首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
Lee JE  Raines RT 《Biochemistry》2005,44(48):15760-15767
Bovine seminal ribonuclease (BS-RNase) is a homologue of bovine pancreatic ribonuclease (RNase A). Unlike RNase A, BS-RNase has notable toxicity for human tumor cells. Wild-type BS-RNase is a homodimer linked by two intermolecular disulfide bonds. This quaternary structure endows BS-RNase with resistance to inhibition by the cytosolic ribonuclease inhibitor protein (RI), which binds tightly to RNase A and monomeric BS-RNase. Here, we report on the creation and analysis of monomeric variants of BS-RNase that evade RI but retain full enzymatic activity. The cytotoxic activity of these monomeric variants exceeds that of the wild-type dimer by up to 30-fold, indicating that the dimeric structure of BS-RNase is not required for cytotoxicity. Dimers of these monomeric variants are more cytotoxic than wild-type BS-RNase, suggesting that the cytotoxicity of the wild-type enzyme is limited by RI inhibition following dissociation of the dimer in the reducing environment of the cytosol. Finally, the cytotoxic activity of these dimers is less than that of the constituent monomers, indicating that their quaternary structure is a liability. These data provide new insight into structure-function relationships of BS-RNase. Moreover, BS-RNase monomers described herein are more toxic to human tumor cells than is any known variant or homologue of RNase A including Onconase, an amphibian homologue in phase III clinical trials for the treatment of unresectable malignant mesothelioma.  相似文献   

2.
3.
Onconase(ONC) is an amphibian ribonuclease that is in clinical trials as a cancer chemotherapeutic agent. ONC is a homolog of ribonuclease A (RNase A). RNase A can be made toxic to cancer cells by replacing Gly(88) with an arginine residue, thereby enabling the enzyme to evade the endogenous cytosolic ribonuclease inhibitor protein (RI). Unlike ONC, RNase A contains a KFERQ sequence (residues 7-11), which signals for lysosomal degradation. Here, substitution of Arg(10) of the KFERQ sequence has no effect on either the cytotoxicity of G88R RNase A or its affinity for RI. In contrast, K7A/G88R RNase A is nearly 10-fold more cytotoxic than G88R RNase A and has more than 10-fold less affinity for RI. Up-regulation of the KFERQ-mediated lysosomal degradation pathway has no effect on the cytotoxicity of these ribonucleases. Thus, KFERQ-mediated degradation does not limit the cytotoxicity of RNase A variants. Moreover, only two amino acid substitutions (K7A and G88R) are shown to endow RNase A with cytotoxic activity that is nearly equal to that of ONC.  相似文献   

4.
The antitumor effect of ribonucleases was studied with animal ribonucleolytic enzymes, bovine pancreatic RNase A, bovine seminal RNase (BS-RNase), onconase and angiogenin. While bovine pancreatic RNase A exerts a minor antitumor effect, BS-RNase and onconase exert significant effects. Angiogenin, as RNase, works in an opposite way, it initiates vascularization of tumors and subsequent tumor growth. Ribonunclease inhibitors are not able to inhibit the antitumor effectiveness of BS-RNase or onconase. However, they do so in the case of pancreatic RNases. Conjugation of BS-RNase with antibodies against tumor antigens (preparation of immunotoxins) like the conjugation of the enzyme with polymers enhances the antitumor activity of the ribonuclease. After conjugation with polymers, the half-life of BS-RNase in blood is extended and its immunogenicity reduced. Recombinant RNases have the same functional activity as the native enzymes. The synthetic genes have also been modified, some of them with gene sequences typical for the BS-RNase parts. Recent experimental efforts are directed to the preparation of ‘humanized antitumor ribonuclease’ that would be structurally similar to human enzyme with minimal immunogenicity and side effects. The angiogenesis of tumors is attempted to be minimized by specific antibodies or anti-angiogenic substances.  相似文献   

5.
The model system made up of a monomeric and a dimeric ribonuclease of the pancreatic-type superfamily has recently attracted the attention of investigators interested in the evolution of oligomeric proteins. In this system, bovine pancreatic ribonuclease (RNase A) is the monomeric prototype, and bovine seminal ribonuclease (BS-RNase) is the dimeric counterpart. However, this evolutionary case is unusual, as BS-RNase is the only dimeric member of the whole large superfamily comprising more than 100 identified members from amphibia, aves, reptilia and mammalia. Furthermore, although the seminal-type RNase gene can be traced back to the divergence of the ruminants, it is expressed only in a single species (Bos taurus). These unusual findings are discussed, as well as previous hypotheses on the evolution of seminal RNase. Furthermore, a new 'minimalist' hypothesis is proposed, in line with basic principles of structural biology and molecular evolution.  相似文献   

6.
Onconase (ONC), an amphibian member of the bovine pancreatic ribonuclease A (RNase A) superfamily, is in phase III clinical trials as a treatment for malignant mesothelioma. RNase A is a far more efficient catalyst of RNA cleavage than ONC but is not cytotoxic. The innate ability of ONC to evade the cytosolic ribonuclease inhibitor protein (RI) is likely to be a primary reason for its cytotoxicity. In contrast, the non-covalent interaction between RNase A and RI is one of the strongest known, with the RI.RNase A complex having a K(d) value in the femtomolar range. Here, we report on the use of the fast atomic density evaluation (FADE) algorithm to identify regions in the molecular interface of the RI.RNase A complex that exhibit a high degree of geometric complementarity. Guided by these "knobs" and "holes", we designed variants of RNase A that evade RI. The D38R/R39D/N67R/G88R substitution increased the K(d) value of the pRI.RNase A complex by 20 x 10(6)-fold (to 1.4 microM) with little change to catalytic activity or conformational stability. This and two related variants of RNase A were more toxic to human cancer cells than was ONC. Notably, these cytotoxic variants exerted their toxic activity on cancer cells selectively, and more selectively than did ONC. Substitutions that further diminish affinity for RI (which has a cytosolic concentration of 4 microM) are unlikely to produce a substantial increase in cytotoxic activity. These results demonstrate the utility of the FADE algorithm in the examination of protein-protein interfaces and represent a landmark towards the goal of developing chemotherapeutics based on mammalian ribonucleases.  相似文献   

7.
Ribonuclease inhibitor as an intracellular sentry   总被引:3,自引:0,他引:3       下载免费PDF全文
Onconase® (ONC) is a homolog of RNase A that is in clinical trials as a cancer chemotherapeutic agent. The toxicity of ONC and RNase A variants relies on their ability to evade the cytosolic ribonuclease inhibitor protein (RI) and degrade cellular RNA. We find that these ribonucleases are more toxic for more rapidly growing cells. The enhanced cytotoxicity does not arise from variation in the endogenous level of RI, which is virtually constant. Overproduction of RI diminishes the potency of toxic RNase A variants, but has no effect on the cytotoxicity of ONC. Thus, RI constrains the cytotoxicity of RNase A. These data provide new insights for the development of an optimal ribonuclease-based cancer chemotherapy.  相似文献   

8.
Bovine seminal ribonuclease (BS-RNase) is a dimer in which the subunits are cross-linked by disulfide bonds between Cys31 of one subunit and Cys32 of the other. Dimeric BS-RNase is resistant to ribonuclease inhibitor (RI), a protein endogenous to mammalian cells, and is toxic to a variety of cell types. Monomeric BS-RNase (like its homolog, RNase A) is bound tightly by RI and is not cytotoxic. The three-dimensional structure of the RI · RNase A complex suggests that carboxymethylation of C32S BS-RNase (to give MCM31) or C31S BS-RNase (MCM32) could diminish affinity for RI. We find that MCM31 and MCM32 are not only resistant to RI but are also aspermatogenic to mice. In contrast to the aspermatogenic activity of dimeric BS-RNase, that of MCM31 and MCM32 is directed only at spermatogenic layers. Intratesticular injection of MCM31 or MCM32 affects neither the diameter of seminiferous tubules nor the weight of testes. Also, in contrast to wild-type BS-RNase, MCM31 and MCM32 are not toxic to other cell types. Direct immunofluorescence reveals that MCM31 and MCM32 bind only to spermatogonia and primary spermatocytes. This cell specificity makes MCM31 and MCM32 of potential use in seminoma therapy and contraception.  相似文献   

9.
Bovine seminal ribonuclease (BS-RNase) is made up of two identical subunits bridged through two disulfide bonds. In solution, it exists as a 2:1 equilibrium mixture between two forms, with (MxM) and without swapping (M=M) of the N-terminal arms. The swapping endows BS-RNase with some special biological functions, including antitumor activity, since MxM retains a dimeric structure even under reducing conditions, thus evading the cytosolic ribonuclease inhibitor. To investigate the structural basis of domain swapping in BS-RNase, we have obtained several mutants by replacing selected residues with the corresponding ones of its monomeric counterpart, bovine pancreatic ribonuclease (RNase A). We have already shown that, in contrast with all other cases of swapped proteins, the swapping propensity of BS-RNase does not depend on the specific sequence of the 16-22 hinge loop, which connects the main body to the dislocating arm. In this paper we report the design, the expression, and the structural characterization of two mutants obtained by replacing Arg80 with Ser either in BS-RNase or in the mutant already containing the 16-22 hinge sequence of RNase A. NMR and circular dichroism data indicate that, in the monomeric form of the latter mutant, Ser80 acts as a switch for the conformation of the hinge region. Accordingly, in the dimeric form of the same mutant the MxM:M=M equilibrium ratio is inverted to 1:2. Overall, these data suggest that the presence of Arg80 triggers the swapping of N-terminal ends and plays a relevant role in the stability of the swapped form of BS-RNase.  相似文献   

10.
Three-dimensional domain swapping is a common phenomenon in pancreatic-like ribonucleases. In the aggregated state, these proteins acquire new biological functions, including selective cytotoxicity against tumour cells. RNase A is able to dislocate both N- and C-termini, but usually this process requires denaturing conditions. In contrast, bovine seminal ribonuclease (BS-RNase), which is a homo-dimeric protein sharing 80% of sequence identity with RNase A, occurs natively as a mixture of swapped and unswapped isoforms. The presence of two disulfides bridging the subunits, indeed, ensures a dimeric structure also to the unswapped molecule. In vitro, the two BS-RNase isoforms interconvert under physiological conditions. Since the tendency to swap is often related to the instability of the monomeric proteins, in these paper we have analysed in detail the stability in solution of the monomeric derivative of BS-RNase (mBS) by a combination of NMR studies and Molecular Dynamics Simulations. The refinement of NMR structure and relaxation data indicate a close similarity with RNase A, without any evidence of aggregation or partial opening. The high compactness of mBS structure is confirmed also by H/D exchange, urea denaturation, and TEMPOL mapping of the protein surface. The present extensive structural and dynamic investigation of (monomeric) mBS did not show any experimental evidence that could explain the known differences in swapping between BS-RNase and RNase A. Hence, we conclude that the swapping in BS-RNase must be influenced by the distinct features of the dimers, suggesting a prominent role for the interchain disulfide bridges.  相似文献   

11.
Cytotoxic ribonucleases with antitumor activity are mainly found in the oocytes and early embryos of frogs. Native RC-RNase 4 (RNase 4), consisting of 106 residues linked with four disulfide bridges, is a cytotoxic ribonuclease isolated from oocytes of bullfrog Rana catesbeiana. RNase 4 belongs to the bovine pancreatic ribonuclease (RNase A) superfamily. Recombinant RC-RNase 4 (rRNase 4), which contains an additional Met residue and glutamine instead of pyroglutamate at the N terminus, was found to possess less catalytic and cytotoxic activities than RNase 4. Equilibrium thermal and guanidine-HCl denaturation CD measurements revealed that RNase 4 is more thermally and chemically stable than rRNase 4. However, CD and NMR data showed that there is no gross conformational change between native and recombinant RNase 4. The NMR solution structure of rRNase 4 was determined to comprise three alpha-helices and two sets of antiparallel beta-sheets. Superimposition of each structure with the mean structure yielded an average root mean square deviation (RMSD) of 0.72(+/-0.14)A for the backbone atoms, and 1.42(+/-0.19)A for the heavy atoms in residues 3-105. A comparison of the 3D structure of rRNase 4 with the structurally and functionally related cytotoxic ribonuclease, onconase (ONC), showed that the two H-bonds in the N-terminal pyroglutamate of ONC were not present at the corresponding glutamine residue of rRNase 4. We suggest that the loss of these two H-bonds is one of the key factors responsible for the reductions of the conformational stability, catalytic and cytotoxic activities in rRNase 4. Furthermore, the differences of side-chain conformations of subsite residues among RNase A, ONC and rRNase 4 are related to their distinct catalytic activities and base preferences.  相似文献   

12.
C H Schein  M Haugg  S A Benner 《FEBS letters》1990,270(1-2):229-232
Bovine seminal ribonuclease (BS-RNase), a dimeric homologue of RNase A, cleaves both single- and double-stranded RNA and inhibits the growth of tumor cells. Its catalytic activity against double-stranded RNA, either homopolymeric ([3H]polyA/polyU) or mixed sequence, is enhanced by bovine or human recombinant interferon-gamma (IFN-gamma). Activation is seen with as little as 4-10 interferon units per assay. Enhancing the degradation of double-stranded RNA, an intermediate in the growth cycle of many viruses, could contribute to IFN-gamma's ability to control cell growth and induce an antiviral state.  相似文献   

13.
Bovine seminal ribonuclease (BS-RNase), the only dimeric protein among the pancreatic-like ribonucleases, is endowed with special structural features and with biological functions beyond enzymatic activity. In solution, the protein exists as an equilibrium mixture of two forms, with or without exchange (or swapping) of the N-terminal arms. After selective reduction and alkylation of the two intrachain disulfide bridges, the dimeric protein can be transformed into a monomeric derivative that has a ribonuclease activity higher than that of the parent dimeric protein but is devoid of the special biological functions. A detailed investigation of the structural features of this protein in solution, in comparison with those of other monomeric ribonucleases, may help unveil the structural details which induce swapping of the N-terminal arms of BS-RNase. The solution structure of the recombinant monomeric form of BS-RNase, as determined by 3D heteronuclear NMR, shows close similarity with that of bovine pancreatic ribonuclease (RNase A) in all regions characterized by regular elements of secondary structure. However, significant differences are present in the flexible regions, which could account for the different behavior of the two proteins. To characterize in detail these regions, we have measured H/D exchange rate constants, temperature coefficients and heteronuclear NOEs of backbone amides for both RNase A and monomeric BS-RNase. The results indicate a large difference in the backbone flexibility of the hinge peptide segment 16-22 of the two proteins, which could provide the molecular basis to explain the ability of BS-RNase subunits to swap their N-terminal arms.  相似文献   

14.
Xu G  Narayan M  Welker E  Scheraga HA 《Biochemistry》2004,43(11):3246-3254
A fast-forming intermediate in the reductive unfolding of frog onconase (ONC), des [30-75], analogous to the des [40-95] intermediate found in the reductive unfolding of its structural homologue, bovine pancreatic ribonuclease A (RNase A), has been isolated and characterized. The midpoints of the thermal transition and chemical denaturing curves (representing global unfolding) indicate that the conformation of des [30-75] is considerably less stable than that of the parent molecule, suggesting that the (30-75) disulfide bond plays a significant role in the conformational stability of ONC. While des [30-75] is formed very quickly by a partial reduction of the parent molecule in a local unfolding step, it is not as easily susceptible to further reduction, indicating that its three disulfides are much more buried compared to the (30-75) disulfide bond in the parent protein. The nature of des [30-75] is similar to that of des [40-95] RNase A, in that des [30-75] ONC is also a disulfide-secure species. In addition, based on the resistance to mild reducing conditions, structured des species appear to form in ONC from unstructured three-disulfide-containing ensembles. This step is key in the oxidative folding of RNaseA, and is much faster in ONC than the formation of the structured des [40-95] species in RNase A.  相似文献   

15.
Four residues Pro19, Leu28, Cys31 and Cys32 proved to be the minimal structural requirements in determining the dimeric structure and the N-terminal segment swapping of bovine seminal ribonuclease, BS-RNase. We analyzed the content of secondary and tertiary structures in RNase A, P-RNase A, PL-RNase A, MCAM-PLCC-RNase A and MCAM-BS-RNase, performing near and far-UV CD spectra. It results that the five proteins have very similar native conformations. Thermal denaturation at pH 5.0 of the proteins, studied by means of CD measurements, proved reversible and well represented by the two-state ND transition model. Thermodynamic data are discussed in the light of the structural information available for RNase A and BS-RNase.  相似文献   

16.
Onconase((R)) (ONC) is a homolog of ribonuclease A (RNase A) that has unusually high conformational stability and is toxic to human cancer cells in vitro and in vivo. ONC and its amphibian homologs have a C-terminal disulfide bond, which is absent in RNase A. Replacing this cystine with a pair of alanine residues greatly decreases the conformational stability of ONC. In addition, the C87A/C104A variant is 10-fold less toxic to human leukemia cells. These data indicate that the synapomorphic disulfide bond of ONC is an important determinant of its cytotoxicity.  相似文献   

17.
Seminal RNase (BS-RNase), a ribonuclease from bovine seminal vesicles, is a homodimeric enzyme with a strong cytotoxic activity selective for tumor cells. It displays the unusual structural feature of existing in solution as an equilibrium mixture of two quaternary isoforms. The major one is characterized by the swap between subunits of their N-terminal ends, whereas the minor isoform shows no swap. The tendency of the two isolated isoforms to interconvert into each other has so far made it difficult to attribute the functional properties of BS-RNase to either isoform. Herein, molecular modeling and site-directed mutagenesis were used to engineer the refolding pathway of BS-RNase and obtain a stable variant of its non-swapping isoform. The protein was engineered with two extra disulfide bridges linking the N-terminal helix of each subunit to the main body of the same subunit. Purified as an active enzyme, the BS-RNase variant was found to be very resistant to thermal denaturation. Its functional characterization revealed that the lack of swapping has a negative effect on the cytotoxic activity of BS-RNase.  相似文献   

18.
Bovine seminal ribonuclease (BS-RNase), a dimeric homologue of RNase A, cleaves both single- and double-stranded RNA and inhibits the growth of tumor cells. Its catalytic activity against double-stranded RNA, either homopolymeric ([3H]polyA/polyU) or mixed sequence, is enhanced by bovine or human recombinant interferon-γ (IFN-γ). Activation is seen with as little as 4–10 interferon units per assay. Enhancing the degradation of double-stranded RNA, an intermediate in the growth cycle of many viruses, could contribute to IFN-γ's ability to control cell growth and induce an antiviral state.  相似文献   

19.
Mounting evidence suggests that human pancreatic ribonuclease (RNase 1) plays important roles in vivo, ranging from regulating blood clotting and inflammation to directly counteracting tumorigenic cells. Understanding these putative roles has been pursued with continual comparisons of human RNase 1 to bovine RNase A, an enzyme that appears to function primarily in the ruminant gut. Our results imply a different physiology for human RNase 1. We demonstrate distinct functional differences between human RNase 1 and bovine RNase A. Moreover, we characterize another RNase 1 homolog, bovine brain ribonuclease, and find pronounced similarities between that enzyme and human RNase 1. We report that human RNase 1 and bovine brain ribonuclease share high catalytic activity against double-stranded RNA substrates, a rare quality among ribonucleases. Both human RNase 1 and bovine brain RNase are readily endocytosed by mammalian cells, aided by tight interactions with cell surface glycans. Finally, we show that both human RNase 1 and bovine brain RNase are secreted from endothelial cells in a regulated manner, implying a potential role in vascular homeostasis. Our results suggest that brain ribonuclease, not RNase A, is the true bovine homolog of human RNase 1, and provide fundamental insight into the ancestral roles and functional adaptations of RNase 1 in mammals.  相似文献   

20.
Bovine seminal ribonuclease (BS-RNase) contains the MxM (noncovalent dimer) and M=M (free monomer) in constant ratio. The aim of this work was to evaluate the effect of BS-RNase, its monomer and dimer forms, and also various mutants of this enzyme on meiotic completion in cattle oocytes. It was found that BS-RNase has irreversible effects on the meiotic maturation of bovine oocytes in vitro, particularly on the completion of meiosis. The effect of BS-RNase is dose-dependent. In medium supplemented with 1 microg/ml, the results were comparable with those of the control (70% MII oocytes after 24 hr of culture). Whereas 5 microg/ml reduced the number of MII oocytes to 50%, 10 and 25 microg/ml arrested this process completely. The MxM form and RNase A at 5 microg/ml inhibited the maturation rate by 71 and 48%, respectively, but a less significant effect was observed for the M=M form, or the carboxymethylated monomers MCM31 and MCM32 (21%, 16%, and 42% MII oocytes, respectively, in comparison with control). These data demonstrate that bovine ribonucleases can have variable detrimental effects on the maturation of bovine oocyte. J. Exp. Zool. 287:394-399, 2000.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号