首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A number of naturally occurring mutations of apolipoprotein (apo) A-I, the major protein of HDL, are known to be associated with hereditary amyloidosis and atherosclerosis. Here, we examined the effects of the G26R point mutation in apoA-I (apoA-IIowa) on the structure, stability, and aggregation propensity to form amyloid fibril of full-length apoA-I and the N-terminal fragment of apoA-I. Circular dichroism and fluorescence measurements demonstrated that the G26R mutation destabilizes the N-terminal helix bundle domain of full-length protein, leading to increased hydrophobic surface exposure, whereas it has no effect on the initial structure of the N-terminal 1–83 fragment, which is predominantly a random coil structure. Upon incubation for extended periods at neutral pH, the N-terminal 1–83 variants undergo a conformational change to β-sheet-rich structure with a great increase in thioflavin T fluorescence, whereas no structural change is observed in full-length proteins. Comparison of fibril-forming propensity among substituted mutants at Gly-26 position of 1–83 fragments demonstrated that the G26R mutation enhances the nucleation step of fibril formation, whereas G26K and G26E mutations have small or inhibiting effects on the formation of fibrils. These fibrils of the 1–83 variants have long and straight morphology as revealed by atomic force microscopy and exhibited significant toxicity with HEK293 cells. Our results indicate dual critical roles of the arginine residue at position 26 in apoA-IIowa: destabilization of the N-terminal helix bundle structure in full-length protein and enhancement of amyloid fibril formation by the N-terminal 1–83 fragment.  相似文献   

2.
High plasma levels of apolipoprotein A-I (apoA-I) correlate with cardiovascular health, whereas dysfunctional apoA-I is a cause of atherosclerosis. In the atherosclerotic plaques, amyloid deposition increases with aging. Notably, apoA-I is the main component of these amyloids. Recent studies identified high levels of oxidized lipid-free apoA-I in atherosclerotic plaques. Likely, myeloperoxidase (MPO) secreted by activated macrophages in atherosclerotic lesions is the promoter of such apoA-I oxidation. We hypothesized that apoA-I oxidation by MPO levels similar to those present in the artery walls in atherosclerosis can promote apoA-I structural changes and amyloid fibril formation. ApoA-I was exposed to exhaustive chemical (H2O2) oxidation or physiological levels of enzymatic (MPO) oxidation and incubated at 37 °C and pH 6.0 to induce fibril formation. Both chemically and enzymatically oxidized apoA-I produced fibrillar amyloids after a few hours of incubation. The amyloid fibrils were composed of full-length apoA-I with differential oxidation of the three methionines. Met to Leu apoA-I variants were used to establish the predominant role of oxidation of Met-86 and Met-148 in the fibril formation process. Importantly, a small amount of preformed apoA-I fibrils was able to seed amyloid formation in oxidized apoA-I at pH 7.0. In contrast to hereditary amyloidosis, wherein specific mutations of apoA-I cause protein destabilization and amyloid deposition, oxidative conditions similar to those promoted by local inflammation in atherosclerosis are sufficient to transform full-length wild-type apoA-I into an amyloidogenic protein. Thus, MPO-mediated oxidation may be implicated in the mechanism that leads to amyloid deposition in the atherosclerotic plaques in vivo.  相似文献   

3.
Serum amyloid A (SAA) is an acute-phase protein that circulates mainly on plasma HDL. SAA interactions with its functional ligands and its pathogenic deposition in reactive amyloidosis depend, in part, on the structural disorder of this protein and its propensity to oligomerize. In vivo, SAA can displace a substantial fraction of the major HDL protein, apoA-I, and thereby influence the structural remodeling and functions of acute-phase HDL in ways that are incompletely understood. We use murine SAA1.1 to report the first structural stability study of human plasma HDL that has been enriched with SAA. Calorimetric and spectroscopic analyses of these and other SAA-lipid systems reveal two surprising findings. First, progressive displacement of the exchangeable fraction of apoA-I by SAA has little effect on the structural stability of HDL and its fusion and release of core lipids. Consequently, the major determinant for HDL stability is the nonexchangeable apoA-I. A structural model explaining this observation is proposed, which is consistent with functional studies in acute-phase HDL. Second, we report an α-helix folding/unfolding transition in SAA in the presence of lipid at near-physiological temperatures. This new transition may have potentially important implications for normal functions of SAA and its pathogenic misfolding.  相似文献   

4.
A fraction of plasma transthyretin (TTR) circulates in HDL through binding to apolipoprotein A-I (apoA-I). Moreover, TTR is able to cleave the C terminus of lipid-free apoA-I. In this study, we addressed the relevance of apoA-I cleavage by TTR in lipoprotein metabolism and in the formation of apoA-I amyloid fibrils. We determined that TTR may also cleave lipidated apoA-I, with cleavage being more effective in the lipid-poor prebeta-HDL subpopulation. Upon TTR cleavage, discoidal HDL particles displayed a reduced capacity to promote cholesterol efflux from cholesterol-loaded THP-1 macrophages. In similar assays, TTR-containing HDL from mice expressing human TTR in a TTR knockout background had a decreased ability to perform reverse cholesterol transport compared with similar particles from TTR knockout mice, reinforcing the notion that cleavage by TTR reduces the ability of apoA-I to promote cholesterol efflux. As amyloid deposits composed of N-terminal apoA-I fragments are common in the atherosclerotic intima, we assessed the impact of TTR cleavage on apoA-I aggregation and fibrillar growth. We determined that TTR-cleaved apoA-I has a high propensity to form aggregated particles and that it formed fibrils faster than full-length apoA-I, as assessed by electron microscopy. Our results show that apoA-I cleavage by TTR may affect HDL biology and the development of atherosclerosis by reducing cholesterol efflux and increasing the apoA-I amyloidogenic potential.  相似文献   

5.
Rare genetic variants, identified by in-detail resequencing of loci, may contribute to complex traits. We used the apolipoprotein A-I gene (APOA1), a major high-density lipoprotein (HDL) gene, and population-based resequencing to determine the spectrum of genetic variants, the phenotypic characteristics of these variants, and how these results compared with results based on resequencing only the extremes of the apolipoprotein A-I (apoA-I) distribution. First, we resequenced APOA1 in 10,330 population-based participants in the Copenhagen City Heart Study. The spectrum and distribution of genetic variants was determined as a function of the number of individuals resequenced. Second, apoA-I and HDL cholesterol phenotypes were determined for nonsynonymous (NS) and synonymous (S) variants and were validated in the Copenhagen General Population Study (n = 45,239). Third, observed phenotypes were compared with those predicted using an extreme phenotype approach based on the apoA-I distribution. Our results are as follows: First, population-based resequencing of APOA1 identified 40 variants of which only 7 (18%) had minor allele frequencies >1%, and most were exceedingly rare. Second, 0.27% of individuals in the general population were heterozygous for NS variants which were associated with substantial reductions in apoA-I (up to 39 mg/dL) and/or HDL cholesterol (up to 0.9 mmol/L) and, surprisingly, 0.41% were heterozygous for variants predisposing to amyloidosis. NS variants associated with a hazard ratio of 1.72 (1.09–2.70) for myocardial infarction (MI), largely driven by A164S, a variant not associated with apoA-I or HDL cholesterol levels. Third, using the extreme apoA-I phenotype approach, NS variants correctly predicted the apoA-I phenotype observed in the population-based resequencing. However, using the extreme approach, between 79% (screening 0–1st percentile) and 21% (screening 0–20th percentile) of all variants were not identified; among these were variants previously associated with amyloidosis. Population-based resequencing of APOA1 identified a majority of rare NS variants associated with reduced apoA-1 and HDL cholesterol levels and/or predisposing to amyloidosis. In addition, NS variants associated with increased risk of MI.  相似文献   

6.
The N-terminal amino acid 1–83 fragment of apolipoprotein A-I (apoA-I) has a strong propensity to form amyloid fibrils at physiological neutral pH. Because apoA-I has an ability to bind to lipid membranes, we examined the effects of the lipid environment on fibril-forming properties of the N-terminal fragment of apoA-I variants. Thioflavin T fluorescence assay as well as fluorescence and transmission microscopies revealed that upon lipid binding, fibril formation by apoA-I 1–83 is strongly inhibited, whereas the G26R mutant still retains the ability to form fibrils. Such distinct effects of lipid binding on fibril formation were also observed for the amyloidogenic prone region-containing peptides, apoA-I 8–33 and 8–33/G26R. This amyloidogenic region shifts from random coil to α-helical structure upon lipid binding. The G26R mutation appears to prevent this helix transition because lower helical propensity and more solvent-exposed conformation of the G26R variant upon lipid binding were observed in the apoA-I 1–83 fragment and 8–33 peptide. With a partially α-helical conformation induced by the presence of 2,2,2-trifluoroethanol, fibril formation by apoA-I 1–83 was strongly inhibited, whereas the G26R variant can form amyloid fibrils. These findings suggest a new possible pathway for amyloid fibril formation by the N-terminal fragment of apoA-I variants: the amyloidogenic mutations partially destabilize the α-helical structure formed upon association with lipid membranes, resulting in physiologically relevant conformations that allow fibril formation.  相似文献   

7.
The N-terminal 1–83 residues of apolipoprotein A-I (apoA-I) have a strong propensity to form amyloid fibrils, in which the 46–59 segment was reported to aggregate to form amyloid-like fibrils. In this study, we demonstrated that a fragment peptide comprising the extreme N-terminal 1–43 residues strongly forms amyloid fibrils with a transition to β-sheet-rich structure, and that the G26R point mutation enhances the fibril formation of this segment. Our results suggest that in addition to the 46–59 segment, the extreme N-terminal region plays a crucial role in the development of amyloid fibrils by the N-terminal fragment of amyloidogenic apoA-I variants.  相似文献   

8.
Serum amyloid A (SAA) is an acute phase protein of unknown function that is involved in systemic amyloidosis and may also be involved in atherogenesis. The precise role of SAA in these processes has not been established. SAA circulates in plasma bound to high density lipoprotein-3 (HDL3). The pathway for the production of SAA-containing HDL is not known. To test whether apolipoprotein (apo)A-I-HDL is required in the production of SAA-HDL, we analyzed the lipopolysaccharide (LPS)-induced changes in apoA-I+/+ and apoA-I-/- mice. In apoA-I+/+ mice, after injection of LPS, remodeling of HDL occurred: total cholesterol increased and apoA-I decreased slightly and shifted to lighter density. Dense (density of HDL3) but large (size of HDL2 ) SAA-containing particles were formed. Upon fast phase liquid chromatography fractionation of plasma, >90% of SAA eluted with HDL that was enriched in cholesterol and phospholipid and shifted "leftward" to larger particles. Non-denaturing immunoprecipitation with anti-mouse apoA-I precipitated all of the apoA-I but not all of the SAA, confirming the presence of SAA-HDL devoid of apoA-I. In the apoA-I-/- mice, which normally have very low plasma lipid levels, LPS injection resulted in significantly increased total and HDL cholesterol. Greater than 90% of the SAA was lipid associated and was found on dense but large, spherical HDL particles essentially devoid of other apolipoproteins.We conclude that serum amyloid A (SAA) is able to sequester lipid, forming dense but large HDL particles with or without apoA-I or other apolipoproteins. The capacity to isolate lipoprotein particles containing SAA as the predominant or only apolipoprotein provides an important system to further explore the biological function of SAA.  相似文献   

9.
Wong YQ  Binger KJ  Howlett GJ  Griffin MD 《FEBS letters》2012,586(13):1754-1758
Apolipoprotein A-I (apoA-I) is deposited as amyloid within various major organs in hereditary apoA-I amyloidosis, and in arterial plaques associated with atherosclerosis. We have identified a tryptic fragment of apoA-I, apoA-I(46-59), that retains the ability to form amyloid-like fibrils with cross-β structure. ApoA-I(46-59) corresponds closely to a conformationally extended segment in the crystal structure of apoA-IΔ(185-243) and is located in the N-terminal region of apoA-I, which accumulates in hereditary apoA-I amyloidosis. Our results provide direct experimental evidence that this region of apoA-I is amyloidogenic and integral to initiation and propagation of amyloid formation by the protein.  相似文献   

10.
Summary Localization of protein AP, which is known to be associated with all amyloid-laden tissues in systemic amyloidoses, was studied by an immunocytochemical peroxidase-antiperoxidase staining method in a series of localized amyloidosis, i.e. islet amyloid, lichen amyloidosus, and nodular amyloidosis of the respiratory and urinary tracts. The amyloid fibrils of these localized amyloidoses are believed to be of three different chemical classes belonging to the AE, AD and AL type, respectively. The present study revealed that protein AP was present in amyloid deposits in all tissues examined, thus supporting that protein AP is present in amyloid deposits not only of all types of systemic amyloidosis but also different forms of localized amyloidosis.Supported by the Swedish Medical Research Council (Project No. B81-12X-05941-01), the Research Fund of King Gustaf V and grants from the United States Public Health Service, National Institute of Arthritis, Metabolism and Digestive Diseases (AM 04599 and AM 07014), National Institute of Health Multipurpose Arthritis Center (AM 20613), from the General Clinical Research Centers Branch of the Division of Research Resources, National Institutes of Health (RR 533), from the Massachusetts Chapter of the Arthritis Foundation and from the Arthritis Foundation  相似文献   

11.
Disease-associated amyloid deposits contain both fibrillar and nonfibrillar components. The majority of these amyloid components originate or coexist in the bloodstream. To understand the nature of the interaction between the nonfibrillar and fibrillar components, we have developed a centrifugation method to isolate fibril binding proteins from human serum. Amyloid fibrils composed of either Abeta peptide or apolipoprotein C-II (apoC-II) cosedimented with specific serum proteins. Gel electrophoresis, mass spectrometry peptide fingerprinting, and Western analysis identified the major binding species as proteins found in HDL particles, including apoA-I, apoA-II, apoE, clusterin, and serum amyloid A. Sedimentation analysis showed that purified human HDL and recombinant apoA-I lipid particles bound directly to Abeta and apoC-II amyloid fibrils. These studies reveal a novel function of HDL that may contribute to the well-established protective effect of this lipoprotein class in heart disease.  相似文献   

12.
Apolipoprotein A-II (apoA-II) is the second major apolipoprotein following apolipoprotein A-I (apoA-I) in HDL. ApoA-II has multiple physiological functions and can form senile amyloid fibrils (AApoAII) in mice. Most circulating apoA-II is present in lipoprotein A-I/A-II. To study the influence of apoA-I on apoA-II and AApoAII amyloidosis, apoA-I-deficient (C57BL/6J.Apoa1−/−) mice were used. Apoa1−/− mice showed the expected significant reduction in total cholesterol (TC), HDL cholesterol (HDL-C), and triglyceride (TG) plasma levels. Unexpectedly, we found that apoA-I deficiency led to redistribution of apoA-II in HDL and an age-related increase in apoA-II levels, accompanied by larger HDL particle size and an age-related increase in TC, HDL-C, and TG. Aggravated AApoAII amyloidosis was induced in Apoa1−/− mice systemically, especially in the heart. These results indicate that apoA-I plays key roles in maintaining apoA-II distribution and HDL particle size. Furthermore, apoA-II redistribution may be the main reason for aggravated AApoAII amyloidosis in Apoa1−/− mice. These results may shed new light on the relationship between apoA-I and apoA-II as well as provide new information concerning amyloidosis mechanism and therapy.  相似文献   

13.
Transthyretin amyloidosis represents a spectrum of clinical syndromes that, in all cases except senile systemic amyloidosis, are dependent on the mutation present in the transthyretin (TTR) protein. Although the role of amyloid deposits in the pathogenesis of the disease is not clear, preventing their formation or promoting their disaggregation is necessary to control the development of clinical symptoms. The design of therapies aiming at preventing amyloid formation or promoting its dissociation requires detailed knowledge of the fibrils' molecular structure and a complete view about the factors responsible for protein aggregation. This review is focused on the structural studies, performed on amyloid fibrils and amyloidogenic TTR variants, aiming at understanding the aggregation mechanism as well as the atomic structure of the fibril assembly. Based on the available information possible therapies are also surveyed.  相似文献   

14.
Transthyretin amyloidosis represents a spectrum of clinical syndromes that, in all cases except senile systemic amyloidosis, are dependent on the mutation present in the transthyretin (TTR) protein. Although the role of amyloid deposits in the pathogenesis of the disease is not clear, preventing their formation or promoting their disaggregation is necessary to control the development of clinical symptoms. The design of therapies aiming at preventing amyloid formation or promoting its dissociation requires detailed knowledge of the fibrils' molecular structure and a complete view about the factors responsible for protein aggregation. This review is focused on the structural studies, performed on amyloid fibrils and amyloidogenic TTR variants, aiming at understanding the aggregation mechanism as well as the atomic structure of the fibril assembly. Based on the available information possible therapies are also surveyed.  相似文献   

15.
Pathogenesis, diagnosis and treatment of systemic amyloidosis   总被引:9,自引:0,他引:9  
Amyloidosis is a disorder of protein folding in which normally soluble proteins are deposited as abnormal, insoluble fibrils that disrupt tissue structure and cause disease. Although about 20 different unrelated proteins can form amyloid fibrils in vivo, all such fibrils share a common cross-beta core structure. Some natural wild-type proteins are inherently amyloidogenic, form fibrils and cause amyloidosis in old age or if present for long periods at abnormally high concentration. Other amyloidogenic proteins are acquired or inherited variants, containing amino-acid substitutions that render them unstable so that they populate partly unfolded states under physiological conditions, and these intermediates then aggregate in the stable amyloid fold. In addition to the fibrils, amyloid deposits always contain the non-fibrillar pentraxin plasma protein, serum amyloid P component (SAP), because it undergoes specific calcium-dependent binding to amyloid fibrils. SAP contributes to amyloidogenesis, probably by stabilizing amyloid fibrils and retarding their clearance. Radiolabelled SAP is an extremely useful, safe, specific, non-invasive, quantitative tracer for scintigraphic imaging of systemic amyloid deposits. Its use has demonstrated that elimination of the supply of amyloid fibril precursor proteins leads to regression of amyloid deposits with clinical benefit. Current treatment of amyloidosis comprises careful maintenance of impaired organ function, replacement of end-stage organ failure by dialysis or transplantation, and vigorous efforts to control underlying conditions responsible for production of fibril precursors. New approaches under development include drugs for stabilization of the native fold of precursor proteins, inhibition of fibrillogenesis, reversion of the amyloid to the native fold, and dissociation of SAP to accelerate amyloid fibril clearance in vivo.  相似文献   

16.
Apolipoprotein A-I (apoA-I) is the main protein of high-density lipoprotein (HDL) and a principal mediator of the reverse cholesterol transfer pathway. Variants of apoA-I have been shown to be associated with hereditary amyloidosis. We previously characterized the G26R and L178H variants that both possess decreased stability and increased fibril formation propensity. Here we investigate the Milano variant of apoAI (R173C; apoAI-M), which despite association with low plasma levels of HDL leads to low prevalence of cardiovascular disease in carriers of this mutation. The R173C substitution is located to a region (residues 170 to 178) that contains several fibrillogenic apoA-I variants, including the L178H variant, and therefore we investigated a potential fibrillogenic property of the apoAI-M protein. Despite the fact that apoAI-M shared several features with the L178H variant regarding increased helical content and low degree of ThT binding during prolonged incubation in physiological buffer, our electron microscopy analysis revealed no formation of fibrils. These results suggest that mutations inducing secondary structural changes may be beneficial in cases where fibril formation does not occur.  相似文献   

17.
The tetrameric thyroxine transport protein transthyretin (TTR) forms amyloid fibrils upon dissociation and monomer unfolding. The aggregation of transthyretin has been reported as the cause of the life-threatening transthyretin amyloidosis. The standard treatment of familial cases of TTR amyloidosis has been liver transplantation. Although aggregation-preventing strategies involving ligands are known, understanding the mechanism of TTR aggregation can lead to additional inhibition approaches. Several models of TTR amyloid fibrils have been proposed, but the segments that drive aggregation of the protein have remained unknown. Here we identify β-strands F and H as necessary for TTR aggregation. Based on the crystal structures of these segments, we designed two non-natural peptide inhibitors that block aggregation. This work provides the first characterization of peptide inhibitors for TTR aggregation, establishing a novel therapeutic strategy.  相似文献   

18.
The monoclonal antibody 2A4 binds an epitope derived from a cleavage site of serum amyloid protein A (sAA) containing a -Glu-Asp- amino acid pairing. In addition to its reactivity with sAA amyloid deposits, the antibody was also found to bind amyloid fibrils composed of immunoglobulin light chains. The antibody binds to synthetic fibrils and human light chain (AL) amyloid extracts with high affinity even in the presence of soluble light chain proteins. Immunohistochemistry with biotinylated 2A4 demonstrated positive reaction with ALκ and ALλ human amyloid deposits in various organs. Surface plasmon resonance analyses using synthetic AL fibrils as a substrate revealed that 2A4 bound with a KD of ∼10 nM. Binding was inhibited in the presence of the –Glu-Asp- containing immunogen peptide. Radiolabeled 2A4 specifically localized with human AL amyloid extracts implanted in mice (amyloidomas) as evidenced by single photon emission (SPECT) imaging. Furthermore, co-localization of the radiolabeled mAb with amyloid was shown in biodistribution and micro-autoradiography studies. Treatment with 2A4 expedited regression of ALκ amyloidomas in mice, likely mediated by the action of macrophages and neutrophils, relative to animals that received a control antibody. These data indicate that the 2A4 mAb might be of interest for potential imaging and immunotherapy in patients with AL amyloidosis.  相似文献   

19.
To date there is no effective therapy for Alzheimer disease (AD). High levels of circulating high density lipoprotein (HDL) and its main protein, apolipoprotein A-I (apoA-I), reduce the risk of cardiovascular disease. Clinical studies show that plasma HDL cholesterol and apoA-I levels are low in patients with AD. To investigate if increasing plasma apoA-I/HDL levels ameliorates AD-like memory deficits and amyloid-β (Aβ) deposition, we generated a line of triple transgenic (Tg) mice overexpressing mutant forms of amyloid-β precursor protein (APP) and presenilin 1 (PS1) as well as human apoA-I (AI). Here we show that APP/PS1/AI triple Tg mice have a 2-fold increase of plasma HDL cholesterol levels. When tested in the Morris water maze for spatial orientation abilities, whereas APP/PS1 mice develop age-related learning and memory deficits, APP/PS1/AI mice continue to perform normally during aging. Interestingly, no significant differences were found in the total level and deposition of Aβ in the brains of APP/PS1 and APP/PS1/AI mice, but cerebral amyloid angiopathy was reduced in APP/PS1/AI mice. Also, consistent with the anti-inflammatory properties of apoA-I/HDL, glial activation was reduced in the brain of APP/PS1/AI mice. In addition, Aβ-induced production of proinflammatory chemokines/cytokines was decreased in mouse organotypic hippocampal slice cultures expressing human apoA-I. Therefore, we conclude that overexpression of human apoA-I in the circulation prevents learning and memory deficits in APP/PS1 mice, partly by attenuating neuroinflammation and cerebral amyloid angiopathy. These findings suggest that elevating plasma apoA-I/HDL levels may be an effective approach to preserve cognitive function in patients with AD.  相似文献   

20.
Systemic amyloidosis is a fatal disease caused by misfolding of native globular proteins, which then aggregate extracellularly as insoluble fibrils, damaging the structure and function of affected organs. The formation of amyloid fibrils in vivo is poorly understood. We recently identified the first naturally occurring structural variant, D76N, of human β2-microglobulin (β2m), the ubiquitous light chain of class I major histocompatibility antigens, as the amyloid fibril protein in a family with a new phenotype of late onset fatal hereditary systemic amyloidosis. Here we show that, uniquely, D76N β2m readily forms amyloid fibrils in vitro under physiological extracellular conditions. The globular native fold transition to the fibrillar state is primed by exposure to a hydrophobic-hydrophilic interface under physiological intensity shear flow. Wild type β2m is recruited by the variant into amyloid fibrils in vitro but is absent from amyloid deposited in vivo. This may be because, as we show here, such recruitment is inhibited by chaperone activity. Our results suggest general mechanistic principles of in vivo amyloid fibrillogenesis by globular proteins, a previously obscure process. Elucidation of this crucial causative event in clinical amyloidosis should also help to explain the hitherto mysterious timing and location of amyloid deposition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号