首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
One of the products of bacteriophage G4 DNA replication late in the infectious process is an open-circular, duplex replicative form DNA, RFII. These molecules contain a single discontinuity located at a specific site in the viral strand. Limited enzymatic repair of such RFII molecules with 32P-labeled deoxyribonucleoside triphosphates specifically labels restriction fragments HpaII A, HaeIII Z2, Hind(II and III) A and Hind(II and III) D2 and places the 3′OH terminus of the viral strand at a point approximately half-way round the genome from the single EcoRI site.These results taken together with the in vitro localization of the origin of the complementary strand at a point close to the EcoRI site (Zechel et al., 1975) suggest that G4 replicates by a mechanism involving distinct and widely separated origins of the individual strands (e.g., a displacement-loop mechanism).  相似文献   

2.
Separation of the complementary strands of adenovirus type 2 DNA by poly(U,G)-CsCl density gradient centrifugation permitted studies of Ad23 DNA renaturation with independently variable concentrations of each complementary strand. Single-stranded DNA was isolated by hydroxylapatite chromatography following exhaustive incubation under such conditions, and was found to selectively represent sequences of the complement present in excess during the incubation. This result was exploited in a general method for isolation of complementary strand-specific sequences of radioactively labeled Ad2 DNA or restriction enzyme fragments of Ad2 DNA. Liquid phase saturation-hybridization experiments were carried out with labeled DNA representing each complementary strand of the six endo R.EcoRI cleavage fragments of Ad2 DNA and unlabeled messenger RNA prepared from HeLa cells late after productive infections with Ad2. The results were combined with the known endo R.EcoRI cleavage map of Ad2 DNA to construct a low-resolution map showing physically separated regions, on both complementary strands of Ad2 DNA, represented in mRNA late after infection.  相似文献   

3.
The periodicities of the restriction enzyme cleavage sites in highly repetitive DNAs of six mammalian species (monkey, mouse, sheep, human, calf and rat) appear related to the length of DNA contained in the nucleosome subunit of chromatin. We suggest that the nucleosome structure is an essential element in the generation and evolution of repeated DNA sequences in mammals (Brown et al., 1978; Maio et al., 1977). The possibility of a phase relation between DNA repeat sequences and associated nucleosome proteins is consistent with this hypothesis and has been tested by restriction enzyme and micrococcal nuclease digestions of repetitive DNA sequences in isolated, intact nuclei.Sites for four different restriction enzyme activities, EcoRI, EcoRI1, HindIII and HaeIII have been mapped within the repeat unit of component α DNA, a highly repetitive DNA fraction of the African green monkey. The periodicity of cleavage sites for each of the enzymes (176 ± 4 nucleotide base-pairs) corresponds closely to the periodicity (about 185 nucleotide base-pairs) of the sites attacked in the initial stages of micrococcal nuclease digestion of nuclear chromatin. In intact monkey nuclei, EcoRI-RI1 sites are accessible to restriction enzyme cleavage; the HindIII and HaeIII sites are not. The results suggest (1) that, in component α chromatin, the EcoRI-RI1 sites are found at the interstices of adjacent nucleosomes and (2) the HindIII and HaeIII sites are protected from cleavage by their location on the protein core of the nucleosome. This interpretation was confirmed by experiments in which DNA segments of mononucleosomes and nucleosome cores released from CV-1 nuclei by micrococcal nuclease were subsequently treated with EcoRI, EcoRI1 and HindIII. A major secondary segment of component α, about 140 nucleotide base-pairs in length, was released only by treatment with HindIII, in keeping with the location of the HindIII sites in the restriction map and their resistance to cleavage in intact nuclei.EcoRI reduces calf satellite I DNA to a segment of about 1408 nucleotide basepairs. In contrast, restriction of calf satellite I DNA with EcoRI1 produces six prominent segments ranging in size from 176 to 1408 nucleotide base-pairs. Treatment of isolated calf nuclei with either EcoRI or EcoRI1 did not produce segments shorter than 1408 base-pairs, indicating that while canonical EcoRI sites are accessible to attack, the irregularly spaced EcoRI1 sites are specifically blocked. The results are consistent with a phase relation between the repeat sequence of calf satellite I DNA and an octameric array of nucleosomes.  相似文献   

4.
Restriction analysis of the duplex replicative forms of four cloned M13 miniphage indicates that all species examined contain a single copy of the intergenic space between genes II and IV plus one or more copies of a portion of the genome extending from within gene IV to a site in the HaeIII G fragment within the intergenic space. Both the viral and the complementary strand origins of replication have been localized previously within the 160 base-pair HaeIII G fragment. Since reiteration of a portion of the HaeIII G fragment could possibly lead to phages having multiple copies of the origin of replication, we have determined the location of the viral strand origin-terminus in M13 miniphage by mapping the position of the discontinuity(ies) in mini-RFII3 molecules isolated during asymmetric viral strand synthesis. Limited repair of late life-cycle mini-RFII molecules with DNA polymerase I in the presence of labeled deoxynucleoside triphosphates followed by restriction analysis demonstrates that the discontinuity in the RFII is contained at a unique site within the single HaeIII G fragment. The absence of a discontinuity in the reiterated DNA sequence containing only a portion of the HaeIII G fragment indicates that the reiterations of the origin region do not include the entire sequence specifying the viral strand origin-terminus.  相似文献   

5.
The complementary strands of fragments of 32P-labelled adenovirus 2 DNA generated by cleavage with restriction endonucleases EcoRI or Hpa1 were separated by electrophoresis. Saturation hybridization reactions were performed between these fragment strands and unlabelled RNA extracted from the cytoplasm of adenovirus 2-transformed rat embryo cells or from human cells early after adenovirus 2 infection. The fraction of each fragment strand complementary to RNA from these sources was measured by chromatography on hydroxylapatite. Maps of the viral DNA sequences complementary to messenger RNA in different lines of transformed cells and early during lytic infection of human cells were constructed.Five lines of adenovirus 2-transformed cells were examined. All contained the same RNA sequences, complementary to about 10% of the light strand of EcoRI fragment A. DNA sequences coding for this RNA were more precisely located using Hpa1 fragments E and C and mapped at the left-hand end of the genome. Thus any viral function expressed in all adenovirus 2-transformed cells, tumour antigen, for example, must be coded by this region of the viral genome. Two lines, F17 and F18, express only these sequences; two others, 8617 and REM, also contain mRNA complementary to about 7% of the heavy strand of the right-hand end of adenovirus 2 DNA; a fifth line, T2C4, contains these and many additional viral RNA sequences in its cytoplasm.The viral RNA sequences found in all lines of transformed cells are also present in the cytoplasm of human cells during the early phase of a lytic adenovirus infection. The additional cytoplasmic sequences in the 8617 and REM cell lines also correspond to “early” RNA sequences.  相似文献   

6.
A procedure for investigating the possibility of small amounts of partial DNA sequence homology between two defined DNA molecules has been developed and used to test for sequence homology between simian virus 40 and polyoma DNAs. This procedure, which does not necessitate the use of separated viral DNA strands, involves the construction of hybrid DNA molecules containing a simian virus 40 DNA molecule covalently joined to a polyoma DNA molecule, using the sequential action of EcoRI restriction endonuclease and Escherichia coli DNA ligase. Denaturation of such hybrid DNA molecules then makes it possible to examine intramolecularly rather than intermolecularly renatured molecules. Visualization of these intramolecularly renatured “snapback” molecules with duplex regions of homology by electron microscopy reveals a 15% region of weak sequence homology. This region is denatured at about 35 °C below the melting temperature of simian virus 40 DNA and therefore corresponds to about 75% homology. This region was mapped on both the simian virus 40 and polyoma genomes by the use of Hemophilus parainfluenzae II restriction endonuclease cleavage of the simian virus 40 DNA prior to EcoRI cleavage and construction of the hybrid molecule. The 15% region of weak homology maps immediately to the left of the EcoRI restriction endonuclease cleavage site in the simian virus 40 genome and halfway around from the EcoRI restriction endonuclease cleavage site in the polyoma genome.  相似文献   

7.
Serial passage of the non-defective form of a simian virus 40-like virus (DAR) isolated from human brain results in the appearance of three distinct classes of supercoiled DNAs: RI resistant, RI sensitive (one cleavage site) and RI “supersensitive” (three cleavage sites). The RI cleavage product of the “super sensitive” form is one-third the physical size of simian virus 40 DNA (10.4 S) and reassociates about three times more rapidly than “standard” viral DNA. To identify the portions of the DAR genome present in the 10.4 S segment, the plus strand of each of the 11 fragments of 32P-labeled simian virus 40 DNA, produced by cleavage with the Hemophilus influenzae restriction endonuclease, was hybridized in solution with the sheared RI cleavage product of the “supersensitive” class of viral DNA. Reaction was observed with fragments located in two distinct regions of the simian virus 40 genome: (1) Hin-A and C; (2) Hin-G, J, F and K.Further studies indicated that simian virus 40 complementary RNA transcribed in vitro with Escherichia coli RNA polymerase from one strand of simian virus 40 DNA reacts with both strands of the denatured 10.4 S cleavage product when hybridization is monitored with hydroxyapatite. Treatment of the 10.4 S DNA-simian virus 40 cRNA hybrid with the single-strand spcific nuclease, S1, converted approximately 50% of the radioactive counts to an acid-soluble product. These results indicate that the 10.4 S product contains a transposition of sequences originally present on one of the DAR DNA strands to the other strand. Examination of heteroduplexes formed between the 10.4 S segment and unique linear forms of DAR DNA produced with the R · Eco RI restriction endonuclease have confirmed these observations. Thus it appears that a molecular rearrangement(s) has resulted in the recombination and inversion of viral DNA sequences from two separate loci on the parental DAR genome. This 1.1 × 106 dalton segment is reiterated three times in a supercoiled molecule equivalent in physical size to parental DAR DNA.  相似文献   

8.
Restriction ondonuclease EcoRI was used to study the structure of the free ribosomal DNA molecules from Tetrahymena pyriformis, strain GL. From the following observations we conclude that the free rDNA molecules from Tetrahymena are giant palindromes3, each containing two genes for preribosomal RNA arranged in rotational symmetry as inverted repeating sequences. Analyses of the sizes of products of partial or complete digestion and quantitative analyses of the products of complete digestion of uniformly 32P-labeled rDNA yielded an RI endonucleolytic cleavage map which showed that the EcoRI recognition sites are arranged symmetrically about the center of the rDNA molecule.When heat-denatured rDNA was rapidly cooled under conditions in which no renaturation would occur between separated complementary strands of DNA, molecules of half the size of the original rDNA molecule were produced. These were double-stranded DNA molecules as evidenced by their resistance to digestion with S1 nuclease. Moreover, they could be digested with EcoRI to produce fragments of sizes which would be predicted from the assumption that each single strand of the original rDNA molecule had folded back on itself to form a “hair-pin” double-stranded DNA structure. Hybridization experiments between ribosomal RNA and purified rDNA showed that each rDNA molecule contains two genes for rDNA. Hybridization of the isolated EcoRI fragments of rDNA with 25 S or 17 S rRNA suggested that the two structural genes for 17 S rRNA are located near the center of the rDNA molecule and the two genes for 25 S rRNA are found in distal positions.  相似文献   

9.
10.
A study of sequence homologies in four satellite DNAs of man.   总被引:4,自引:0,他引:4  
Satellites I, II, III and IV (Corneo et al., 1968,1970,1971) have been purified from human male placental DNA. The sequences present in these four DNA components have been characterized by analytical buoyant density, thermal denaturation, DNA reassociation, DNA hybridization and gel electrophoresis coupled with hybridization following either HaeIII or EcoRI restriction endonuclease digestion. Satellites III and IV were found to be virtually indistinguishable by a variety of criteria. Cross-satellite reassociation showed that 40% of the molecules present in satellite III contain sequences that are homologous to 10% of the molecules of either satellite I or satellite II. Reassociated satellite I melts as a single component, as do the hybrid duplexes between satellite I and satellite III. In contrast, reassociated satellites II, III and IV, and the hybrid duplexes formed between satellites II and III and between satellites II and IV, melt as two distinct components with different thermal stabilities.Digestion of satellite III with HaeIII gives rise to a series of fragments whose sizes are 2, 3, 4, 5, 6, 7, 8 and 11 times the size of the smallest 0.17 × 103 basepair fragment, in addition to a 3.4 × 103 base-pair male-specific fragment (Cooke, 1976) and high molecular weight material. The sequences contained in the fragments of the HaeIII ladder are diverged from each other as well as being non-homologous with those of the 3.4 × 103 base-pair and high molecular weight fragments. The latter contain EcoRI recognition sites. Satellite II has a similar pattern of fragments to satellite III following digestion with HaeIII, although it can be distinguished from satellite III on the basis of the products of EcoRI digestion. Satellite I contains neither HaeIII nor EcoRI recognition sites. The cross-satellite homologies of the sequences present in fragments of differing sizes produced by restriction enzyme digestion have also been studied.  相似文献   

11.
α-Satellite DNA from African green monkey cells was analysed with restriction nucleases in some detail confirming and complementing our earlier results. With EcoRI and HaeIII (or BsuRI isoschizomer), about 25 and 10%, respectively, of the satellite DNA were cleaved into a series of fragments of the 172 bp repeat length and multiples thereof. To allow studies with fragments of homogeneous sequence unit length, HindIII fragments were covalently joined with the plasmid pBR313. After transformation 19 clones were obtained, containing up to three monomer fragments. Nine of the clones were characterized by digestion with EcoRI. Three of these had cleavage sites for this nuclease in the satellite DNA portion. In the six clones tested with HaeIII no cleavage site was detected in the cloned DNA. The results are discussed in relation to the nucleotide sequence data recently published by Rosenberg et al. (1978) and in the context of random and nonrandom processes in satellite DNA evolution.  相似文献   

12.
R A Maki  D J Cummings 《Plasmid》1977,1(1):106-114
The mitochondrial DNA from several species of Paramecium aurelia was characterized by its buoyant density, contour length, and cleavage pattern with the restriction endonucleases EcoRI and Hae II. The density and length were the same for all species while the cleavage pattern was unique to each species. In one species the fragments generated by EcoRI were not in equal molar ratios and the amount of an additional fragment appeared to be dependent on the replication stage of the mitochondrial DNA. The uniqueness of each fragmentation pattern was used to identify the mitochondrial DNA in interspecies hybrids.  相似文献   

13.
14.
15.
J G Reilly  C A Thomas 《Plasmid》1980,3(2):109-115
We have studied the mitochondrial DNA in three wild type laboratory strains of Drosophila melanogaster, ry+5 and two Oregon R-substrains, called here R and E. Lengths of the restriction bands for EcoRI, BglII, HpaII, MspI, HaeIII, and HindIII were compared. The number of restriction sites was identical in all strains, with the exception of an extra HaeIII site in ry+5. Careful comparison of restriction fragment lengths showed that bands containing the AT-rich region were different in length among all strains. The laboratory strains, ry+5, proved to be a mixture of strains carrying different mtDNAs; these separated into substrains G1 and G2 in the progeny of single pair matings. Adult progeny of reciprocal crosses of G1 and R were analyzed by HaeIII restriction digestion. The results demonstrated maternal inheritance for both the extra restriction site and band containing the AT-rich region.  相似文献   

16.
The non-defective (heavy) virions from a simian virus 40-like virus (DAR virus) isolated from human brain have been serially passaged at high input multi-plicities in primary monkey kidney cells. The 32P-labeled, progeny DAR-viral genomes have been purified and tested for sensitivity to the RI restriction endouclease from Escherichia coli (Eco RI3 restriction nuclease). The parental DAR-viral genomes share many physical properties with “standard” simian virus 40 DNA and are cleaved once by the Eco RI restriction nuclease. After the fourth serial passage, three populations of genomes could be distinguished: Eco RI resistant, Eco RI sensitive (one cleavage site) and Eco RI “supersensitive” (three, symmetrically-located, cleavage sites). The Eco RI cleavage product of the “supersensitive” form is one-third the physical size (10.4 S) of simian virus 40 DNA and reassociates about three times more rapidly than sheared, denatured simian virus 40 DNA. From the fourth to the eighth serial passages, the genomes containing this specific triplication of viral DNA sequences were selected for and became the predominant viral DNA species.  相似文献   

17.
We have used agarose gel electrophoresis to separate complementary DNA strands obtained from simian virus 40 DNA restriction fragments produced by HindII and III or by EcoRI and HpaII digestion. By modifying existing methods we have virtually eliminated the problematic renaturation of DNA during electrophoresis. This has allowed us to recover large quantities of separated DNA strands (approximately 20 μg of DNA per 12-mm-diameter preparative tube gel). By using a combination of low temperature and low buffer concentration during electrophoresis, we have also significantly improved the resolution of DNA strands.  相似文献   

18.
Highly repeated DNA satellite α sequences from man and chimpanzee (Pan troglodytes) have been compared, using restriction endonucleases. The two species share a 340 base pairs tandemly represented DNA, that is cut once by EcoRt. Pan troglodytes differ from man by loss of the two MboI and EcoRI star sites and by the gain of an Hae III site in the repeated sequence.  相似文献   

19.
Specific fragments of adenovirus type 2 DNA, generated by cleavage with restriction endonucleases endoR.EcoRI, endoR.HpaI and endoR.HindIII were used in hybridization-mapping experiments. The complementary strands of individual cleavage fragments were separated by the method of Tibbetts &; Pettersson (1974). Liquid hybridizations were performed with 32P-labeled separated strands of cleavage fragments and messenger RNA extracted from cells early and late after adenovirus infection. The fraction of each fragment strand which was represented in “early” and “late” messenger RNA was determined by chromatography on hydroxylapatite. Early messenger RNA was found to be derived from four widely separated regions, two on the 1- and two on the h-strand (h- and l- refer to the strand with heavy and light buoyant density in CsCl when complexed with poly(U, G)). Messenger RNA, present exclusively late after infection, is derived from several locations, predominantly from the l-strand with a major block of continuous sequences extending between positions 0.25 and 0.65 on the unit map of the adenovirus type 2 genome.  相似文献   

20.
The five EcoRI2 restriction sites in bacteriophage lambda DNA have been mapped at 0.445, 0.543, 0.656, 0.810, and 0.931 fractional lengths from the left end of the DNA molecule. These positions were determined electron-microscopically by single-site cleavage of hydrogen-bonded circular λ DNA molecules and by cleavage of various DNA heteroduplexes between λ DNA and DNA from well defined λ mutants. The DNA lengths of the EcoRI fragments are in agreement with their electrophoretic mobility on agarose gels but are not in agreement with their mobilities on polyacrylamide gels. These positions are different from those previously published by Allet et al. (1973). Partial cleavage of pure λ DNA by addition of small amounts of EcoRI endonuclease does not lead to random cleavage between molecules. Also, the first site cleaved is not randomly distributed among the five sites within a molecule. The site nearest the right end is cleaved first about ten times more frequently than either of the two center sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号