首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Leaf-cutting ants belonging to the tribe Attini are major herbivores and important agriculture pests in the neotropics, these ants being thought to feed on the sap which exudes from the plant material which they cut and also on the mycelium of a symbiotic fungus that grows on plant material inside their nests in what is called "the fungus garden". However, we have found that the survival of Atta sexdens worker ants on leaves, on mycelium of the ants' symbiotic fungus, Leucoagaricus gongylophorus, or on plant polysaccharides was the same as that of starved A. sexdens, while, conversely, significantly longer survival was achieved by ants fed on the fungus garden material or on some of the products (especially glucose) of the hydrolysis of plant polysaccharides. We found that the fungus garden contained glucose at a higher concentration than that found in leaves or fungal mycelium, and that this glucose was consumed by the ant to the extent that it was probably responsible for up to 50% of the nutritional needs of the workers. The fungus garden contained polysaccharide degrading enzymes (pectinase, amylase, xylanase and cellulase) in proportions similar to that observed in laboratory cultures of L. gongylophorus. It thus appears that A. sexdens workers obtain a significant part of their nutrients from plant polysaccharide hydrolysis products produced by the action of extracellular enzymes released by L. gongylophorus. In this paper we discuss the symbiotic nutrition strategy of A. sexdens workers and brood and the role played by plant polysaccharides in the nutrition of attine ants.  相似文献   

2.
Leaf-cutting ants have evolved a range of defensive strategies which complicate the use of entomopathogens for their control. One of these behavioral strategies is self-grooming, which increases when ants detect the presence of fungal conidia on their integuments. We have previously shown that insecticides, when used at ultra-low concentrations, can be synergists of entomopathogenic fungi. It is possible that certain insecticides could modify ant behavior in a way that increases the chances of a fungal infection taking hold. The current study investigated the effects of the neonicotinoid insecticide Imidacloprid (IMI) and the entomopathogenic fungus Beauveria bassiana on self-grooming and locomotion behavior of Acromrymex subterraneus subterraneus workers when ants were exposed to the agents separately or together. Initially 10, 20 and 40 ng/insect IMI was topically administered to worker ants. Four hours after administration, the ants were placed into an experimental arena and self-grooming and locomotion behaviors were recorded for 10 min. Separate groups of ants were exposed to filter paper discs impregnated with conidial suspensions and 4 h later their behavior was monitored for 10 min. Subsequently, ants were treated with 10 ng/insect IMI, immediately exposed to fungal suspensions and 4 h later their behavior was monitored. The 10 ng/insect IMI treatment resulted in higher locomotor activity and lower self-grooming when compared to vehicle, 20 ng and 40 ng IMI treatments. Exposure to fungal conidia produced low locomotion and high self-grooming behaviors. The 10 ng IMI + fungal conidia treatment resulted in lower self-grooming and higher locomotion behavior. These alterations caused by a low concentration of IMI could increase ant susceptibility to infection by entomopathogenic fungi and are thus of interest for future tests in the development of integrated pest management strategies.  相似文献   

3.
The fungus-growing ant-microbe mutualism is a classic example of organismal complexity generated through symbiotic association. The ants have an ancient obligate mutualism with fungi they cultivate for food. The success of the mutualism is threatened by specialized fungal parasites (Escovopsis) that consume the cultivated fungus. To defend their nutrient-rich garden against infection, the ants have a second mutualism with bacteria (Pseudonocardia), which produce antibiotics that inhibit the garden parasite Escovopsis. Here we reveal the presence of a fourth microbial symbiont associated with fungus-growing ants: black yeasts (Ascomycota; Phialophora). We show that black yeasts are commonly associated with fungus-growing ants, occurring throughout their geographical distribution. Black yeasts grow on the ants' cuticle, specifically localized to where the mutualistic bacteria are cultured. Molecular phylogenetic analyses reveal that the black yeasts form a derived monophyletic lineage associated with the phylogenetic diversity of fungus growers. The prevalence, distribution, localization and monophyly indicate that the black yeast is a fifth symbiont within the attine ant-microbe association, further exemplifying the complexity of symbiotic associations.  相似文献   

4.
Herbivores gain access to nutrients stored in plant biomass largely by harnessing the metabolic activities of microbes. Leaf-cutter ants of the genus Atta are a hallmark example; these dominant neotropical herbivores cultivate symbiotic fungus gardens on large quantities of fresh plant forage. As the external digestive system of the ants, fungus gardens facilitate the production and sustenance of millions of workers. Using metagenomic and metaproteomic techniques, we characterize the bacterial diversity and physiological potential of fungus gardens from two species of Atta. Our analysis of over 1.2 Gbp of community metagenomic sequence and three 16S pyrotag libraries reveals that in addition to harboring the dominant fungal crop, these ecosystems contain abundant populations of Enterobacteriaceae, including the genera Enterobacter, Pantoea, Klebsiella, Citrobacter and Escherichia. We show that these bacterial communities possess genes associated with lignocellulose degradation and diverse biosynthetic pathways, suggesting that they play a role in nutrient cycling by converting the nitrogen-poor forage of the ants into B-vitamins, amino acids and other cellular components. Our metaproteomic analysis confirms that bacterial glycosyl hydrolases and proteins with putative biosynthetic functions are produced in both field-collected and laboratory-reared colonies. These results are consistent with the hypothesis that fungus gardens are specialized fungus–bacteria communities that convert plant material into energy for their ant hosts. Together with recent investigations into the microbial symbionts of vertebrates, our work underscores the importance of microbial communities in the ecology and evolution of herbivorous metazoans.  相似文献   

5.
Ant-fungus associations are well known from attine ants, whose nutrition is based on a symbiosis with basidiomycete fungi. Otherwise, only a few non-nutritional ant-fungus associations have been recorded to date. Here we focus on one of these associations involving Allomerus plant-ants that build galleried structures on their myrmecophytic hosts in order to ambush prey. We show that this association is not opportunistic because the ants select from a monophyletic group of closely related fungal haplotypes of an ascomycete species from the order Chaetothyriales that consistently grows on and has been isolated from the galleries. Both the ants' behaviour and an analysis of the genetic population structure of the ants and the fungus argue for host specificity in this interaction. The ants' behaviour reveals a major investment in manipulating, growing and cleaning the fungus. A molecular analysis of the fungus demonstrates the widespread occurrence of one haplotype and many other haplotypes with a lower occurrence, as well as significant variation in the presence of these fungal haplotypes between areas and ant species. Altogether, these results suggest that such an interaction might represent an as-yet undescribed type of specific association between ants and fungus in which the ants cultivate fungal mycelia to strengthen their hunting galleries.  相似文献   

6.
The production of enzymes and the colonization of leaves by Leucoagaricus gongylophorus were investigated to further understand the digestive interactions of leaf-cutting ant colonies. The enzymes detected were indicative of a saprophytic origin of this fungus, producing all the enzymes necessary for plant tissue breakdown. Enhanced activities of certain enzymes in the fungus garden extracts may be due to the particular behaviour of the adult worker ants that concentrate fungal acquired enzymes in the rectal fluid and subsequently defaecate these enzymes onto the leaves. The production of chitinases by the fungus may be an ancestral vestige of lower attines, and may have a role as agonists of invading microbes. Growth of the fungus on plant cell wall medium resulted in highest enzyme activity against pectin, reflecting the fact that polygalacturonans comprise the main matrix of the primary plant cell wall. SEM shows that L. gongylophorus does not form specialized structures for cell wall penetration, but gains access to the inner plant tissue at the cut edges of the leaf fragments. Enzymes secreted by the fungus were compared to those seen in larval and adult leaf-cutting ants, demonstrating the inter-dependence of the symbiotic relationship between the ants and their fungi.  相似文献   

7.
Bait made from orange peel, containing the fungicide cycloheximide, was initially harvested by workers of Atta sexdens rubropilosa (Forel) and incorporated into the fungus garden as substrate for the fungus. The bait was subsequently rejected by the worker ants days later. Exposure of the fungus to cycloheximide, in laboratory sub-colonies, resulted in the fungus being ‘stressed’. By interchanging normal fungus garden with ‘stressed’ fungus garden, a change in the foraging behaviour of the workers was evident. –Two hypotheses to explain the behavioural changes were tested: a volatile semiochemical is produced by the fungus which affects the foragers directly, or contact between workers (and fungus garden) is necessary for information regarding fungal substrate to be transmitted through the worker force. When pairs of sub-colonies were connected (one colony of each pair exposed to cycloheximide in the bait) and workers were initially prevented from passing from one colony to the other, one colony continued to forage on orange bait while the other did not. When both colonies were allowed to make full contact then both colonies failed to accept orange bait. This discounted the first hypothesis, but supported the second, as a highly volatile chemical should be able to diffuse between colonies. When large foragers were prevented from making contact with the second colony, the information may be communicated by smaller workers.  相似文献   

8.
Interactions among the component members of different symbioses are not well studied. For example, leaf-cutting ants maintain an obligate symbiosis with their fungal garden, while the leaf material they provide to their garden is usually filled with endophytic fungi. The ants and their cultivar may interact with hundreds of endophytic fungal species, yet little is known about these interactions. Experimental manipulations showed that (i) ants spend more time cutting leaves from a tropical vine, Merremia umbellata, with high versus low endophyte densities, (ii) ants reduce the amount of endophytic fungi in leaves before planting them in their gardens, (iii) the ants'' fungal cultivar inhibits the growth of most endophytes tested. Moreover, the inhibition by the ants'' cultivar was relatively greater for more rapidly growing endophyte strains that could potentially out-compete or overtake the garden. Our results suggest that endophytes are not welcome in the garden, and that the ants and their cultivar combine ant hygiene behaviour with fungal inhibition to reduce endophyte activity in the nest.  相似文献   

9.
The mutualism between leaf-cutting ants and their fungal symbionts revolves around processing and inoculation of fresh leaf pulp in underground fungus gardens, mediated by ant fecal fluid deposited on the newly added plant substrate. As herbivorous feeding often implies that growth is nitrogen limited, we cloned and sequenced six fungal proteases found in the fecal fluid of the leaf-cutting ant Acromyrmex echinatior and identified them as two metalloendoproteases, two serine proteases and two aspartic proteases. The metalloendoproteases and serine proteases showed significant activity in fecal fluid at pH values of 5–7, but the aspartic proteases were inactive across a pH range of 3–10. Protease activity disappeared when the ants were kept on a sugar water diet without fungus. Relative to normal mycelium, both metalloendoproteases, both serine proteases and one aspartic protease were upregulated in the gongylidia, specialized hyphal tips whose only known function is to provide food to the ants. These combined results indicate that the enzymes are derived from the ingested fungal tissues. We infer that the five proteases are likely to accelerate protein extraction from plant cells in the leaf pulp that the ants add to the fungus garden, but regulatory functions such as activation of proenzymes are also possible, particularly for the aspartic proteases that were present but without showing activity. The proteases had high sequence similarities to proteolytic enzymes of phytopathogenic fungi, consistent with previous indications of convergent evolution of decomposition enzymes in attine ant fungal symbionts and phytopathogenic fungi.  相似文献   

10.
Abstract. 1. The workers and queen of the leaf-cutting ant Atta cephalotes fed on the juice of swollen hyphae (staphylae) produced by their cultivated fungus, but neither obtained sufficient energy from this source for their respiratory needs. The number of staphylae eaten by workers increased with worker size but was not enough to satisfy their energy requirements.
2. Larvae fed on whole staphylae and staphylae previously chewed by workers, and obtained sufficient energy from this source for respiration and growth. No evidence of feeding on fungus hyphae or of trophallaxis between worker and larvae was found. Larvae preferred staphylae to hyphae when fed them artificially and they gained more weight on the former.
3. Worker ants imbibed plant sap during the preparation of plant material for the fungus garden and the uptake of carbohydrate during this process was sufficient to supply their energy needs for approximately 24 h.
4. Staphylae were richer in lipid and carbohydrate, and poorer in protein than ant fungal hyphae.
5. The number of staphylae produced by the fungus gardens of two small nests was comparable with the observed consumption rate but would provide only about 4% of the nest's respiratory requirements.
6. In the light of these findings, a revised view of the role of the fungus in the diet of the ant is discussed.  相似文献   

11.
The attine ants are a monophyletic lineage that switched to fungus farming ca. 55–60 MYA. They have become a model for the study of complex symbioses after additional fungal and bacterial symbionts were discovered, but their abdominal endosymbiotic bacteria remain largely unknown. Here, we present a comparative microbiome analysis of endosymbiotic bacteria spanning the entire phylogenetic tree. We show that, across 17 representative sympatric species from eight genera sampled in Panama, abdominal microbiomes are dominated by Mollicutes, α‐ and γ‐Proteobacteria, and Actinobacteria. Bacterial abundances increase from basal to crown branches in the phylogeny reflecting a shift towards putative specialized and abundant abdominal microbiota after the ants domesticated gongylidia‐bearing cultivars, but before the origin of industrial‐scale farming based on leaf‐cutting herbivory. This transition coincided with the ancestral single colonization event of Central/North America ca. 20 MYA, documented in a recent phylogenomic study showing that almost the entire crown group of the higher attine ants, including the leaf‐cutting ants, evolved there and not in South America. Several bacterial species are located in gut tissues or abdominal organs of the evolutionarily derived, but not the basal attine ants. The composition of abdominal microbiomes appears to be affected by the presence/absence of defensive antibiotic‐producing actinobacterial biofilms on the worker ants' cuticle, but the significance of this association remains unclear. The patterns of diversity, abundance and sensitivity of the abdominal microbiomes that we obtained explore novel territory in the comparative analysis of attine fungus farming symbioses and raise new questions for further in‐depth research.  相似文献   

12.
The selective forces that shape and maintain eusocial societies are an enduring puzzle in evolutionary biology. Ordinarily sterile workers can usually reproduce given the right conditions, so the factors regulating reproductive division of labour may provide insight into why eusociality has persisted over evolutionary time. Queen-produced pheromones that affect worker reproduction have been implicated in diverse taxa, including ants, termites, wasps and possibly mole rats, but to date have only been definitively identified in the honeybee. Using the black garden ant Lasius niger, we isolate the first sterility-regulating ant queen pheromone. The pheromone is a cuticular hydrocarbon that comprises the majority of the chemical profile of queens and their eggs, and also affects worker behaviour, by reducing aggression towards objects bearing the pheromone. We further show that the pheromone elicits a strong response in worker antennae and that its production by queens is selectively reduced following an immune challenge. These results suggest that the pheromone has a central role in colony organization and support the hypothesis that worker sterility represents altruistic self-restraint in response to an honest quality signal.  相似文献   

13.
Fungus-growing ants (tribe Attini) engage in a mutualism with a fungus that serves as the ants' primary food source, but successful fungus cultivation is threatened by microfungal parasites (genus Escovopsis). Actinobacteria (genus Pseudonocardia) associate with most of the phylogenetic diversity of fungus-growing ants; are typically maintained on the cuticle of workers; and infection experiments, bioassay challenges and chemical analyses support a role of Pseudonocardia in defence against Escovopsis through antibiotic production. Here we generate a two-gene phylogeny for Pseudonocardia associated with 124 fungus-growing ant colonies, evaluate patterns of ant-Pseudonocardia specificity and test Pseudonocardia antibiotic activity towards Escovopsis. We show that Pseudonocardia associated with fungus-growing ants are not monophyletic: the ants have acquired free-living strains over the evolutionary history of the association. Nevertheless, our analysis reveals a significant pattern of specificity between clades of Pseudonocardia and groups of related fungus-growing ants. Furthermore, antibiotic assays suggest that despite Escovopsis being generally susceptible to inhibition by diverse Actinobacteria, the ant-derived Pseudonocardia inhibit Escovopsis more strongly than they inhibit other fungi, and are better at inhibiting this pathogen than most environmental Pseudonocardia strains tested. Our findings support a model that many fungus-growing ants maintain specialized Pseudonocardia symbionts that help with garden defence.  相似文献   

14.
The fungal cultivars of fungus‐growing ants are vertically transmitted by queens but not males. Selection would therefore favor cultivars that bias the ants’ sex ratio towards gynes, beyond the gyne bias that is optimal for workers and queens. We measured sex allocation in 190 colonies of six sympatric fungus‐growing ant species. As predicted from relatedness, female bias was greater in four singly mated Sericomyrmex and Trachymyrmex species than in two multiply mated Acromyrmex species. Colonies tended to raise mainly a single sex, which could be partly explained by variation in queen number, colony fecundity, and fungal garden volume for Acromyrmex and Sericomyrmex, but not for Trachymyrmex. Year of collection, worker number and mating frequency of Acromyrmex queens did not affect the colony sex ratios. We used a novel sensitivity analysis to compare the population sex allocation ratios with the theoretical queen and worker optima for a range of values of k, the correction factor for sex differences in metabolic rate and fat content. The results were consistent with either worker or queen control, but never with fungal control for any realistic value of k. We conclude that the fungal symbiont does not distort the ants’ sex ratio in these species.  相似文献   

15.
To combat disease, most fungus-growing ants (Attini) use antibiotics from mutualistic bacteria (Pseudonocardia) that are cultured on the ants'' exoskeletons and chemical cocktails from exocrine glands, especially the metapleural glands (MG). Previous work has hypothesized that (i) Pseudonocardia antibiotics are narrow-spectrum and control a fungus (Escovopsis) that parasitizes the ants'' fungal symbiont, and (ii) MG secretions have broad-spectrum activity and protect ants and brood. We assessed the relative importance of these lines of defence, and their activity spectra, by scoring abundance of visible Pseudonocardia for nine species from five genera and measuring rates of MG grooming after challenging ants with disease agents of differing virulence. Atta and Sericomyrmex have lost or greatly reduced the abundance of visible bacteria. When challenged with diverse disease agents, including Escovopsis, they significantly increased MG grooming rates and expanded the range of targets. By contrast, species of Acromyrmex and Trachymyrmex maintain abundant Pseudonocardia. When challenged, these species had lower MG grooming rates, targeted primarily to brood. More elaborate MG defences and reduced reliance on mutualistic Pseudonocardia are correlated with larger colony size among attine genera, raising questions about the efficacy of managing disease in large societies with chemical cocktails versus bacterial antimicrobial metabolites.  相似文献   

16.
In ant-plant symbioses, plants provide symbiotic ants with food and specialized nesting cavities (called domatia). In many ant-plant symbioses, a fungal patch grows within each domatium. The symbiotic nature of the fungal association has been shown in the ant-plant Leonardoxa africana and its protective mutualist ant Petalomyrmex phylax. To decipher trophic fluxes among the three partners, food enriched in (13)C and (15)N was given to the ants and tracked in the different parts of the symbiosis up to 660 days later. The plant received a small, but significant, amount of nitrogen from the ants. However, the ants fed more intensively the fungus. The pattern of isotope enrichment in the system indicated an ant behaviour that functions specifically to feed the fungus. After 660 days, the introduced nitrogen was still present in the system and homogeneously distributed among ant, plant and fungal compartments, indicating efficient recycling within the symbiosis. Another experiment showed that the plant surface absorbed nutrients (in the form of simple molecules) whether or not it is coated by fungus. Our study provides arguments for a mutualistic status of the fungal associate and a framework for investigating the previously unsuspected complexity of food webs in ant-plant mutualisms.  相似文献   

17.
The leaves of fescue grasses are protected from herbivores by the production of loline alkaloids by the mutualist fungal endophytes Neotyphodium sp. or Epichloë sp. Most bacteria that reside on the leaf surface of such grasses can consume these defensive chemicals. Loline-consuming bacteria are rare on the leaves of other plant species. Several bacterial species including Burkholderia ambifaria recovered from tall fescue could use N-formyl loline as a sole carbon and nitrogen source in culture and achieved population sizes that were about eightfold higher when inoculated onto plants harboring loline-producing fungal endophytes than on plants lacking such endophytes or which were colonized by fungal variants incapable of loline production. In contrast, mutants of B. ambifaria and other bacterial species incapable of loline catabolism achieved similarly low population sizes on tall fescue colonized by loline-producing Neotyphodium sp. and on plants lacking this endophytic fungus. Lolines that are released onto the surface of plants benefiting from a fungal mutualism thus appear to be a major resource that can be exploited by epiphytic bacteria, thereby driving the establishment of a characteristic bacterial community on such plants.  相似文献   

18.
Ants and termites have independently evolved obligate fungus-farming mutualisms, but their gardening procedures are fundamentally different, as the termites predigest their plant substrate whereas the ants deposit it directly on the fungus garden. Fungus-growing termites retained diverse gut microbiota, but bacterial gut communities in fungus-growing leaf-cutting ants have not been investigated, so it is unknown whether and how they are specialized on an exclusively fungal diet. Here we characterized the gut bacterial community of Panamanian Acromyrmex species, which are dominated by only four bacterial taxa: Wolbachia, Rhizobiales, and two Entomoplasmatales taxa. We show that the Entomoplasmatales can be both intracellular and extracellular across different gut tissues, Wolbachia is mainly but not exclusively intracellular, and the Rhizobiales species is strictly extracellular and confined to the gut lumen, where it forms biofilms along the hindgut cuticle supported by an adhesive matrix of polysaccharides. Tetracycline diets eliminated the Entomoplasmatales symbionts but hardly affected Wolbachia and only moderately reduced the Rhizobiales, suggesting that the latter are protected by the biofilm matrix. We show that the Rhizobiales symbiont produces bacterial NifH proteins that have been associated with the fixation of nitrogen, suggesting that these compartmentalized hindgut symbionts alleviate nutritional constraints emanating from an exclusive fungus garden diet reared on a substrate of leaves.  相似文献   

19.
Recent declines in bee populations coupled with advances in DNA-sequencing technology have sparked a renaissance in studies of bee-associated microbes. Megachile rotundata is an important field crop pollinator, but is stricken by chalkbrood, a disease caused by the fungus Ascosphaera aggregata. To test the hypothesis that some gut microbes directly or indirectly affect the growth of others, we applied four treatments to the pollen provisions of M. rotundata eggs and young larvae: antibacterials, antifungals, A. aggregata spores and a no-treatment control. We allowed the larvae to develop, and then used 454 pyrosequencing and quantitative PCR (for A. aggregata) to investigate fungal and bacterial communities in the larval gut. Antifungals lowered A. aggregata abundance but increased the diversity of surviving fungi. This suggests that A. aggregata inhibits the growth of other fungi in the gut through chemical or competitive interaction. Bacterial richness decreased under the antifungal treatment, suggesting that changes in the fungal community caused changes in the bacterial community. We found no evidence that bacteria affect fungal communities. Lactobacillus kunkeei clade bacteria were common members of the larval gut microbiota and exhibited antibiotic resistance. Further research is needed to determine the effect of gut microbes on M. rotundata health.  相似文献   

20.
The interactions between bacteria and fungi, the main actors of the soil microbiome, remain poorly studied. Here, we show that the saprotrophic and ectomycorrhizal soil fungus Morchella crassipes acts as a bacterial farmer of Pseudomonas putida, which serves as a model soil bacterium. Farming by M. crassipes consists of bacterial dispersal, bacterial rearing with fungal exudates, as well as harvesting and translocation of bacterial carbon. The different phases were confirmed experimentally using cell counting and 13C probing. Common criteria met by other non-human farming systems are also valid for M. crassipes farming, including habitual planting, cultivation and harvesting. Specific traits include delocalization of food production and consumption and separation of roles in the colony (source versus sink areas), which are also found in human agriculture. Our study evidences a hitherto unknown mutualistic association in which bacteria gain through dispersal and rearing, while the fungus gains through the harvesting of an additional carbon source and increased stress resistance of the mycelium. This type of interaction between fungi and bacteria may play a key role in soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号