首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
We are studying the tissue-specific expression of the sheep milk-whey protein gene, β-lactoglobulin. We have used sequences derived from this gene to target the expression of biomedical proteins into milk with the intention to exploit this technology in transgenic sheep as a means of protein production. In the present study, a series of β-lactoglobulin hybrid genes and β-lactoglobulin minigenes were evaluated for expression in the mammary gland of transgenic mice. In particular, we have assessed whether there is a requirement for introns for efficient transgene expression in the mammary gland, since the coding sequences of many candidate proteins are available only as cDNAs. The results suggest that the inclusion of natural introns in constructs can enhance the efficiency of transgene expression. Thus, a hybrid construct comprising 4.3 kb of the immediate 5′ flanking sequences of β-lactoglobulin fused to a genomic minigene encoding human α-antitrypsin (α1AT) was expressed much more efficiently than an α1AT-cDNA construct containing the same β-lactoglobulin segment. Similarly, the intact β-lactoglobulin gene was expressed more efficiently than the corresponding intronless β-lactoglobulin minigene. This effect was not seen in transient expression expriments in baby hamster kidney cells when β-lactoglobulin-α1AT constructs were driven by SV40 enhancer sequences. The effect cannot be explained by a simple requirement for splicing, since the inclusion of the first β-lactoglobulin intron into cDNA constructs encoding human α1AT or β-lactoglobulin itself failed to enhance the efficiency of transgene expression. It is concluded that sequence elements within introns may interact with the upstream 5′ flanking sequences of β-lactoglobulin and enable the latter to function efficiently in the mammary gland of transgenic mice.  相似文献   

3.
A mechanism describing the denaturation and aggregation behavior during heat-treatment of pure β-lactoglobulin and β-lactoglobulin in whey protein isolate (WPI) under selected conditions (20 to 90 gL−1 in water at pH 7.0, 78 °C) is presented. A combination of reversed-phase and gel permeation chromatography was used to study the disappearance of native β-lactoglobulin and the formation of non-native intermediates in the aggregation process. The mean reaction order for pure β-lactoglobulin and β-lactoglobulin in WPI were the same, 1.4. While the rate of β-lactoglobulin denaturation was greater in WPI there was less aggregation compared to that of pure β-lactoglobulin. More of the β-lactoglobulin in WPI remained in a non-native monomer intermediate state after 30 min of heating. After an initial lag period, during which non-native monomers appeared, aggregates formed and rapidly reached a plateau in terms of their size. These aggregates were visualized using atomic force microscopy. There was no significant effect of protein concentration on either aggregate size or the number of exposed sulfhydryls in the heated solutions.  相似文献   

4.
Binding of small ligands to globular proteins remains a major research topic in biophysics. We have studied the binding of several photoactive dyes to β-lactoglobulin (BLG), as a model to investigate the photoinduced effects of porphyrins on proteins. A combination of optical spectroscopies (fluorescence, circular dichroism) and molecular docking simulations were used to estimate the pH-dependence of the binding parameters and the docking location for meso-tetrakis(sulfonatophenyl)-porphyrin (TPPS). We have observed that the binding of TPPS is not modulated by the pH-mediated conformational transition of the protein (i.e., Tanford transition). Binding of TPPS appears to occur with some degree of negative cooperativity. Moreover, TPPS remains bound even upon partial denaturation of the protein. These results are consistent with a superficial binding site at a location removed from the aperture of the interior β-barrel. Binding occurs through electrostatic interactions between the negative SO3 groups of TPPS and positively charged Lys and Arg residues. This is the first study that explores the interaction of an anionic porphyrin with BLGA in a pH range that spans across the Tanford transition. Establishing the location of the binding site will enable us to explain the photoinduced conformational effects mediated by TPPS on BLG. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

5.
The interactions between negatively charged β-lactoglobulin and the positively charged lactoferrin at the droplet surface to form a multi-protein surface layer were examined. Addition of lactoferrin to the aqueous phase of emulsions formed with β-lactoglobulin at pH 7.0 caused an increase in the ζ-potential of emulsion droplets, and the ζ-potential became positive as the concentration of added lactoferrin was higher than 1% in the system. It is found that lactoferrin binds to adsorbed β-lactoglobulin at droplet surface probably via electrostatic interactions. The amount of lactoferrin at interface increased with increasing the concentration of added lactoferrin, but it decreased with a decrease in the pH. No lactoferrin was observed at interface at pH 3 and 4. By contrast, when β-lactoglobulin was added in the emulsions formed with lactoferrin at pH 7.0, the ζ-potential of emulsions changed from positive to negative as the concentration of added β-lactoglobulin increased. The amount of β-lactoglobulin at surface increased correspondingly with increasing the concentration of added β-lactoglobulin. However, in this case, β-lactoglobulin remained bound at interface even at pH 3 and 4 where both lactoferrin and β-lactoglobulin are positively charged. The association of lactoferrin or β-lactoglobulin with the surface proteins that have oppositely charge is probably mainly through electrostatic interactions between the two proteins. It appears that alternative layers of these proteins could be created at the droplet surface.  相似文献   

6.
Three proteins have been identified in the milk of the common brush tail possum, Trichosurus vulpecula that from sequence analysis are members of the lipocalin family. They include β-lactoglobulin, which appears to have two forms; a homologue to the late-lactation protein found in tammar, Macropus eugenii; milk; and a novel protein termed trichosurin. Whereas β-lactoglobulin and trichosurin are both expressed throughout lactation, the late-lactation protein is not detected in samples taken before days 100–110 of lactation. The cDNAs encoding each of these proteins have been isolated from cDNA libraries prepared using possum mammary mRNA and sequenced. Phylogenetic analysis showed that the T. vulpeculaβ-lactoglobulin, along with two other macropod β-lactoglobulins, forms a subclass of β-lactoglobulins distinct from those for eutherian mammals; both marsupial late-lactation proteins appear to have similarities to a family of odorant-binding proteins, whereas trichosurin has similarities to the major urinary proteins of rodents. Received: 28 October 1996 / Accepted: 19 May 1997  相似文献   

7.
Summary The occurrence of the dominant ‘whey’ protein in samples of milk from 1180 sows is examined. It exhibits genetic polymorphism with some unusual features. Although immunologically different from bovine β-lactoglobulin, it is shown by chemical studies of the isolated protein to be a β-lactoglobulin. Two homozygous genetic variants, designated porcine β-lactoglobulin A and C, are isolated and their amino acid compositions and peptide maps compared. It is shown that the C variant has +1 His, −1 Gln, and +1 Asp, −1 Glu, with respect to the A variant. These variants, containingca. 162 residues per molecule, are considered in relationship to porcine β-lactoglobulins isolated by other workers. The sequence of the first 50 residues is determined and compared with sequence of the bovine protein. The sequences ofca. 70% of the remaining residues is proposed on the basis of the composition of tryptic peptides and assumed homology.  相似文献   

8.
9.
Surface plasmon resonance-based biosensors enable the interaction between biomolecules to be monitored in real time with a label-free assay format. In the present study, the technique was used to assess the interaction between exopolysaccharides (EPS) and different milk proteins. The EPS were derived from three homopolysaccharide (HoPS)-producing Lactobacilli strains; Lactobacillus sakei, Lactobacillus plantarum, and Lactobacillus salvarius. The purified milk proteins applied were β-casein, β-lactoglobulin, and κ-casein. The results show that the binding capacity depends on the pH and decreases with increasing pH. HoPS from L. salvarius and L. sakei provided the highest binding response and interacted with κ-casein at all the tested pH values, i.e. in the range 4.0−5.5, and with β-casein at pH 4.0−5.0. When examined at pH 4.0, only HoPS from L. salvarius and L. sakei interacted with β-lactoglobulin. Under the tested conditions, HoPS from L. plantarum showed always either a lower binding response or no binding at all compared with HoPS from L. salvarius and L. sakei.  相似文献   

10.
The purpose of the present studies was to systematically investigate protein-mannitol interactions using vacuum drying, to obtain a better understanding of the effect of protein/mannitol wt/wt ratios on the physical state of mannitol and protein secondary structure in the dried state. Solutions containing β-lactoglobulin (βLg):mannitol (1∶1–1∶15 wt/wt) were vacuum dried at 5°C under 3000 mTorr of pressure. The physical state of mannitol was studied using x-ray powder physical state of mannitol was studied using x-ray powder diffractometry (XRPD), polarized light microscopy (PLM), Fourier-transform infrared (FTIR) spectroscopy, and modulated differential scanning calorimetry (MDSC). XRPD studies indicated that mannitol remained amorphous up to 1∶5 wt/wt βLg:mannitol ratio, whereas PLM showed the presence of crystals of mannitol in all dried samples except for the 1∶1 wt/wt βLg:mannitol dried sample. FITR studies indicated that a small proportion of crystalline mannitol was present along with the amorphous mannitol in dried samples at lower (less than 1∶5 wt/wt) βLg:mannitol ratios. The Tg of the dried 1∶1 wt/wt βLg:mannitol sample was observed at 33.4°C in MDSC studies, which indicated that at least a part of mannitol co-existed with protein in a single amorphous phase. Evaluation of the crystallization exotherms indicated that irrespective of the βLg:protein wt/wt ratio in the initial sample, the protein to amorphous mannitol ratio was below 1∶1 wt/wt in all dried samples. Second-derivative FTTR studies on dried βLg and recombinant human interferon α-2a samples showed that mannitol affected protein secondary structure to a varying degree depending on the overall mannitol content in the dried sample and the type of protein.  相似文献   

11.
We hypothesized that some amino acid substitutions in conserved proteins that are strongly fixed by critical functional roles would show lineage-specific distributions. As an example of an archetypal conserved eukaryotic protein we considered the active site of β-tubulin. Our analysis identified one amino acid substitution—β-tubulin F224—which was highly lineage specific. Investigation of β-tubulin for other phylogenetically restricted amino acids identified several with apparent specificity for well-defined phylogenetic groups. Intriguingly, none showed specificity for “supergroups” other than the unikonts. To understand why, we analysed the β-tubulin Neighbor-Net and demonstrated a fundamental division between core β-tubulins (plant-like) and divergent β-tubulins (animal and fungal). F224 was almost completely restricted to the core β-tubulins, while divergent β-tubulins possessed Y224. Thus, our specific example offers insight into the restrictions associated with the co-evolution of β-tubulin during the radiation of eukaryotes, underlining a fundamental dichotomy between F-type, core β-tubulins and Y-type, divergent β-tubulins. More broadly our study provides proof of principle for the taxonomic utility of critical amino acids in the active sites of conserved proteins.  相似文献   

12.
Allosteric potentiation of acetylcholine nicotinic receptors is considered to be one of the most promising approaches for the treatment of Alzheimer’s disease. However, the exact localization of the allosteric binding site and the potentiation mechanism at the molecular level are presently unknown. We have performed the “blind docking” of three known allosteric modulators (galanthamine, codeine and eserine) with the Acetylcholine Binding Protein and models of human α7, α3β4 and α4β2 nicotinic receptors, created by homology modeling. Three putative binding sites were identified in the channel pore, each one showing different affinities for the ligands. One of these sites is localized opposite to the agonist binding site and is probably implicated in the potentiation process. On the basis of these results, a possible mechanism for nicotinic acetylcholine receptor (nAChRs) activation is proposed. The present findings may represent an important advance for understanding the allosteric modulation mechanism of nAChRs. Electronic supplementary material Supplementary material is available for this article at  相似文献   

13.
The structure of root-associated bacterial populations in the legume common bean (Phaseolus vulgaris L.), was studied in plants grown under nitrogen sufficiency and under conditions inducing nitrogen deficiency. Similar cell numbers were obtained in the rhizosphere of nitrogen-amended plants as compared to nitrogen-deficient plants and between various root parts—tip, elongation and branching zones—using DAPI staining. In contrast, a higher proportion of DAPI-stained cells from the nitrogen-amended plants hybridized with a fluorescence-labeled EUB338 probe for theBacteria domain than cells originating from nitrogen-deficient plants. Shifts in the percentages of EUB338-reactive cells—as well as in absolute cell number—hybridizing to fluorescent rRNA-directed probes specific for the α and γProteobacteria and for high GC content gram-positive bacteria in separated root segments were detected between the treatments. No such differences were found using β and δProteobacteria or rRNA group I pseudomonad targeted probes. Denaturating gradient gel electrophoresis profiles of PCR products obtained from the same samples and amplified withBacteria-domain targeted primers supported the results obtained with the whole cell hybridizations. The advantages and drawbacks of the techniques applied are discussed.  相似文献   

14.
In the present work the responses of β-glucosidase in leaves of tomato plants subjected to various stress factors of both pathogenic (fungi, bacteria, viruses) and abiotic origin (heat shock) were studied. Biochemical and cytochemical methods were applied. It was established that an increase of β-glucosidase activity is induced uniquely by fungal pathogens. The cytochemical tests confirm the finding. Hence, the conclusion can be drawn that β-glucosidase response is a specific character of fungal pathogenesis in tomato; probably, the enzyme is involved in plant — fungi recognition. The data are in accordance with our previous results on tobacco and wheat — stress stimuli systems.  相似文献   

15.
Emulsification of aqueous protein solutions in methylene chloride triggered the formation of water-insoluble aggregates at a water/methylene chloride interface. As a result, the amounts of β-lactoglobulin and ovalbumin recovered in water were 36 and 44%, respectively. Addition of 5 mm CHAPS in the aqueous phase raised the degree of β-lactoglobulin recovery to 96%. Sodium taurocholate, however, failed to improve protein recovery. The stabilizing effect of CHAPS was also protein-specific and concentration-dependent: at ≥5 mm, the surfactant caused unfolding of ovalbumin to make a water-soluble oligomer. CHAPS thus stabilizes proteins at an interface. Revisions requested 24 November 2005; Revisions received 17 January 2006  相似文献   

16.
17.
Insulin-like growth factor I (IGF-I) is a peptide related to insulin and IGF-II. These three related peptides produce similar biological effects, but each of them has its irreplaceable physiological significance in the organism. Multisided functional role of IGF-I in the organism is due to its unique binding properties. Specifically, but with different degree of affinity, it is able to interact with three receptors (IGF-I-receptor, insulin receptor, and IGF-II-receptor) and six binding proteins (IGFBP 1–6). To interact with each of the above objects, the IGF-I molecule contains individual structural determinants—binding domains (BD) providing strict specificity of interaction with them. Responsible for the IGF-I biological effects and binding with IGF-I-receptor is α-domain, for binding with insulin receptor—β-, EGF-II—γ-, while with all BP—δ-BD, respectively. Results of experimental study of binding domains not always can be estimated unanimously. The proposed by the author system of criteria for evaluation of changes in affinity of the IGF-I analogies allows unraveling the structural organization of each of the domains and tracing dependence on it of the peptide affinity to the particular object. This work considers composition, organization, and principle of formation of affinity of three binding IGF-I domains (α-, γ-, and δ-BD). The α-domain includes three tyrosines from three different molecule sites (B-24, C-31, and A-60) disposed spatially in the direct vicinity on its one surface. The β-domain also is considered as the domain participating in the high-affinity interaction; by composition and location in molecule it principally differs from α-BD, with the structural organization that so far has not been deciphered. Analyzed in detail is the key significance of the N-terminal site of the B-chain—the linear site of the domain—for binding of IGF-I with BP, functional heterogeneity of its constituent residues, and the characteristic principle of formation of affinity to BP. Analysis indicates a probability of the second δ-BD, quite possibly not the only one, and a high sensitivity of the domain to configuration of the IGH-I molecule surface. Structural organization and peculiarities of formation of affinity in the γ-domain are studied the best in three related peptides; it consists of two linearly exposed sites of A-chain. Composition of the site S-1 A (Phen8, Arg9, Ser10) provides a possibility of binding the ligand with IGF-I-receptor, while the level of affinity to it depends on the composition of S-2. The S-2 A composition (Arg14, Arg15) determines the low affinity of IGF-I to the IGF-II-receptor. The clear functioning of IGF-I and elimination of mixture of functions at the level of the binding activity depend on the spatial autonomy of BD of different nature, difference in structural organization of each of the domains, and a peculiarity of principles of formation of affinity in each case. The spatial coordination of several BD sites is the condition for transmission of the “structural signal“ by regulatory peptide. The performed analysis provides the direct notion of dependence of the binding ability of the IGF-I molecule that has BD of different nature on their structural peculiarities and allows using the revealed regularities at searching for BD in the newly discovered insulinlike peptides.  相似文献   

18.
19.
Integrin αXβ2 performs a significant role in leukocyte functions including phagocytosis and migration, and binds to a variety of ligands, including fibrinogen, iC3b, and ICAM-1. A particular domain of the α subunit of the integrin — the αX I-domain — is a ligand binding site, and the interaction of the αX I-domain and ICAM-1 on the endothelium is an important step in leukocyte extravasation. In order to elucidate the structural aspects of this interaction, we defined the moieties of the αX and ICAM-1 relevant to their interaction in this study. It was determined that the ICAM-1 binding sites of the αX I-domain were located in the α3α4, βDα5, and βFα7 loops at the top surface of the I-domain. The residues Q202, K242, K243, E298 and D299 on these loops were crucial for the recognition of ICAM-1. Among these residues, K242 and K243 on the βDα5 loop were found to be the most salient, thereby suggesting an ionic interaction between these proteins. Domain 3 of ICAM-1 was identified as a primary binding site for the αX I-domain. Two regions of domain 3 (D229QRLNPTV and E254DEGTQRL) perform critical functions in the binding of the αX I-domain. Especially, the residue E254DEG, is most important with regard to the αX I-domain.  相似文献   

20.
The lysosomal enzyme binding protein (receptor protein) isolated from monkey brain was immobilised on Sepharose 4B and used to study the binding of brain lysosomal enzymes. The immobilised protein could bind \-D-glucosaminidase, α-D-mannosidase, α-L-fucosidase and2-D-glucuronidase. The bound enzymes could be eluted either at an acid pH of 4.5 or by mannose 6-phosphate but not by a number of other sugars tested. Binding could be abolished by prior treatment of the lysosomal enzymes with sodium periodate. Alkaline phosphatase treatment of the enzymes did not prevent the binding of the lysosomal enzymes to the column but decreased their affinity, as seen by a shift in their elution profile, when a gradient elution with mannose 6-phosphate was employed. These results suggested that an ‘uncovered’ phosphate on the carbohydrate moiety of the enzymes was not essential for binding but can enhance the binding affinity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号