition of K+ or Rb+, but not of Na+, led to an increase in the membrane ionic current and a decrease in the membrane potential in either the presence or absence of venturicidin. Approximately 0.4 mM K+ or 2.0 mM Rb+ led to a half-maximal response. At saturating concentrations of K+ and Rb+, the membrane ionic currents were similar. The membrane ionic currents due to K+ and Rb+ were not additive. The K(+)-dependent and Rb(+)-dependent ionic currents had a non-linear relationship with membrane potential: the alkali cations only increased the ionic current when the membrane potential lay above a threshold value. The presence of 1 mM Cs+ did not lead to an increase in the membrane ionic current but it had the effect of inhibiting the membrane ionic current due to either K+ or Rb+. 3. Photosynthetic illumination in the presence of either K+ or Rb+, and weak acids such as acetate, led to a decrease in light-scattering by the cells. This was attributed to the uptake of potassium or rubidium acetate and a corresponding increase in osmotic strength in the cytoplasm. 4. The addition of NH4+ also led to an increase in membrane ionic current and to a decrease in membrane potential (half-maximal at 2.0 mM NH4+). The relationship between the NH4(+)-dependent ionic currents and the membrane potential was similar to that for K+. The NH4(+)-dependent and K(+)-dependent ionic current were not additive. However, illumination in the presence of NH4+ and acetate did not lead to significant light-scattering changes. The NH4(+)-dependent membrane ionic current was inhibited by 1 mM Cs+ but not by 50 microM methylamine. 5. It is proposed that the K(+)-dependent membrane ionic current is catalysed by a low-affinity K(+)-transport system such as that described in Rb. capsulatus [Jasper, P. (1978) J. Bacteriol. 133, 1314-1322]. The possibility is considered that, as well as Rb+, this transport system can also operate with NH4+. However, in our experimental conditions NH4+ uptake is followed by NH3 efflux.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

18.
This study describes the correlation between cell swelling-induced K+ efflux and volume regulation efficiency evaluated with agents known to modulate ion channel activity and/or intracellular signaling processes in a human bronchial epithelial cell line, 16HBE14o(-1). Cells on permeable filter supports, differentiated into polarized monolayers, were monitored continuously at room temperature for changes in cell height (T(c)), as an index of cell volume, whereas (86)Rb efflux was assessed for K+ channel activity. The sudden reduction in osmolality of both the apical and basolateral perfusates (from 290 to 170 mosmol/kg H(2)O) evoked a rapid increase in cell volume by 35%. Subsequently, the regulatory volume decrease (RVD) restored cell volume almost completely (to 94% of the isosmotic value). The basolateral (86)Rb efflux markedly increased during the hyposmotic shock, from 0.50 +/- 0.03 min(-1) to a peak value of 6.32 +/- 0.07 min(-1), while apical (86)Rb efflux was negligible. Channel blockers, such as GdCl(3) (0.5 mM), quinine (0.5 mM) and 5-nitro-2-(3-phenyl-propylamino) benzoic acid (NPPB, 100 microM), abolished the RVD. The protein tyrosine kinase inhibitors tyrphostin 23 (100 microM) and genistein (150 microM) attenuated the RVD. All agents decreased variably the hyposmosis-induced elevation in (86)Rb efflux, whereas NPPB induced a complete block, suggesting a link between basolateral K(+) and Cl(-1) efflux. Forskolin-mediated activation of adenylyl cyclase stimulated the RVD with a concomitant increase in basolateral (86)Rb efflux. These data suggest that the basolateral extrusion of K+ and Cl(-1) from 16HBE14o(-1) cells in response to cell swelling determines RVD efficiency.  相似文献   

19.
Since the mechanism underlying the insulin stimulation of (Na+,K+)-ATPase transport activity observed in multiple tissues has remained undetermined, we have examined (Na+,K+)-ATPase transport activity (ouabain-sensitive 86Rb+ uptake) and Na+/H+ exchange transport (amiloride-sensitive 22Na+ influx) in differentiated BC3H-1 cultured myocytes as a model of insulin action in muscle. The active uptake of 86Rb+ was sensitive to physiological insulin concentrations (1 nM), yielding a maximum increase of 60% without any change in 86Rb+ permeability. In order to determine the mechanism of insulin stimulation of (Na+,K+)-ATPase activity, we demonstrated that insulin also stimulates passive 22Na+ influx by Na+/H+ exchange transport (maximal 200% increase) and an 80% increase in intracellular Na+ concentration with an identical time course and dose-response curve as insulin-stimulated (Na+,K+)-ATPase transport activity. Incubation of the cells with high [Na+] (195 mM) significantly potentiated insulin stimulation of ouabain-inhibitable 86Rb+ uptake. The ionophore monensin, which also promotes passive Na+ entry into BC3H-1 cells, mimics the insulin stimulation of ouabain-inhibitable 86Rb+ uptake. In contrast, incubation with amiloride or low [Na+] (10 mM), both of which inhibit Na+/H+ exchange transport, abolished the insulin stimulation of (Na+,K+)-ATPase transport activity. Furthermore, each of these insulin-stimulated transport activities displayed a similar sensitivity to amiloride. These results indicate that insulin stimulates a large increase in Na+/H+ exchange transport and that the resulting Na+ influx increases the intracellular Na+ concentration, thus activating the internal Na+ transport sites of the (Na+,K+)-ATPase. This Na+ influx is, therefore, the mediator of the insulin-induced stimulation of membrane (Na+,K+)-ATPase transport activity classically observed in muscle.  相似文献   

20.
We examined effects of two insulin-like growth factors, insulin and insulin-like growth factor-I (IGF-I), against apoptosis, excitotoxicity, and free radical neurotoxicity in cortical cell cultures. Like IGF-I, insulin attenuated serum deprivation-induced neuronal apoptosis in a dose-dependent manner at 10-100 ng/mL. The anti-apoptosis effect of insulin against serum deprivation disappeared by addition of a broad protein kinase inhibitor, staurosporine, but not by calphostin C, a selective protein kinase C inhibitor. Addition of PD98059, a mitogen-activated protein kinase kinase (MAPKK) inhibitor, blocked insulin-induced activation of extracellular signal-regulated protein kinases (ERK1/2) without altering the neuroprotective effect of insulin. Cortical neurons underwent activation of phosphatidylinositol (PI) 3-kinase as early as 1 min after exposure to insulin. Inclusion of wortmannin or LY294002, selective inhibitors of PI 3-K, reversed the insulin effect against apoptosis. In contrast to the anti-apoptosis effect, neither insulin nor IGF-I protected excitotoxic neuronal necrosis following continuous exposure to 15 microM N-methyl-D-aspartate or 40 microM kainate for 24 h. Surprisingly, concurrent inclusion of 50 ng/mL insulin or IGF-I aggravated free radical-induced neuronal necrosis over 24 h following continuous exposure to 10 microM Fe2+ or 100 microM buthionine sulfoximine. Wortmannin or LY294002 also reversed this potentiation effect of insulin. These results suggest that insulin-like growth factors act as anti-apoptosis factor and pro-oxidant depending upon the activation of PI 3-kinase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号