首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 66 毫秒
1.
The regulation of the Drosophila melanogaster hsp23 gene by heat shock and ecdysterone has been analysed by measuring activities of hsp--Escherichia coli beta-galactosidase hybrid genes in transfected hormone-sensitive D. melanogaster cells. Mutation analysis identified multiple, distinct promoter elements. A sequence element, which also occurs in the promoters of several other developmentally regulated Drosophila genes, is present in regions of the hsp23 promoter that are essential for its ecdysterone, but not its heat-regulated activity; this element may represent a binding site for an ecdysterone--receptor complex. Mutant promoters that can be activated only by heat shock or by hormone have been constructed. Thus the two types of regulation of the hsp23 gene can function independently of each other.  相似文献   

2.
To study the regulated expression of cloned heat-shock genes in homologous cells, hybrid Drosophila heat-shock-Escherichia coli beta-galactosidase genes were constructed. Segments of the ecdysterone-inducible 23,000-Da heat-shock protein (hsp23) gene and of two other hsp genes (hsp84 and 70), which are not hormone regulated, were functionally linked to the bacterial coding sequence, and the resulting hybrid genes were introduced into cultured, hormone-responsive Drosophila cells by transfection. All hybrid genes directed the synthesis of E. coli-specific beta-galactosidase in heat-treated cells. hsp23 hybrid gene expression was stimulated strongly by ecdysterone, while the activities of the other hybrid genes were not affected at all by the hormone. A hybrid gene with only 147 bp of hsp23 promoter sequence could not be activated by either heat or ecdysterone treatment. Thus, far upstream sequences contain signals required for the regulated expression of the hsp23 gene in Drosophila cells.  相似文献   

3.
4.
5.
6.
To study the regulated expression of cloned heat-shock genes in homologous cells, hybrid Drosophila heat-shock-Escherichia coli β-galactosidase genes were constructed. Segments of the ecdysterone-inducible 23,000-Da heat-shock protein (hsp23) gene and of two other hsp genes (hsp84 and 70), which are not hormone regulated, were functionally linked to the bacterial coding sequence, and the resulting hybrid genes were introduced into cultured, hormone-responsive Drosophila cells by transfection. All hybrid genes directed the synthesis of E. coli-specific β-galactosidase in heat-treated cells. hsp23 hybrid gene expression was stimulated strongly by ecdysterone, while the activities of the other hybrid genes were not affected at all by the hormone. A hybrid gene with only 147 bp of hsp23 promoter sequence could not be activated by either heat or ecdysterone treatment. Thus, far upstream sequences contain signals required for the regulated expression of the hsp23 gene in Drosophila cells.  相似文献   

7.
8.
9.
10.
11.
The four small heat shock protein genes of Drosophila are tightly linked at the level of DNA, and are coordinately regulated. In cultured cell lines their expression is induced by high temprature shock and by physiological doses of ecdysterone. In vivo, small heat shock gene expression is developmentally regulated. Using recombinant DNA clones we have characterized and compared small hsp gene induction in response to the two independent stimuli.  相似文献   

12.
13.
14.
15.
J Frydenberg  M Pierpaoli  V Loeschcke 《Gene》1999,236(2):243-250
To identify sequence variation associated with a selection response for heat tolerance in Drosophila melanogaster, we sequenced 1400bp of the heat shock protein 23 gene (hsp23) promoter region in four heat-selected and two control lines. The region was found to be variable for a specific (CATA) repeated sequence, and the sequence CTT seems to be a hot spot for mutation. The repeated tetranucleotide sequence was located in several short repeats scattered throughout the entire region. Similar variable repeats are also located downstream the of hsp23 gene in the intergenic region between hsp23 and hsp27. We detected nine different hsp23 alleles. Their frequencies in the selection and control lines seemed to be mainly determined by genetic drift. The function of the CATA repeats is not yet known, though these regions have homology to SAR elements located in the intergenic region between two hsp70 genes, suggesting a similar function.  相似文献   

16.
17.
18.
19.
A growing literature describes the structure and regulation of prokaryotic and eukaryotic heat shock genes. We here report the isolation of several members of a human heat shock protein 70 (hsp 70) multigene family which contains at least 10 different genes and/or pseudogenes exhibiting sequence homology to the hsp70 gene of Drosophila melanogaster. Eight nonoverlapping recombinant lambda phages from a lambda-Charon4A human genomic library were studied by restriction mapping. One lambda clone was sequenced and characterized as a hsp70 pseudogene inserted into a rearranged human HindIII 1.9-kilobase repeated DNA sequence. This pseudogene is probably located on the X chromosome. Its predicted amino acid sequence shows extensive homology to those of Drosophila hsp70, trout hsp70, Xenopus hsp70, yeast hsp70, and some homology to the heat-inducible dnaK gene product of Escherichia coli. Amino acid homology is clustered, suggesting evolutionary conservation of domains critical to the function of this protein in both prokaryotic and eukaryotic cells.  相似文献   

20.
The role of hsp27, one of Drosophila melanogaster's small heat shock proteins, in the process of thermotolerance was investigated. The coding sequence of hsp27 was subcloned downstream of the human hsp27 promoter which has been shown to be constitutively expressed in Chinese hamster O23 cells. Cellular resistance to a thermal stress was measured two days after transfection by a survival assay following a 3.5 h heat treatment at 44 degrees C. Expression of Drosophila hsp27 was shown to confer thermal resistance to O23 cells in a manner which was dependent on the level of expression of this hsp. Immunoblot analysis confirmed that the thermal resistance was related to the expression of Drosophila hsp27 as none of the endogeneous hsps showed an increased level under these conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号