首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dandelion (Taraxacum officinale) possesses an unusually high degree of disease resistance. As this plant exhibits high polyphenol oxidase (PPO) activity and PPO have been implicated in resistance against pests and pathogens, we analyzed the potential involvement of five PPO isoenzymes in the resistance of dandelion against Botrytis cinerea and Pseudomonas syringae pv. tomato. Only one PPO (ppo-2) was induced during infection, and ppo-2 promoter and β-glucuronidase marker gene fusions revealed strong induction of the gene surrounding lesions induced by B. cinerea. Specific RNAi silencing reduced ppo-2 expression only, and concomitantly increased plant susceptibility to P. syringae pv. tomato. At 4 days postinoculation, P. syringae pv. tomato populations were strongly increased in the ppo-2 RNAi lines compared with wild-type plants. When the dandelion ppo-2 gene was expressed in Arabidopsis thaliana, a plant having no PPO gene, active protein was formed and protein extracts of the transgenic plants exhibited substrate-dependent antimicrobial activity against P. syringae pv. tomato. These results clearly indicate a strong contribution of a specific, single PPO isoform to disease resistance. Therefore, we propose that specific PPO isoenzymes be included in a new family of pathogenesis-related (PR) proteins.  相似文献   

2.
Ethylene, jasmonate, and salicylate play important roles in plant defense responses to pathogens. To investigate the contributions of these compounds in resistance of tomato (Lycopersicon esculentum) to the fungal pathogen Botrytis cinerea, three types of experiments were conducted: (a) quantitative disease assays with plants pretreated with ethylene, inhibitors of ethylene perception, or salicylate; (b) quantitative disease assays with mutants or transgenes affected in the production of or the response to either ethylene or jasmonate; and (c) expression analysis of defense-related genes before and after inoculation of plants with B. cinerea. Plants pretreated with ethylene showed a decreased susceptibility toward B. cinerea, whereas pretreatment with 1-methylcyclopropene, an inhibitor of ethylene perception, resulted in increased susceptibility. Ethylene pretreatment induced expression of several pathogenesis-related protein genes before B. cinerea infection. Proteinase inhibitor I expression was repressed by ethylene and induced by 1-methylcyclopropene. Ethylene also induced resistance in the mutant Never ripe. RNA analysis showed that Never ripe retained some ethylene sensitivity. The mutant Epinastic, constitutively activated in a subset of ethylene responses, and a transgenic line producing negligible ethylene were also tested. The results confirmed that ethylene responses are important for resistance of tomato to B. cinerea. The mutant Defenseless, impaired in jasmonate biosynthesis, showed increased susceptibility to B. cinerea. A transgenic line with reduced prosystemin expression showed similar susceptibility as Defenseless, whereas a prosystemin-overexpressing transgene was highly resistant. Ethylene and wound signaling acted independently on resistance. Salicylate and ethylene acted synergistically on defense gene expression, but antagonistically on resistance.  相似文献   

3.
Three Botrytis-susceptible mutants bos2, bos3, and bos4 which define independent and novel genetic loci required for Arabidopsis resistance to Botrytis cinerea were isolated. The bos2 mutant is susceptible to B. cinerea but retains wild-type levels of resistance to other pathogens tested, indicative of a defect in a response pathway more specific to B. cinerea. The bos3 and bos4 mutants also show increased susceptibility to Alternaria brassicicola, another necrotrophic pathogen, suggesting a broader role for these loci in resistance. bos4 shows the broadest range of effects on resistance, being more susceptible to avirulent strain of Pseudomonas syringae pv. tomato. Interestingly, bos3 is more resistant than wild-type plants to virulent strains of the biotrophic pathogen Peronospora parasitica and the bacterial pathogen P. syringae pv. tomato. The Pathogenesis Related gene 1 (PR-1), a molecular marker of the salicylic acid (SA)-dependent resistance pathway, shows a wild-type pattern of expression in bos2, while in bos3 this gene was expressed at elevated levels, both constitutively and in response to pathogen challenge. In bos4 plants, PR-1 expression was reduced compared with wild type in response to B. cinerea and SA. In bos3, the mutant most susceptible to B. cinerea and with the highest expression of PR-1, removal of SA resulted in reduced PR-1 expression but no change to the B. cinerea response. Expression of the plant defensin gene PDF1-2 was generally lower in bos mutants compared with wild-type plants, with a particularly strong reduction in bos3. Production of the phytoalexin camalexin is another well-characterized plant defense response. The bos2 and bos4 mutants accumulate reduced levels of camalexin whereas bos3 accumulates significantly higher levels of camalexin than wild-type plants in response to B. cinerea. The BOS2, BOS3, and BOS4 loci may affect camalexin levels and responsiveness to ethylene and jasmonate. The three new mutants appear to mediate disease responses through mechanisms independent of the previously described BOS1 gene. Based on the differences in the phenotypes of the bos mutants, it appears that they affect different points in defense response pathways.  相似文献   

4.
Cel1 and Cel2 are members of the tomato (Solanum lycopersicum Mill) endo-beta-1,4-glucanase (EGase) family that may play a role in fruit ripening and organ abscission. This work demonstrates that Cel1 protein is present in other vegetative tissues and accumulates during leaf development. We recently reported the downregulation of both the Cel1 mRNA and protein upon fungal infection, suggesting the involvement of EGases in plant-pathogen interactions. This hypothesis was confirmed by assessing the resistance to Botrytis cinerea infection of transgenic plants expressing both genes in an antisense orientation (Anti-Cel1, Anti-Cel2 and Anti-Cel1-Cel2). The Anti-Cel1-Cel2 plants showed enhanced resistance to this fungal necrotroph. Microscopical analysis of infected leaves revealed that tomato plants accumulated pathogen-inducible callose within the expanding lesion. Anti-Cel1-Cel2 plants presented a faster and enhanced callose accumulation against B. cinerea than wild-type plants. The inhibitor 2-deoxy-d-glucose, a callose synthesis inhibitor, showed a direct relationship between faster callose accumulation and enhanced resistance to B. cinerea. EGase activity appears to negatively modulate callose deposition. The absence of both EGase genes was associated with changes in the expression of the pathogen-related genes PR1 and LoxD. Interestingly, Anti-Cel1-Cel2 plants were more susceptible to Pseudomonas syringae, displaying severe disease symptoms and enhanced bacterial growth relative to wild-type plants. Analysis of the involvement of Cel1 and Cel2 in the susceptibility to B. cinerea in fruits was done with the ripening-impaired mutants Never ripe (Nr) and Ripening inhibitor (rin). The data reported in this work support the idea that enzymes involved in cell wall metabolism play a role in susceptibility to pathogens.  相似文献   

5.
6.
Wi SJ  Park KY 《Molecules and cells》2002,13(2):209-220
The amount of polyamines (such as putrescine, spermidine, and spermine) increased under environmental stress conditions. We used transgenic technology in an attempt to evaluate their potential for mitigating the adverse effects of several abiotic stresses in plants. Because there is a metabolic competition for S-adenosylmethionine as a precursor between polyamine (PA) and ethylene biosyntheses, it was expected that the antisense-expression of ethylene biosynthetic genes could result in an increase in PA biosynthesis. Antisense constructs of cDNAs for senescence-related 1-aminocyclopropane-1-carboxylic acid (ACC) synthase (CAS) and ACC oxidase (CAO) were isolated from carnation flowers that were introduced into tobacco by Agrobacterium-mediated transformation. Several transgenic lines showed higher PA contents than wild-type plants. The number and weight of seeds also increased. Stress-induced senescence was attenuated in these transgenic plants in terms of total chlorophyll loss and phenotypic changes after oxidative stress with hydrogen peroxide (H2O2), high salinity, acid stress (pH 3.0), and ABA treatment. These results suggest that the transgenic plants with antisense CAS and CAO cDNAs are more tolerant to abiotic stresses than wild-type plants. This shows a positive correlation between PA content and stress tolerance in plants.  相似文献   

7.
Abscisic acid (ABA) is one of the plant hormones involved in the interaction between plants and pathogens. In this work, we show that tomato (Lycopersicon esculentum Mill. cv Moneymaker) mutants with reduced ABA levels (sitiens plants) are much more resistant to the necrotrophic fungus Botrytis cinerea than wild-type (WT) plants. Exogenous application of ABA restored susceptibility to B. cinerea in sitiens plants and increased susceptibility in WT plants. These results indicate that ABA plays a major role in the susceptibility of tomato to B. cinerea. ABA appeared to interact with a functional plant defense response against B. cinerea. Experiments with transgenic NahG tomato plants and benzo(1,2,3)thiadiazole-7-carbothioic acid demonstrated the importance of salicylic acid in the tomato-B. cinerea interaction. In addition, upon infection with B. cinerea, sitiens plants showed a clear increase in phenylalanine ammonia lyase activity, which was not observed in infected WT plants, indicating that the ABA levels in healthy WT tomato plants partly repress phenylalanine ammonia lyase activity. In addition, sitiens plants became more sensitive to benzo(1,2,3)thiadiazole-7-carbothioic acid root treatment. The threshold values for PR1a gene expression declined with a factor 10 to 100 in sitiens compared with WT plants. Thus, ABA appears to negatively modulate the salicylic acid-dependent defense pathway in tomato, which may be one of the mechanisms by which ABA levels determine susceptibility to B. cinerea.  相似文献   

8.
9.
10.
Tang D  Simonich MT  Innes RW 《Plant physiology》2007,144(2):1093-1103
We identified an Arabidopsis (Arabidopsis thaliana) mutant, sma4 (symptoms to multiple avr genotypes4), that displays severe disease symptoms when inoculated with avirulent strains of Pseudomonas syringae pv tomato, although bacterial growth is only moderately enhanced compared to wild-type plants. The sma4 mutant showed a normal susceptible phenotype to the biotrophic fungal pathogen Erysiphe cichoracearum. Significantly, the sma4 mutant was highly resistant to a necrotrophic fungal pathogen, Botrytis cinerea. Germination of B. cinerea spores on sma4 mutant leaves was inhibited, and penetration by those that did germinate was rare. The sma4 mutant also showed several pleiotropic phenotypes, including increased sensitivity to lower humidity and salt stress. Isolation of SMA4 by positional cloning revealed that it encodes LACS2, a member of the long-chain acyl-CoA synthetases. LACS2 has previously been shown to be involved in cutin biosynthesis. We therefore tested three additional cutin-defective mutants for resistance to B. cinerea: att1 (for aberrant induction of type three genes), bodyguard, and lacerata. All three displayed an enhanced resistance to B. cinerea. Our results indicate that plant cutin or cuticle structure may play a crucial role in tolerance to biotic and abiotic stress and in the pathogenesis of B. cinerea.  相似文献   

11.
Arabidopsis AtCTR1 is a Raf-like protein kinase that interacts with ETR1 and ERS and negatively regulates ethylene responses. In tomato, several CTR1-like proteins could perform this role. We have characterized LeCTR2, which has similarity to AtCTR1 and also to EDR1, a CTR1-like Arabidopsis protein involved in defence and stress responses. Protein–protein interactions between LeCTR2 and six tomato ethylene receptors indicated that LeCTR2 interacts preferentially with the subfamily I ETR1-type ethylene receptors LeETR1 and LeETR2, but not the NR receptor or the subfamily II receptors LeETR4, LeETR5 and LeETR6. The C-terminus of LeCTR2 possesses serine/threonine kinase activity and is capable of auto-phosphorylation and phosphorylation of myelin basic protein in vitro . Overexpression of the LeCTR2 N-terminus in tomato resulted in altered growth habit, including reduced stature, loss of apical dominance, highly branched inflorescences and fruit trusses, indeterminate shoots in place of determinate flowers, and prolific adventitious shoot development from the rachis or rachillae of the leaves. Expression of the ethylene-responsive genes E4 and chitinase B was upregulated in transgenic plants, but ethylene production and the level of mRNA for the ethylene biosynthetic gene ACO1 was unaffected. The leaves and fruit of transgenic plants also displayed enhanced susceptibility to infection by the fungal pathogen Botrytis cinerea , which was associated with much stronger induction of pathogenesis-related genes such as PR1b1 and chitinase B compared with the wild-type. The results suggest that LeCTR2 plays a role in ethylene signalling, development and defence, probably through its interactions with the ETR1-type ethylene receptors of subfamily I.  相似文献   

12.
13.
Clavibacter michiganensis subsp. michiganensis (Cmm) is a gram-positive actinomycete, causing bacterial wilt and canker disease in tomato (Solanum lycopersicum). Host responses to gram-positive bacteria and molecular mechanisms associated with the development of disease symptoms caused by Cmm in tomato are largely unexplored. To investigate plant responses activated during this compatible interaction, we used microarray analysis to monitor changes in host gene expression during disease development. This analysis was performed at 4 d postinoculation, when bacteria were actively multiplying and no wilt symptoms were yet visible; and at 8 d postinoculation, when bacterial growth approached saturation and typical wilt symptoms were observed. Of the 9,254 tomato genes represented on the array, 122 were differentially expressed in Cmm-infected plants, compared with mock-inoculated plants. Functional classification of Cmm-responsive genes revealed that Cmm activated typical basal defense responses in the host, including induction of defense-related genes, production and scavenging of free oxygen radicals, enhanced protein turnover, and hormone synthesis. Cmm infection also induced a subset of host genes involved in ethylene biosynthesis and response. After inoculation with Cmm, Never ripe (Nr) mutant plants, impaired in ethylene perception, and transgenic plants with reduced ethylene synthesis showed significant delay in the appearance of wilt symptoms, compared with wild-type plants. The retarded wilting in Nr plants was a specific effect of ethylene insensitivity, and was not due to altered expression of defense-related genes, reduced bacterial populations, or decreased ethylene synthesis. Taken together, our results indicate that host-derived ethylene plays an important role in regulation of the tomato susceptible response to Cmm.  相似文献   

14.
15.
Many reports point to the existence of a network of regulatory signalling occurring in plants during the interaction with micro-organisms (biotic stress) and abiotic stresses such as wounding. However, the focus is on shared intermediates/components and/or common molecular outputs in differently triggered signalling pathways, and not on the degree and modes of effective influence between abiotic and biotic stresses nor the range of true plant-pathogen interactions open to such influence. We report on local and systemic wound-induced protection in tomato (Solanum lycopersicum L.) to four pathogens with a range of lifestyles (Botrytis cinerea, Fusarium oxysporum f.sp. lycopersici, Phytophthora capsici and Pseudomonas syringae pv. tomato). The role of ethylene (ET) in the phenomenon and in the induction by wounding of several markers of defense was investigated by using the never-ripe tomato mutant plants impaired in ET perception. We showed that PINIIb, PR1b, PR5, PR7 and peroxidase (POD) are influenced locally and/or systemically by wounding and, with the exception of POD activity, by ET perception. We also demonstrated that ET, although not essential, is positively (B. cinerea, P. capsici) or negatively (F. oxysporum, P. syringae pv. tomato) involved not only in basal but also in wound-induced resistance to each pathogen.  相似文献   

16.
Abuqamar S  Chai MF  Luo H  Song F  Mengiste T 《The Plant cell》2008,20(7):1964-1983
The tomato protein kinase 1 (TPK1b) gene encodes a receptor-like cytoplasmic kinase localized to the plasma membrane. Pathogen infection, mechanical wounding, and oxidative stress induce expression of TPK1b, and reducing TPK1b gene expression through RNA interference (RNAi) increases tomato susceptibility to the necrotrophic fungus Botrytis cinerea and to feeding by larvae of tobacco hornworm (Manduca sexta) but not to the bacterial pathogen Pseudomonas syringae. TPK1b RNAi seedlings are also impaired in ethylene (ET) responses. Notably, susceptibility to Botrytis and insect feeding is correlated with reduced expression of the proteinase inhibitor II gene in response to Botrytis and 1-aminocyclopropane-1-carboxylic acid, the natural precursor of ET, but wild-type expression in response to mechanical wounding and methyl-jasmonate. TPK1b functions independent of JA biosynthesis and response genes required for resistance to Botrytis. TPK1b is a functional kinase with autophosphorylation and Myelin Basis Protein phosphorylation activities. Three residues in the activation segment play a critical role in the kinase activity and in vivo signaling function of TPK1b. In sum, our findings establish a signaling role for TPK1b in an ET-mediated shared defense mechanism for resistance to necrotrophic fungi and herbivorous insects.  相似文献   

17.
18.
Polyamines, ubiquitous organic aliphatic cations, have been implicated in a myriad of physiological and developmental processes in many organisms, but their in vivo functions remain to be determined. We expressed a yeast S-adenosylmethionine decarboxylase gene (ySAMdc; Spe2) fused with a ripening-inducible E8 promoter to specifically increase levels of the polyamines spermidine and spermine in tomato fruit during ripening. Independent transgenic plants and their segregating lines were evaluated after cultivation in the greenhouse and in the field for five successive generations. The enhanced expression of the ySAMdc gene resulted in increased conversion of putrescine into higher polyamines and thus to ripening-specific accumulation of spermidine and spermine. This led to an increase in lycopene, prolonged vine life, and enhanced fruit juice quality. Lycopene levels in cultivated tomatoes are generally low, and increasing them in the fruit enhances its nutrient value. Furthermore, the rates of ethylene production in the transgenic tomato fruit were consistently higher than those in the nontransgenic control fruit. These data show that polyamine and ethylene biosynthesis pathways can act simultaneously in ripening tomato fruit. Taken together, these results provide the first direct evidence for a physiological role of polyamines and demonstrate an approach to improving nutritional quality, juice quality, and vine life of tomato fruit.  相似文献   

19.
S-adenosylmethionine decarboxylase activity (SAMDC; EC 4.1.1.21) leads to spermidine and spermine synthesis through specific synthases which use putrescine, spermidine and decarboxylated S-adenosylmethionine as substrates. In order to better understand the regulation of polyamine (PA), namely spermidine and spermine, biosynthesis, a SAMDC cDNA of Datura stramonium was introduced in tobacco (Nicotiana tabacum L. cv. Xanthi) in antisense orientation under the CaMV 35S promoter, by means of Agrobacterium tumefaciens and leaf disc transformation. The effect of the genetic manipulation on PA metabolism, ethylene production and plant morphology was analysed in primary transformants (R0), and in the transgenic progeny (second generation, R1) of self-fertilised primary transformants, relative to empty vector-transformed (pBin19) and wild-type (WT) controls. All were maintained in vitro by micropropagation. Primary transformants, which were confirmed by Southern and northern analyses, efficiently transcribed the antisense SAMDC gene, but SAMDC activity and PA titres did not change. By contrast, in most transgenic R1 shoots, SAMDC activity was remarkably lower than in controls, and the putrescine-to-spermidine ratio was altered, mainly due to increased putrescine, even though putrescine oxidising activity (diamine oxidase, EC 1.4.3.6) did not change relative to controls. Despite the reduction in SAMDC activity, the production of ethylene, which shares with PAs the common precursor SAM, was not influenced by the foreign gene. Some plants were transferred to pots and acclimatised in a growth chamber. In these in vivo-grown second generation transgenic plants, at the vegetative stage, SAMDC activity was scarcely reduced, and PA titres did not change. Finally, the rhizogenic potential of in vitro-cultured leaf explants excised from antisense plants was significantly diminished as compared with WT ones, and the response to methyl jasmonate, a stress-mimicking compound, in terms of PA conjugation, was higher and differentially affected in transgenic leaf discs relative to WT ones. The effects of SAMDC manipulation are discussed in relation to plant generation, culture conditions and response to stress.  相似文献   

20.
Polyamines play an important role in plant response to abiotic stress. S-adenosyl-I-methionine decarboxylase (SAMDC) is one of the key regulatory enzymes in the biosynthesis of polyamines. In order to better understand the effect of regulation of polyamine biosynthesis on the tolerance of high-temperature stress in tomato, SAMDC Cdna isolated from Saccharomyces cerevisiae was introduced into tomato genome by means of Agrobacterium tumefaciens through leaf disc transformation. Transgene and expression was confirmed by Southern and Northern blot analyses, respectively. Transgenic plants expressing yeast SAMDC produced 1.7- to 2.4-fold higher levels of spermidine and spermine than wild-type plants under high temperature stress, and enhanced antioxidant enzyme activity and the protection of membrane lipid peroxidation was also observed. This subsequently improved the efficiency of CO2 assimilation and protected the plants from high temperature stress, which indicated that the transgenic tomato presented an enhanced tolerance to high temperature stress (38℃) compared with wild-type plants, Our results demonstrated clearly that increasing polyamine biosynthesis in plants may be a means of creating high temperature-tolerant germplasm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号