首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
B N Nayak 《Mutation research》1985,143(1-2):45-49
The baseline sister-chromatid exchanges (SCEs) and the percentage of first (M1), second (M2) and third or higher metaphase (M3+) chromosomes were analysed in bone-marrow cells of male and female C57BL/6 mice and Chinese hamsters following serial intraperitoneal injections of 40 micrograms/g body weight (b.w.) of 5-bromo-2'-deoxyuridine (BrdUrd) and 2 micrograms/g b.w. of 5-fluorodeoxyuridine (FdUrd) or 40 micrograms/g b.w. of BrdUrd and 10 micrograms/g b.w. of deoxycytidine (dC). Female animals receiving BrdUrd/FdUrd showed significantly higher (P less than 0.01) baseline SCEs compared to the other groups. No sex difference in the baseline SCEs was found in animals treated with BrdUrd/dC. The distribution patterns of M1, M2 and M3+ metaphases in BrdUrd/FdUrd-treated animals differ significantly from those in BrdUrd/dC-treated animals.  相似文献   

2.
C. Gutiérrez  A. Calvo 《Chromosoma》1981,83(5):685-695
In the present paper we have developed a new rationale and an experimental schedule to approximate the frequency of SCEs which occur independently of BrdU incorporation, namely, the baseline frequency of SCEs. The method used includes the analysis of SCE yields in second and third division chromosomes after BrdU-substitution for 1, 2, and/or 3 successive replication rounds in the presence of this thymidine analogue, leading to a set of ten different experimental results. As a result of formulating various mathematical equations and applying them to the data, an accurate estimation of the frequency of baseline (BrdU-independent) and BrdU-induced SCEs, can be made, thus avoiding the difficulties inherent in the current extrapolation methods. The conclusions are that 1) SCEs seem to be formed after DNA synthesis (by exchanging post-replicative DNA portions), but, obviously, very near to the replication fork and 2) that under our experimental conditions about 0.065 SCEs per picogram of DNA per cell cycle occur as a consequence of chromosome replication, this frequency being increased by BrdU-substitution. The methodology seems to be reliable enough to be used in other species and systems in order to compare baseline SCE frequencies.Abbreviations SCEs sister-chromatid exchanges - BrdU(BrdUrd) 5-bromodeoxyuridine - dTh(dThd) thymidine - 3H-dTh(3H-dThd) tritiated thymidine - FdU(FdUrd) 5-fluorodeoxyuridine - Urd uridine - FPG fluorescent plus Giemsa  相似文献   

3.
Sodium selenite (Na2SeO3) was tested for its sister-chromatid exchange (SCE)-inducing ability in human whole blood cultures and for the effect of its co-exposure with methyl methanesulfonate (MMS) or N-hydroxy-2-acetylaminofluorene (N-OH-AAF) on SCE frequency. Long exposure times (77 h and 96 h) to 3.95 X 10(-6) M Na2SeO3 resulted in cell death as measured by mitotic indices, but mitotic figures were present after exposure to higher concentrations for a shorter time (19 h). High Na2SeO3 concentrations (7.90 X 10(-6) and 1.19 X 10(-5) M) resulted in a three-fold increase in the SCE frequency above background level (6--7 SCEs/cell). Exposure of lymphocytes to 1 X 10(-4) M MMS for the last 19 h of culture yielded an average SCE frequency of 30.17 +/- 0.75 while a similar exposure to 2.7 X 10(-5) M N-OH-AAF resulted in 13.61 +/- 0.43 SCEs/cell. Simultaneous addition of the high Na2SeO3 concentrations and MMS or N-OH-AAF to the cultures resulted in SCE frequencies that were 25--30% and 11--17%, respectively, below the sum of the SCE frequencies produced by the individual compounds.  相似文献   

4.
Frequency of sister chromatid exchanges (SCE) were recorded separately for different chromosomes from bone marrow cells of female mice of the two genetic strains (C3H/S and C57BL/6J). SCEs were evaluated following different doses of 5-bromo-2'-deoxyuridine (BrdU) as nine hourly i.p. injections. The SCE per cell increased with increasing BrdU doses which was slightly higher in C3H/S than in the C57BL/6J. SCEs per cell were variable at every treatment-strain combination, possibly reflecting the heterogeneous nature of the bone marrow cells. In general, there is a positive correlation between SCE per chromosome and the relative chromosome length. Total SCEs on one of the large chromosomes (most likely the X chromosome), however, are significantly higher than expected on the basis of relative length alone. Most of this increase is attributable to one of the homologues of this chromosome, which is not in synchrony with the rest of the chromosomes and may represent the late-replicating X. These results when viewed in the light of replication properties of the heterochromatinized X, suggest a direct involvement of DNA replication in SCE formation and may argue against the replication point as the sole site for the SCEs.  相似文献   

5.
Sister chromatid exchanges induced in cultured mammalian cells by chromate   总被引:1,自引:0,他引:1  
Chromate compounds induced sister chromatoid exchanges (SCEs) and chromosome aberrations in cultured mammalian cells. Similar increases in SCE frequency were observed in human fibroblasts exposed to the compounds K2Cr2O7 and K2CrO4. Marked increases in SCE frequency in cells exposed to chromate for a 48-h period were detected at concentrations between 10(-7) and 10(-6) M. Chromosome aberrations (primarily chromatid breaks) were also produced in human cells exposed to K2CrO4 at concentrations between 8 . 10(-7) and 3 . 10(-6) M. K2CrO4, but not the trivalent compound CrCl3, induced SCEs in Chinese hamster ovary (CHO) cells at low concentrations.  相似文献   

6.
Culture of cells in high exogenous levels (>10–4 M) of bromodeoxyuridine (BrdUrd) or thymidine will increase the baseline sister chromatid exchange (SCE) frequency. The effect is thought to be related to the balance of the DNA precursors thymidine and deoxycytidine. Exogenous addition of deoxycytidine will reverse this effect. Single and twin SCEs were analysed in Colcemid-induced tetraploid Chinese hamster ovary cells exposed to different concentrations of BrdUrd to determine at what stage SCEs are induced by high levels of BrdUrd. In cells exposed to low concentrations of BrdUrd (10–5 M), equal numbers of SCEs were induced in each of the two cell cycles. With increasing concentrations of BrdUrd (10–4 to 2×10–4 M), SCE frequency increased in both cell cycles, but far more SCEs were induced in the second cell cycle. Deoxycytidine (2×10–4 M) reduced the frequency of SCEs primarily by reducing the frequency of SCEs induced in the second cell cycle. Treatment with 3-aminobenzamide (3AB), a potent inhibitor of poly(ADP-ribose) polymerase, produced effects similar to exposure to high levels of BrdUrd including inducing SCEs in the second replication cycle. This suggests a similar mechanism of action. Deoxycytidine had no effect on 3AB-induced SCEs, however, and there was no interaction between 3AB and high exogenous levels of BrdUrd in SCE induction. Thus these two agents probably act through different mechanisms.  相似文献   

7.
Transient but incomplete suppression of DNA synthesis by a single exposure of an asynchronous population of cells to 5-fluoro-2'-deoxyuridine (FdUrd) increases the frequency of appearance of methotrexate (MTX)-resistant colonies. This increase was greater than 10-fold following a 6-h incubation of cells with 3 microM FdUrd prior to selection in MTX, an interval one-half the normal L1210 cell cycle time. During this period of exposure to FdUrd, DNA synthesis decreased to 25% of control rates and cells accumulated at the G1/S interface. The 6-h incubation with FdUrd resulted in greater than a 2.5-fold increase in the dihydrofolate reductase protein level in the treated cell population, which was accounted for, at least in part, by increased de novo synthesis of the enzyme as assessed by [35S]methionine labeling. This increase in dihydrofolate reductase was associated with a decrease in growth inhibition by MTX. A brief reversal (2 h) of FdUrd-induced DNA synthesis inhibition by the addition of thymidine eliminated the amplification of dihydrofolate reductase and the enhanced emergence of MTX-resistant clones. Beyond this, an analysis of clones that survive MTX selection indicates that the dihydrofolate reductase gene copy in cells spontaneously resistant to 50 nM MTX and those which resulted after the additional pretreatment with FdUrd for 6 h are comparable with a 2-4-fold amplification of enzyme in most clones. These studies demonstrate that FdUrd enhancement of dihydrofolate reductase expression can have a profound effect upon the incidence and expression of MTX resistance and that dihydrofolate reductase gene amplification may be another basis for antagonism between these agents.  相似文献   

8.
The influence of low doses of 5-bromodeoxyuridine (BrdU) on the occurrence of sister chromatid exchanges (SCEs) during the first cell cycle, when unsubstituted DNA templates replicate in the presence of the halogenated nucleoside (SCE1) has been assessed in third mitosis (M3) Chinese hamster ovary (CHO) cells showing three-way differential (TWD) staining. In addition, lower concentrations of BrdU, not detectable by Giemsa staining, have been tested by a high resolution immunoperoxidase method (anti-BrdU monoclonal antibody) and SCEs were scored in second mitosis (M2) cells. Our findings was a dose-response curve for SCE1 that allows an estimated mean spontaneous yield of 1.32/cell per cell cycle by extrapolation to zero concentration of BrdU. On the other hand, when the total SCE frequency corresponding to the first and second rounds of replication (SCE1+SCE2) found in M3 chromosomes was compared with the yield of SCEs scored in M2 cells grown in BrdU at doses lower than 1 M no further reduction was achieved. This seems to indicate that SCEs can occur spontaneously in this cell line, though the estimated frequency is higher than that reported in vivo.by S. Wolff  相似文献   

9.
The mechanisms of sister chromatid exchanges (SCEs) are not known. One hypothesis is that SCE is a manifestation of Rad51-dependent homologous recombination repair. In order to test this hypothesis, we have compared the frequencies of SCEs induced by mitomycin C (MMC) and 254nm ultraviolet radiation (UVC) in wt V79B and the Rad51C-deficient CL-V4B cells. SCEs were analysed in the first (M1) and second (M2) post-treatment mitoses. In M1 MMC induced the same frequencies of SCEs in CL-V4B and V79B cells, while the UVC-induced SCE frequencies were lower in CL-V4B than V79B cells. In CL-V4B cells, MMC-induced SCEs were higher in M2 than in M1, suggesting that interstrand cross-links (ICL) are either not removed completely or are transformed into another form of DNA damage that persists until the next cell cycle. We suggest that SCEs may represent a mechanism to bypass MMC-induced ICL without their removal.  相似文献   

10.
In the present paper we have used a rationale based on the development of theoretical equations that define sister-chromatid exchange (SCE) frequencies as a function of two variables, namely the baseline (BrdU-independent) and the BrdU-dependent SCE frequencies. The experimental design includes the estimation of SCE frequencies in second division chromosomes when both cycles occurred in the presence of BrdU and when BrdU incubation took place only during the first cycle in a wide range of BrdU concentrations. The final SCE yields in second division chromosomes could be separated into three different components: (1) The BrdU-independent, ‘spontaneous’ or baseline SCEs, whose low but biologically significant frequency was calculated to be about 0.06 SCEs per pg of DNA; this figure could be similar for most of the cell types; (2) the BrdU-dependent SCEs whose frequency increases with BrdU dose, probably as a result of BrdU substitution for thymidine; (3) the BrdU-dependent SCEs as a consequence of other cellular factors such as disturbance of nucleotide pool sizes. At high BrdU concentrations (300 μM upward) the three components appear to have a significant value in the final SCE yield, whereas at lower BrdU doses the third component seems to be negligible.  相似文献   

11.
C Cerni 《In vitro》1984,20(4):305-313
The frequency of sister chromatid exchange (SCE) was determined in a nontransformed diploid rat cell line, FR3T3 , under several tissue culture variables such as cultivation temperature, growth conditions of cells, and concentrations of 5-bromo-2'-deoxyuridine (BrdU). The conclusions to be drawn from these experiments are: (a) The cell growth and mechanisms(s) of SCE formation in FR3T3 cells are largely temperature independent (or efficiently regulated) in the range between 33 and 40.5 degrees C. (b) The concentration limits for BrdU incorporation are 5 to 100 microM; baseline frequency is about 11 SCE/metaphase (constant up to 20 microM BrdU) and increases only moderately at higher BrdU concentrations. (c) Toxic levels of BrdU (150 microM) cause a decrease of SCE rates below that found at 100 microM, presumably due to selective cell death. (d) Keeping cells growth arrested over a long period causes substantial SCE induction after replating. (e) Induced increase of SCEs probably occurs in this manner during the first cell cycle after release from growth arrest. It is no longer detectable after the fourth consecutive cell division.  相似文献   

12.
The frequency of sister-chromatid exchange (SCE) was studied in Chinese hamster ovary (CHO) cell lines with stable insertions of the vector pIII-14gpt which contains 2 truncated neomycin resistance (neo) gene fragments. Recombination between regions of homology in the 2 fragments can restore a functional neo gene and make the cell resistant to the antibiotic G418, a neomycin analogue. Unequal SCE would be one of several possible mechanisms for this event. The observed spontaneous rate of formation of G418-resistant subclones was approximately 6.4 x 10(-6) per cell per generation, as compared to the estimated spontaneous frequency of 3 SCE per cell per generation. Given this SCE frequency, the probability of an SCE occurring in a target site of about 1600 bp (the distance separating the homologous regions in the neo fragments) would be about 8 x 10(-7) per cell per generation, or approximately one tenth of the estimated rate of recombination. Treatment of the cells with methyl methanesulfonate (MMS, 50 x 10(-6) M) induced about 80-90 SCE per cell, corresponding to a probability of 2 x 10(-5) SCE per 1600-bp target per cell. In the same cell culture, MMS treatment induced 4-8 x 10(-4) recombination events per cell giving rise to G418 resistance. Cells treated with HN2 (up to 4 x 10(-6) M) showed a significant increase in SCEs, but no change in the frequency of G418-resistant revertants. These results suggest that the 2 pathways leading to SCE and recombination respectively are uncoupled, and only a small fraction of the recombination events, if any, are due to unequal SCE in this system.  相似文献   

13.
Chinese hamster D-6 cells were grown for two cell cycles. The effect of 5-bromodeoxyuridine (BrdU) on the frequencies of sister-chromatid exchanges (SCEs) in these cells was investigated by the BrdU-labeling method. A low concentration (5 μM) of BrdU was inoculated in the first cell cycle for SCE counting. When excess concentrations (100–1000 μM) of BrdU were added subsequently in the second cell cycle, a 1–2-fold increase of SCE frequencies was observed. When excess thymidine (dT) (100–1000 μM) was supplied instead of BrdU, the incidence of SCE also increased. When cells were exposed to high concentrations (50–200 μM) of BrdU in the first cell cycle, a 1–4-fold increase in SCE frequencies was observed. This incidence of SCE was largely dependent on the concentration of BrdU and dT used in the second cell cycle. These results suggest that efficient SCE induction by BrdU is related to the BrdU residue incorporated into parental DNA strands.  相似文献   

14.
The effect of cell fusion and deoxynucleosides (deoxyadenosine, dA; deoxyguanosine, dG; deoxycytidine, dC; thymidine, T) on sister-chromatid exchanges (SCEs) in Bloom syndrome (BS) was studied in two types of BrdU (bromodeoxyuridine)-sensitive and BrdU-resistant B-lymphoblastoid cell lines (LCLs) with respect to cellular proliferation in BrdU-labeled culture conditions. Cell fusion between BrdU-sensitive and BrdU-resistant BS B-LCLs did not exhibit complementation, although when any of the BS B-LCLs (retaining high SCE character) labeled with BrdU were fused with non-labeled normal cells, the hybrid cells had a normal level of SCE at the first mitosis after fusion. Deoxycytidine addition showed no effect on SCEs in normal cells but decreased SCEs in BS cells from the baseline level of 70 SCEs/cell to about 60 SCE/cell. Purine deoxyribonucleosides (dG and dA) caused a significant concentration-dependent increase in SCE frequency both in normal and BS cells. Although T caused a 2-fold increase in normal SCEs, it highly decreased BS SCE from 70 SCEs/cell to 35 SCEs/cell. FrdU did not greatly affect BS SCE in the presence of BrdU and T. These observations indicate strongly that BS cells may have a low thymidine pool compared with normal cells, which could account for a more efficient BrdU substitution in the DNA thus potentiating the template effect on SCE.  相似文献   

15.
The induction of sister-chromatid exchanges (SCEs) was studied in phytohemagglutinin (PHA)-stimulated human lymphocytes exposed for 1 h to mitomycin C (MMC, 3 X 10(-6) M), ethyl methanesulphonate (EMS, 2 X 10(-2) M), or 4-nitroquinoline-1-oxide (4NQO, 3 X 10(-5) M) at various cell-cycle stages of 72-h cultures. The doses of the chemical were chosen to give about 20 SCEs per cell when treated at Go. The SCE frequency increased almost linearly with MMC or EMS treatments at later times after PHA stimulation, peaking with those at 36 h (at around the first G1/S boundary in the 2 consecutive cell cycles, which was revealed by concomitant experiments), and then decreased with subsequent treatment times. Cell-cycle kinetics and the cell stages at which the cells were treated were measured by autoradiography and sister-chromatid differential staining. The data show that MMC and EMS produce larger numbers of SCEs when treated at stages closer to the beginning of S, and that the most efficient time of treatment is the G1/S boundary in the first cell cycle of the two consecutive cycles before sampling. Pulse treatment with EMS caused about 3 times larger inductions of SCEs when done at late G1/early S(G1/S boundary) in the first cell cycle compared to that at G0/early G1, whereas identical exposure to MMC at the first G1/S boundary produced only 1.5 times larger numbers of SCEs than that at G0/early G1. EMS and MMC both, however, induced 30-40% larger numbers of SCEs when treated at the G1/S boundary in the first cell cycle than when treated at the second cell cycle before sampling. On the contrary, treatment with 4NQO led to the induction of about the same numbers of SCEs even when treated at different cell-cycle stages before the second G1/S boundary. The SCE frequency in 4NQO-treated cells then decreased with subsequent treatment times.  相似文献   

16.
Cysteine, cysteamine and glutathione all induce sister-chromatid exchanges (SCEs) in Chinese hamster ovary (CHO) cells when applied to cell cultures at concentrations between 10(-4) and 10(-2) M. Acute exposure of cells th thiol compound for a period of 2--3 h resulted in a unique dose--response relationship in each instance. This consisted of two peak SCE frequencies, one at either extreme of the concentration range. Each peak corresponded to a 2--3-fold increase over the spontaneous level. A chronic exposure of 24 h, in contrast, resulted in a dose--response relationship consisting of a single peak SCE frequency (representing a 4--5-fold increase over the spontaneous level) at a concentration of approx. 4 x 10(-4) M. The effect of Cu2+ ions included in the medium at a concentration of 10(-5) M was to increase the toxicity and, at some concentrations, the SCE levels occurring after either acute or chronic exposure to thiols. Hydrazine and its derivatives, dimethylhydrazine and isonicotinic acid hydrazide (isoniazid), as well as hydrogen peroxide, also induce SCEs in CHO cells. A 2--3-fold increase over the spontaneous level was observed, depending upon the particular treatment protocol applied. SCE yields after 3 h treatment with dimethylhydrazine and isoniazid were increased if Mn2+, but not Cu2+, was included in the tissue culture medium at a concentration of 10(-5) M. SCE yields after a 24-h treatment with dimethylhydrazine in which Mn2+ was present in, and absent from, the medium were similar. Catalase was observed to reduce the SCE levels resulting from treatment with hydrogen peroxide, dimethylhydrazine and isoniazid. The effect of catalase upon SCEs induced by dimethylhydrazine and isoniazid in the presence of Mn2+ was more evident than when Mn2+ was not included in the culture medium. The significance of these results with respect to the possible active chemical species produced and the mutagenic/carcinogenic risk associated with thiol and hydraizine compounds is discussed.  相似文献   

17.
In a search for cell mutants that show an increase or a decrease in the frequency of baseline sister-chromatid exchanges (SCEs) or spontaneous chromosomal aberrations (CAs), large numbers of mutagen-sensitive clones previously isolated from mouse lymphoma L5178Y cells were analyzed. In addition to two SCE mutants (ES 4 and AC 12) previously reported, three other mutants were identified as an SCE mutant. An ethyl methanesulfonate-sensitive mutant ES 2 and an alkylating agent-sensitive mutant MS 1 exhibited, respectively, 1.4-fold and 1.8-fold higher baseline SCE frequencies than did the parental L5178Y. In contrast, M10, which is sensitive to X-ray and 4-nitroquinoline 1-oxide, showed a reduced frequency of baseline SCEs (0.65-fold). These 5 mutants including ES 4 and AC 12 had 3--9-fold increases in spontaneous CA frequencies. Measurement of baseline SCE formation in inter-mutant hybrids revealed that M10 mutation is dominant, MS 1 and ES 4 mutations are semidominant, and ES 2 and AC 12 mutations are recessive. Because SCE frequencies in hybrids formed between pairs of 4 mutants (ES 2, MS 1, ES 4 and AC 12) were significantly lower than those in the tetraploid mutant cells, these 4 mutants probably belong to different complementation groups. Since M10 behaved dominantly with respect to SCE phenotype, it was not possible to determine by complementation test whether it belongs to a different group from the other mutants. However, the finding that M10 is complemented by other mutants for EMS sensitivity indicates that the M10 mutation is different from the other mutations. From these results, it is concluded that at least 4 different genes participate in the formation of high levels of baseline SCEs. The defects in ES 2, MS 1, ES 4, and AC 12 produce common lesions responsible for the formation of both SCEs and CAs. In contrast, the defect in M10 is associated with a high increase in spontaneous CA frequency, but conversely associated with a decrease in baseline SCE frequency. This suggests that M10 is defective in the process involved in the formation of baseline SCEs.  相似文献   

18.
The existence of a high frequency of spontaneous sister-chromatid exchanges (SCEs) in Bloom syndrome (BS) has thus far been supported by data on a small number of BS cell lines. To examine the cause of baseline SCEs more broadly, the frequencies of SCEs, as well as chromosomal aberrations (CAs) in 4 additional BS fibroblast strains were compared, under different assay and cell culture conditions, with those of normal cells in the range of approximately 0.9-90% 5-bromodeoxyuridine (BrdUrd) substitution into template DNA. SCEs at low levels of BrdUrd substitution were detected by an extremely sensitive immunofluorescent technique. From approximately 0.9% to 4.5% BrdUrd substitution, the SCE frequency in BS cells remained constant, at a level (40/cell) 8 times higher than that of normal cells. As BrdUrd substitution increased further, the SCE frequency in BS cells increased almost linearly, reaching 70-100 per cell at approximately 90% substitution, while the SCE increment in control fibroblasts was less than 5 per cell. Analysis of SCEs in 3 successive replication cycles similarly revealed that the SCE increment in BS cells depended on BrdUrd only at a high BrdUrd substitution level. In contrast to data on SCEs, CA induction by incorporated BrdUrd in BS cells was only slightly higher than that in normal cells. Thus, BS cells are extremely sensitive to BrdUrd for SCE induction, but much less so for CA induction.  相似文献   

19.
The two thymidine (dThd) kinases in human cells, the cytosolic, S-phase-specific TK1 and the mitochondrial, constitutively expressed TK2 were purified to homogeneity as judged from sodium dodecyl sulfate-gel electrophoresis. The substrate specificity of TK1 and TK2 toward natural substrates and important nucleoside analogues was compared. With TK1, the Km values for 5-fluorodeoxyuridine (FdUrd), 3'-azido-2',3'-dideoxythymidine (AZT), and 3'-fluoro-2',3'-dideoxythymidine (FLT) were 2.2, 0.6, and 2.1 microM as compared to 0.5 microM for dThd and 9 microM for deoxyuridine (dUrd). With TK2, dUrd, deoxycytidine (dCyd), and 5-fluorodeoxyuridine (FdUrd) were efficiently phosphorylated, but with distinctly different kinetics: Michaelis-Menten kinetics with dCyd, dUrd, and FdUrd; negative cooperativity with dThd. Negative cooperativity was also observed with AZT, although this drug was a very poor substrate for TK2 with a Vmax of 5-6% of that with dThd. FLT, 2',3'-dideoxycytidine (ddCyd), and arabinofuranosylcytosine (araC) were not substrates for TK2, and 2',3'-didehydrodideoxy-thymidine (D4T) was not a substrate for TK1 or TK2. On the other hand, AZT, FLT, and D4T were competitive inhibitors with Ki values of 0.6, 6, and 2073 microM for TK1, and 2, 10, and 78 microM for TK2, respectively. The much lower tolerance for modifications of the deoxyribose moiety of TK2 as compared to TK1 is important for the design of new antiviral nucleoside analogues intended for use in cells with different expression of TK1 and TK2.  相似文献   

20.
Sister-chromatid exchange (SCE) induced by ultraviolet (UV) irradiation and viability after UV irradiation were studied in lymphoblastoid cell lines derived from 7 patients with xeroderma pigmentosum (XP) and 6 normal donors. UV irradiation caused significant increases of SCEs in both XP and normal cells. In 3 XP cell lines, which were deficient in unscheduled DNA synthesis (UDS) and sensitive to the killing effect of UV, very high SCE frequencies were observed after UV irradiation. Cells from a patient with the De Sanctis-Cacchione syndrome were the most sensitive to UV in terms of both SCE induction and cell killing. In 2 of 4 UDS-proficient XP cell lines tested, the incidences of UV-induced SCEs were similar to those in normal cell lines, but in 2 other UDS-proficient lines from 2 XP patients with skin cancer, the frequencies of UV-induced SCEs were significantly higher than in normal cells.Continuous post-UV treatment with 1 mM caffeine markedly enhanced UV-induced SCEs in 3 of 4 UDS-proficient XP cell lines but had only slight effects on cells from the 4th UDS-proficient XP patient and from normal individuals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号