首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A DNA replication system was developed that could generate rolling-circle DNA molecules in vitro in amounts that permitted kinetic analyses of the movement of the replication forks. Two artificial primer-template DNA substrates were used to study DNA synthesis catalyzed by the DNA polymerase III holoenzyme in the presence of either the preprimosomal proteins (the primosomal proteins minus the DNA G primase) and the Escherichia coli single-stranded DNA binding protein or the DNA B helicase alone. Helicase activities have recently been demonstrated to be associated with the primosome, a mobile multiprotein priming apparatus that requires seven E. coli proteins (replication factor Y (protein n'), proteins n and n', and the products of the dnaB, dnaC, dnaG, and dnaT genes) for assembly, and with the DNA B protein. Consistent with a rolling-circle mechanism in which a helicase activity permitted extensive (-) strand DNA synthesis on a (+) single-stranded, circular DNA template, the major DNA products formed were multigenome-length, single-stranded, linear molecules. The replication forks assembled with either the preprimosome or the DNA B helicase moved at the same rate (approximately 730 nucleotides/s) at 30 degrees C and possessed apparent processivities in the range of 50,000-150,000 nucleotides. The single-stranded DNA binding protein was not required to maintain this high rate of movement in the case of leading strand DNA synthesis catalyzed by the DNA polymerase III holoenzyme and the DNA B helicase.  相似文献   

2.
3.
The aroC genes from Salmonella typhi and Escherichia coli, encoding 5-enolpyruvylshikimate-3-phosphate phospholyase (chorismate synthase) were cloned in E. coli and their DNA sequences were determined. The aroC gene from S. typhi was isolated from a cosmid gene bank by complementation of an E. coli aroC mutant. The corresponding E. coli gene was isolated from a pBR322 gene bank by colony hybridization using DNA encoding the aroC gene from S. typhi as a hybridization probe. Analysis of the nucleotide sequence revealed that both genes have an open reading frame capable of encoding proteins comprising 361 amino acids. The calculated molecular mass of the protein from S. typhi is 39,108 Da while that of the protein from E. coli is 39,138 Da. Homology is particularly strong between the coding regions of the genes: 95% when protein sequences are compared, and 83% when DNA sequences are examined. Use of a deletion variant of the E. coli aroC gene demonstrates that the C-terminal 36 amino acids are not essential for the correct folding or functional activity of the chorismate synthase enzyme.  相似文献   

4.
The unannotated regions of the Escherichia coli genome DNA sequence from the EcoSeq6 database, totaling 1,278 'intergenic' sequences of the combined length of 359,279 basepairs, were analyzed using computer-assisted methods with the aim of identifying putative unknown genes. The proposed strategy for finding new genes includes two key elements: i) prediction of expressed open reading frames (ORFs) using the GeneMark method based on Markov chain models for coding and non-coding regions of Escherichia coli DNA, and ii) search for protein sequence similarities using programs based on the BLAST algorithm and programs for motif identification. A total of 354 putative expressed ORFs were predicted by GeneMark. Using the BLASTX and TBLASTN programs, it was shown that 208 ORFs located in the unannotated regions of the E. coli chromosome are significantly similar to other protein sequences. Identification of 182 ORFs as probable genes was supported by GeneMark and BLAST, comprising 51.4% of the GeneMark 'hits' and 87.5% of the BLAST 'hits'. 73 putative new genes, comprising 20.6% of the GeneMark predictions, belong to ancient conserved protein families that include both eubacterial and eukaryotic members. This value is close to the overall proportion of highly conserved sequences among eubacterial proteins, indicating that the majority of the putative expressed ORFs that are predicted by GeneMark, but have no significant BLAST hits, nevertheless are likely to be real genes. The majority of the putative genes identified by BLAST search have been described since the release of the EcoSeq6 database, but about 70 genes have not been detected so far. Among these new identifications are genes encoding proteins with a variety of predicted functions including dehydrogenases, kinases, several other metabolic enzymes, ATPases, rRNA methyltransferases, membrane proteins, and different types of regulatory proteins.  相似文献   

5.
A gene coding for bovine pancreatic DNase I has been constructed from synthetic oligonucleotides. This gene has been cloned into a plasmid vector pDOC55 designed to allow very tight control of expression of potentially lethal proteins. Induction of protein synthesis from the gene yielded a peptide of molecular weight of approximately 31,000, consistent with DNase I. The yield of this protein from the pDOC55 construct (pAW5) was approximately 150 micrograms/liter of cell culture. Attempts to clone the gene into a less tightly controlled expression vector based on the tac-promoter (pKK223-3) were unsuccessful, presumably due to the expected lethality of the product. Mutagenesis of the gene to replace the active site histidine (His-134) in the protein with glutamine yielded a gene readily clonable into both expression systems. Yields of the mutagenized protein were approximately 6 micrograms/liter from a pDOC55 system and 20 mg/liter from a pKK223-3 system. The activity of the proteins were assayed using the Kunitz procedure and their cleavage selectivities by digestion of the Escherichia coli tyr T promoter. The recombinant native enzyme had both the same specific activity and DNA cleavage selectivity as the protein isolated from bovine pancreas using these two assays. The H134Q mutant had a specific activity of about 0.001% of the native protein but had an unaltered DNA cleavage selectivity.  相似文献   

6.
The proteins encoded by bacteriophage T4 genes 41, 45, 44, and 62 are known from the genetic studies of Epstein et al. ((1963) Cold Spring Harbor Symp. Quant. Biol. 28, 375--394) to be required for viral DNA synthesis. A convenient assay for each of these proteins is described which is based on the specific stimulation by each protein of DNA synthesis in extracts of Escherichia coli infected with mutants of bacteriophage T4 unable to make that protein. The T4 41 protein, 45 protein, and the complex of the 44 and 62 proteins have been highly purified. For each protein there is co-chromatography during the final purification step of (i) activity in the complementation assay, (ii) activity required for DNA synthesis with other purified T4 proteins, and (iii) a subunit of the size previously identified as that of the corresponding gene product.  相似文献   

7.
Overlapping DNA fragments containing the DNA packaging and capsid synthesis gene region of bacteriophage P2 were cloned and sequenced. In this report we present the complete nucleotide sequence of this 6550 bp region. Each of six open reading frames found in the interval was assigned to one of the essential genes (Q, P, O, N, M and L) by correlating genetic, physical and mutational data with DNA and protein sequence information. Polypeptides predicted were: a capsid completion protein, gpL; the major capsid precursor, gpN; the presumed capsid scaffolding protein; gpO; the ATPase and proposed endonuclease subunits of terminase, gpP and gpM, respectively; and a candidate for the portal protein, gpQ. These gene and protein sequences exhibited no homology to analogous genes or proteins of other bacteriophages. Expression of gene Q in E. coli from a plasmid caused production of a Mr 39,000 Da protein that restored Qam34 growth. This sequence analysis found only genes previously known from analysis of conditional-lethal mutations. No new capsid genes were found.  相似文献   

8.
The structural gene of pyruvate formate-lyase (pfl) and that of pyruvate-formate-lyase-activating enzyme were shown to be adjacent on the chromosomal map of Escherichia coli. DNA sequencing was performed along a stretch of 3592 nucleotides to obtain the amino acid sequences of both proteins. The derived primary structures (759 and 245 residues) were confirmed by partial structure analyses on the purified proteins. The open reading frames are separated by a 194-nucleotide stretch, and their flanking regions include signal elements that are compatible with separate control of protein synthesis from the two genes.  相似文献   

9.
In our experiments to produce different combinations of recombinant proteins in a cell-free protein synthesis system derived from Escherichia coli, we found that certain pairs of ORFs were not expressed equally. Instead, only a single DNA species was expressed dominantly, while the expression of the others was almost completely repressed. This bias during the co-expression of the DNA pairs was eliminated when an identical downstream box sequence was added to the 5'-ends of the template DNA pairs. By introducing identical nucleotide sequences of the his-tag or the downstream box of chloramphenicol acetyltransferase (CAT-DB) in front of the target genes that were otherwise not expressed compatibly, both of the encoded proteins were produced at similar productivities. Moreover, in the presence of a common downstream box, multiple genes were simultaneously expressed in the same reaction mixture. We expect that the proposed approach will offer a powerful tool for the preparation of unbiased protein libraries, as well as for studying the structure and functions of interacting proteins.  相似文献   

10.
11.
B Setlow  A R Hand    P Setlow 《Journal of bacteriology》1991,173(5):1642-1653
Small, acid-soluble proteins (SASP) of the alpha/beta-type are associated with DNA in spores of Bacillus subtilis. Induction of synthesis of alpha/beta-type SASP in Escherichia coli resulted in rapid cessation of DNA synthesis, followed by a halt in RNA and then protein accumulation, although significant mRNA and protein synthesis continued. There was a significant loss in viability associated with SASP synthesis in E. coli: recA+ cells became extremely long filaments, whereas recA mutant cells became less filamentous. The nucleoids of cells with alpha/beta-type SASP were extremely condensed, as viewed in both light and electron microscopes, and immunoelectron microscopy showed that the alpha/beta-type SASP were associated with the cell DNA. Induction of alpha/beta-type SASP synthesis in E. coli increased the negative superhelical density of plasmid DNA by approximately 20%; UV irradiation of E. coli with alpha/beta-type SASP gave reduced yields of thymine dimers but significant amounts of the spore photoproduct. These changes in E. coli DNA topology and photochemistry due to alpha/beta-type SASP are similar to the effects of alpha/beta-type SASP on the DNA in Bacillus spores, further suggesting that alpha/beta-type SASP are a major factor determining DNA properties in bacterial spores.  相似文献   

12.
Rhodococcus sp. strain IGTS8 possesses an enzymatic pathway that can remove covalently bound sulfur from dibenzothiophene (DBT) without breaking carbon-carbon bonds. The DNA sequence of a 4.0-kb BstBI-BsiWI fragment that carries the genes for this pathway was determined. Frameshift and deletion mutations established that three open reading frames were required for DBT desulfurization, and the genes were designated soxABC (for sulfur oxidation). Each sox gene was subcloned independently and expressed in Escherichia coli MZ1 under control of the inducible lambda pL promoter with a lambda cII ribosomal binding site. SoxC is an approximately 45-kDa protein that oxidizes DBT to DBT-5,5'-dioxide. SoxA is an approximately 50-kDa protein responsible for metabolizing DBT-5,5'-dioxide to an unidentified intermediate. SoxB is an approximately 40-kDa protein that, together with the SoxA protein, completes the desulfurization of DBT-5,5'-dioxide to 2-hydroxybiphenyl. Protein sequence comparisons revealed that the predicted SoxC protein is similar to members of the acyl coenzyme A dehydrogenase family but that the SoxA and SoxB proteins have no significant identities to other known proteins. The sox genes are plasmidborne and appear to be expressed as an operon in Rhodococcus sp. strain IGTS8 and in E. coli.  相似文献   

13.
A positive clone was selected from a library of total cell DNA of Paenibacillus lentimorbus strain Semadara that reacted with an antiserum that was raised against parasporal crystal proteins produced by this strain. The positive clone had a DNA insert containing two whole cry genes (cry43Aa1, cry43Ba1), one partial cry gene (cry43-like), and three smaller genes located upstream. Eight blocks that are conserved in the Cry proteins of Bacillus thuringiensis [Microbiol. Mol. Biol. Rev. 62 (1998) 775] were detected in their deduced amino acid sequences. The Escherichia coli transformant expressing cry43Aa1 caused inhibition of ingestion and 90% mortality in the first stadium larvae of Anomala cuprea. A low concentration of sporangia mixed with the transformant expressing cry43Aa1 easily infected the larvae of A. cuprea. The protein of approximately 150 kDa produced by the transformants expressing the cry genes reacted with antiserum specific for the parasporal crystal proteins. Southern hybridization analysis demonstrated that the cry genes were located on the chromosomal DNA of this strain, which possessed at least four cry genes.  相似文献   

14.
The gene encoding for the CMP-NeuNAc synthetase enzyme of Neisseria meningitidis group B was cloned by complementation of a mutant of Escherichia coli defective for this enzyme. The gene (neuA) was isolated on a 4.1-kb fragment of meningococcal chromosomal DNA. Determination of the nucleotide sequence of this fragment revealed the presence of three genes, termed neuA, neuB, and neuC, organized in a single operon. The presence of a truncated ctrA gene at one end of the cloned DNA and a truncated gene encoding for the meningococcal sialyltransferase at the other confirmed that the cloned DNA corresponded to region A and part of region C of the meningococcal capsule gene cluster. The predicted amino acid sequence of the meningococcal NeuA protein was 57% homologous to that of NeuA, the CMP-NeuNAc synthetase encoded by E. coli K1. The predicted molecular mass of meningococcal NeuA protein was 24.8 kDa, which was 6 kDa larger than that formerly predicted (U. Edwards and M. Frosch, FEMS Microbiol. Lett. 96:161-166, 1992). Purification of the recombinant meningococcal NeuA protein together with determination of the N-terminal amino acid sequence confirmed that this 24.8-kDa protein was indeed the meningococcal CMP-NeuNAc synthetase. The predicted amino acid sequences of the two other encoded proteins were homologous to those of the NeuC and NeuB proteins of E. coli K1, two proteins involved in the synthesis of NeuNAc. These results indicate that common steps exist in the biosynthesis of NeuNAc in these two microorganisms.  相似文献   

15.
The replication terminus region (31 to 35 min) of the Escherichia coli chromosome contains very few mapped genes (two per min) compared with the remainder of the chromosome, and much of the DNA appears dispensable. In order to determine whether, despite this, the terminus region consists of protein-coding sequences, we cloned 44 kb (1 min) of terminus region DNA (that surrounding trg at 31.4 min) and examined its ability to catalyze protein synthesis in vitro or in minicells. We were able to account for more than half the coding capacity of the cloned DNA with proteins synthesized in these systems, indicating that the sparsity of mapped genes in the terminus region does not result from a lack of identifiable coding sequences. We can therefore conclude that the terminus region is composed mainly of expressable, albeit inessential, protein-encoding genes.  相似文献   

16.
The multi-functional PriA protein of Escherichia coli (formerly replication factor Y or protein n') serves to guide the ordered assembly of the primosome, a mobile multiprotein replication priming/helicase complex. Primosome assembly is essential for bacteriophage OX174 complementary DNA strand synthesis and ColE1-type plasmid replication reconstituted in vitro with purified proteins. The biochemical activities of the primosome suggest that it can fulfill the primase/helicase requirement on the lagging-strand DNA template during cellular DNA replication. However, reconstruction in vitro of DNA replication of small plasmids containing the E. coli origin of DNA replication (oriC) does not require the complete complement of primosomal proteins. Thus, the extent to which PriA-catalysed primosome assembly participates in chromosomal replication has remained unclear. The recent isolation of the genes encoding PriA, PriB (protein n), PriC (protein n"), and DnaT (protein i) has provided the necessary tools for addressing this issue. The phenotype of mutations in these genes, and other results described in this review, suggest that assembly of the primosome catalysed by PriA does in fact contribute at some stage to normal cellular DNA replication. A model for primososme-catalysed reactivation of a dysfunctional replication fork is discussed.  相似文献   

17.
Evidence for structural conservation of Lon and RcsA.   总被引:2,自引:1,他引:1       下载免费PDF全文
DNA probes specific to the Escherichia coli genes encoding Lon protease and RcsA hybridized to specific DNA sequences in a number of different microorganisms. Antiserum to either E. coli protein Lon or RcsA reacted with specific proteins in these organisms. These results provide structural evidence of the presence of Lon and RcsA in organisms other than E. coli.  相似文献   

18.
The primosome is a mobile multiprotein priming apparatus that requires seven Escherichia coli proteins for assembly (the products of the dnaB, dnaC and dnaG genes; replication factor Y (protein n'); and proteins i, n, and n"). While the primosome is analagous to the phage T7 gene 4 protein and phage T4 gene 41/61 proteins in its DNA G-catalyzed priming function, its ability to act similarly also as a DNA helicase has remained equivocal. The role of the primosome in unwinding duplex DNA strands was investigated in the coliphage phi X174 SS(c)----replicative form DNA replication reaction in vitro, which requires the E. coli single-stranded DNA binding protein, the primosomal proteins, and the DNA polymerase III holoenzyme. Multigenome-length, linear, double-stranded DNA molecules were generated in this reaction, presumably via a rolling circle-type mechanism. Synthesis of these products required the presence of a helicase-catalyzed strand-displacement activity to permit multiple cycles of continuous complementary (-) strand synthesis. The participation of the primosome in this helicase activity was supported by demonstrating that other SS(c) DNA templates (G4 and alpha-3), which lack primosome assembly sites, failed to support significant linear multimer production and that replication of phi X174 with the general priming system (the DNA B and DNA G proteins and DNA polymerase III holoenzyme) resulted in a 13-fold lower rate of linear multimer synthesis.  相似文献   

19.
The 6.5-kilobase mre region at 71 min in the Escherichia coli chromosome map, where genes involved in formation of a rod-shaped cell form a gene cluster, was analyzed by in vivo protein synthesis in a maxicell system and by base sequencing of DNA. An open reading frame that may code for a protein with an Mr of about 37,000 on sodium dodecyl sulfate-polyacrylamide gels was found and was correlated with the mreB gene. N-terminal amino acid sequencing of the hybrid mreB-lacZ protein confirmed the production by mreB of a protein of 347 amino acid residues with a molecular weight of 36,958. The amino acid sequence of this protein deduced from the DNA sequence showed close similarity with that of a protein of the ftsA gene which is involved in cell division of E. coli. Three other contiguous genes that formed three proteins with Mrs of about 40,000, 22,000, and 51,000, respectively, were detected downstream of the mreB gene by in vivo protein synthesis. The mreB protein and some of these three proteins may function together in determination of cell shape.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号