首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A sap-transmissible virus obtained from cassava with a green mottle disease occurring at Choiseul, Solomon Islands, was transmitted to 30 species in 12 plant families and was readily seed-borne in Nicotiana clevelandii. In cassava plants infected by inoculation with sap, the first leaves to be infected systemically developed a mottle with some necrosis whereas leaves produced subsequently were symptomless but contained the virus. Most other species developed chlorotic or necrotic local lesions and systemic mottle or necrosis. This was followed, in several species, by production of small symptomless virus-containing leaves. The virus was cultured in N. clevelandii; Chenopodium quinoa was used for local-lesion assays. Leaf extracts from infected N. clevelandii were infective after dilution to 10–5 but usually not at 10–6, after heating for 10 min at 60°C but not at 65°C, and after storage at 20°C for at least 12 days. The virus has isometric particles of 26 nm diameter which sediment as three components, all containing a protein of mol. wt c. 53000. The two fastest sedimenting components respectively contain single-stranded RNA of mol. wt, estimated after glyoxylation, c. 2.9 × 106 and 2.3 × 106. Both RNA species are needed for infection of plants. In tests with antiserum prepared to purified virus particles, the virus was detected in cassava and N. clevelandii by gel-diffusion precipitin tests, by immunosorbent electron microscopy and by ELISA. Despite its similarity to nepoviruses, the virus did not react with antisera to 18 members of the group. It was named cassava green mottle virus and is considered to be a previously undescribed nepovirus.  相似文献   

2.
Narcissus latent virus (NLV) is common in many cultivars of narcissus and bulbous iris, but was detected in only one of nineteen cultivars of nerine. It induced symptoms in some narcissus cultivars, but inconspicuous infection in bulbous iris and nerine. NLV was not seed-borne in narcissus or Nicotiana clevelandii but was transmitted readily by aphids (Acyrthosiphon pisum, Aphis gossypii and Myzus persicae) in the non-persistent manner and by sap-inoculation to twelve of fifty-three species from three of sixteen families. Sap from N. clevelandii was infective after dilution to io-3 but not io*, after 10 min at 65 but not 70 oC or after 3–4 days at 20 oC or 16–32 days at 2 oC. Purified virus preparations were obtained from infected N. clevelandii by clarification of buffered leaf extracts with diethyl ether and carbon tetrachloride, followed by one or two cycles of differential centrifugation and molecular permeation chromatography. NLV has filamentous particles c. i3times65onm which sediment as a single component (io20, w= 156S). They contain c. 5% nucleic acid and a single polypeptide of mol. wt 32·6 × 103. The biological and physical properties of NLV place it in the carlavirus group; it is serologically related to lily symptomless virus, but not to fourteen other authentic carlaviruses. NLV has the cryptogram */*:*/(5):E/E:S/Ve/Ap.  相似文献   

3.
Two strains of a virus, designated cymbidium ringspot virus (CyRSV), were isolated from cymbidium orchids and from Trifolium repens respectively in Britain. Experimentally infected cymbidiums developed slight chlorotic ring-mottle; T. repens developed flecks and mottling in the leaves, and slight stunting. Of 101 plant species tested, the cymbidium strain infected sixty-one (thirteen systemically) in twenty-three of thirty-five families; the clover strain infected sixty-four species (eighteen systemically) in twenty-two families. Both strains were propagated in Nicotiana clevelandii and assayed in Chenopodium quinoa. CyRSV was readily transmitted by inoculation of sap, and by foliage contact between plants, but not by the aphids Myzus persicae or Acyrtho-siphon pisum, nor through seed of T. incarnatum, Phaseolus vulgaris or N. clevelandii. Highly infective virus was released into soil from roots of infected N. clevelandii, and acquired by bait seedlings planted in such soil. Similar transmission occurred when purified virus was applied to the surface of sterilized soil containing bait plants; there was no evidence for any living soil vector. The virus was eliminated from 96 % of small cuttings taken from infected N. clevelandii plants grown at 35–37 °C for 9 wk. CyRSV was still infective in sap of N. clevelandii after dilution to 10?5-io–6 (only 2 × 10_1 in cymbidium sap), or after 10min at 85–90 °C. It survived at least 10 months at c. 20 °C and more than 12 yr at 2 °C. Lyophilized sap was highly infective after over 13 yr at laboratory temperatures under high vacuum. Purified preparations made by clarification with n-butanol, followed by differential centrifugation and exclusion chromatography on controlled-pore glass beads, contained isometric particles c. 30 nm diam., with s°20W= 137 S, and had a buoyant density in caesium chloride of 1–36 g/ml. The A 260/A 280 ratio was 1–55, and A max(26o)/A min(242) was 1–17. The virus contained c. 15 % of single-stranded RNA of mol. wt 1–7 × 106; the nucleotide base ratios were: G27'8; A24/9; C2I-3; U26-I. There was one capsid polypeptide of mol. wt 43600. The virus was a good immunogen and a strongly reacting antigen in vitro; in Immunoelectrophoresis, each strain migrated as a single antigenic component towards the cathode. The cymbidium and clover strains were serologically closely related, although spurs were produced in immunodiffusion. No serological relationship was found to forty-three other isometric viruses, including eighteen tombusvirus isolates; CyRSV nevertheless shares many properties with tombusviruses, and we assign it provisionally to this group. The cryptogram is: R/r:1:7/15:S/S:S/O.  相似文献   

4.
As previously reported, narcissus latent virus (NLV) has flexuous filamentous particles measuring c. 650 nm × 13 nm, is manually transmissible to Nicotiana clevelandii and Tetragonia expansa, and is transmitted by the aphid Myzus persicae following brief acquisition access periods. In contrast to previous reports the virus particle protein has an apparent mol. wt of c. 45 kD. Moreover, infected cells in N. clevelandii leaves contain cytoplasmic inclusion bodies resembling those of potyviruses. In vitro translation of NLV RNA produced only one major product (mol. wt c. 25 kD) which was not precipitated by antisera to virus particle protein or to cytoplasmic inclusion protein. Antisera to 12 potyviruses and nine carlaviruses failed to react with sap containing NLV particles. Similarly antiserum to NLV particles did not react with particles of seven potyviruses or four carlaviruses. A weak reaction was detected between NLV particles and antiserum to particles of maclura mosaic virus (MMV), a virus which resembles NLV in particle morphology and particle-protein size, and in inducing pinwheel inclusions. The cytoplasmic inclusion proteins (CIPs) of NLV, MMV and from narcissus plants with yellow stripe symptoms were serologically inter-related. These proteins were also serologically related to, and had mol. wt similar to, the CIP of members of the potyvirus group. Particles with the size and antigenic specificity of those of NLV were found consistently in narcissus plants with yellow stripe disease. Narcissus latent and narcissus yellow stripe viruses therefore seem to be synonymous and, together with MMV, have properties distinct from those of any previously described virus group.  相似文献   

5.
Tulip halo necrosis virus, obtained from tulips with leaf necrosis, is very labile in crude sap but can be transmitted consistently by inoculating Nicotiana clevelandii plants with extracts made in pH 8 phosphate buffer containing a stabilizing agent such as 0.2M 2-mercaptoethanol or 0.01M dithiothreitol. Of the fifteen species in five families of Angiosperms infected by inoculation with sap, few are suitable as sources of inoculum. Cultures of the virus can be maintained in Nicotiana clevelandii kept at 14 or 18d?C but not at 21d?C. Infectivity can be assayed in Chenopodium quinoa, in which necrotic local lesions are produced. Stabilized extracts of leaves were infective at a dilution of 1/16 but rarely at 1/32, and infectivity decreased disproportionately with dilution. Infectivity of all extracts was abolished in 10 min at 50d?C and of some at 45d?C, but survived when extracts were clarified using diethyl ether or trichlorotrifluoroethane. The virus was not transmitted by the aphid Myzus persicae.  相似文献   

6.
Carnation Italian ringspot virus (CIRV) was obtained only twice in tests on several thousand carnations in Britain during 15 yr. The two isolates, from cultivars ‘Dusty Sim’ imported from Italy and ‘Orchid Beauty’ from the U.S.A., were indistinguishable serologically and in host reactions. CIRV was cultured in Nicotiana clevelandii and assayed in Chenopodium amaranti-color; it was readily transmitted by leaf-rubbing inoculation to 62 of 104 plant species tested. Virus-free carnations were infected only by injecting purified preparations into the stem, and developed chlorotic spots and oval rings in the younger leaves. CIRV was eliminated from Nicotiana clevelandii plants grown for 8 weeks at 36°C. CIRV presents no threat to carnation growing in Britain. In N. clevelandii sap, CIRV was infective at a dilution of 1/50000 to 1/100000, after heating 10 min at 85 °C (but not 90 °C), and after 16 weeks at 16 °C or 23 weeks at 2 °C. After freeze-drying, the virus survived at least 7 yr storage under vacuum at room temperature. CIRV was still infective and antigenic after treatment for 30 min at 18 °C with ultraviolet radiation (750 μW/cm2), ultrasound, 2% formaldehyde or 0.2% tri-sodium ortho-phosphate (TSP). Infectivity was not wholly abolished in 30 min by 2% TSP. The virus was readily purified by overnight maceration of N. clevelandii leaves extracted in phosphate buffer + butanol, followed by differential centri-fugation. Purified preparations contained abundant isometric particles c. 29 nm diameter, and like other serotypes of the tomato bushy stunt-pelargonium leaf curl group, gave three or four specific bands in density-gradient centri-fugation. The bands corresponded to four Schlieren peaks in analytical centrifugation. Virus from the lower bands was usually less invasive in N. clevelandii than from the upper bands, although the material in the different bands contained similar amounts of nucleic acid. Only one antigenic component was found by Immunoelectrophoresis; different serotypes of the TBSV-PLCV group differed widely in immunoelectrophoretic behaviour. The present cryptogram of CIRV is */*:*/*:S/S:S/*.  相似文献   

7.
Three isolates of Andean potato latent virus (APLV) (Caj, Hu, Ay) each infected twenty-seven species of plants in the families Amaranthaceae, Chenopodiaceae, Cucurbitaceae and Solanaceae but differed somewhat in the symptoms they induced. Nicotiana bigelovii and N. clevelandii proved the most useful diagnostic hosts. Symptoms were sometimes produced by all three isolates in cultivated and wild potatoes. In sap from systemically infected N. bigelovii and N. clevelandii leaves, all three isolates remained infective when diluted to 10-6 and when stored at room temperature for at least 3 wk. The thermal inactivation points were 65–70 °C for Hu and Ay, but 75–80 °C for Caj. All three isolates differed serologically from Col, the original isolate of APLV, forming spurs in gel diffusion tests. No serological difference was found between Hu and Ay, but both formed spurs in reciprocal reactions with Caj. The data from light absorption, particle morphology and protein molecular weight for Caj, Hu and Ay are similar to those reported for other tymoviruses. APLV was found widespread in Andean countries.  相似文献   

8.
Clq was prepared from bovine serum using a simple method involving repeated dialysis at low ionic strength in the presence of chelating agents (yield c. 3 mg/100 ml serum). It was viable when stored at -18°C for up to 2 months, and at 4°C for at least 10 wk in a storage buffer containing 10% sucrose. When used in Clq ELISA this test was as sensitive as the direct double antibody sandwich form of ELISA (direct ELISA) in detecting purified potato virus Y (PVY), with a limit of detection in both methods of c. 15 ng/ml, and slightly more sensitive in detecting purified cocksfoot mild mosaic virus (CMMV), with limits of detection of c. 15 ng/ml and c. 15–60 ng/ml respectively. Using an antiserum to one strain of each virus, Clq ELISA readily detected strains of PVY, CMMV, Andean potato latent virus (APLV) and barley yellow dwarf virus (BYDV). This included detection of APLV-Hu by APLV-Caj antibodies and CMMV(G) by PMV(S) antibodies, neither of which system gives detection in direct ELISA. Clq ELISA was therefore less specific than direct ELISA in detecting serologically different virus strains. Virus detection by Clq ELISA was inhibited when sap of tobacco, Nicotiana clevelandii and Setaria italica was used at low dilution. Inhibition by N. clevelandii sap was alleviated by using increased concentrations of virus specific antibody to detect APLV and plum pox virus. Also, extracting APLV infective N. clevelandii or CMMV infective S. italica saps in a minimum of buffer, centrifuging at low speed and diluting the supernatant before testing, partially overcame the inhibition. The inhibitory substance(s) in sap may act by preventing the binding of Clq to virus-antibody aggregates. Sap of wheat, oat and barley did not appear to have an inhibitory effect and BYDV was readily detected in naturally infected field grown plants of these species.  相似文献   

9.
Tulip chlorotic blotch virus (TCBV), an apparently undescribed potyvirus found in field grown tulips in Australia, causes symptoms in tulip leaves and flowers identical to those induced by tulip breaking virus (TBV). TCBV was transmitted mechanically to 14 of 34 species in four of 13 families. Nicotiana clevelandii is a suitable propagation host and Chenopodium amaranticolor a local-lesion assay host. TCBV was transmitted from tulip to tulip and TV. clevelandii by the aphid Myzus persicae. Unlike TBV it was not transmitted to Lilium formosanum either by M. persicae or by manual inoculation. Leaf extracts from TCBV-containing TV. clevelandii were infective after dilution to l0-3 but not 10-4 and after heating for 10 min at 50°C but not 60°C; infectivity and particle recovery were adversely affected by freezing at -20°C. TCBV particles were purified (c. 1 mg/100g g N. clevelandii leaf) from tissue extracts in 0·3 M citrate buffer containing 10 mM EDTA and 0·2% (v/v) 2-mercaptoethanol at pH 7·4 by clarification with 8·5% (v/v) n-butanol followed by differential centrifugation and sucrose density gradient centrifugation. Purified particles measured c. 720 × 12 nm. Virus particle antigen was readily detected in leaf and tepal extracts of tulip by enzyme-linked immunosorbent assay. A distant serological relationship was found between particles of TCBV and those of bean yellow mosaic virus but no serological relationship was found to TBV or four other potyviruses.  相似文献   

10.
Pepper veinal mottle virus (PVMV), a previously undescribed virus widespread in Capsicum annuum and C. frutescens in the Eastern Region of Ghana, is acquired and inoculated in 2 min feeding periods by aphids (Myzus persicae and Aphis gossypii); it is transmissible by inoculation of sap to eleven of fifteen Solanaceae and to five of forty-six other species within three of seventeen other families. The virus was propagated in Nicotiana clevelandii and Petunia hybrida, and assayed in Chenopodium quinoa, C. amaranticolor and C. murale. Sap from Capsicum annuum was infective after dilution to 10-3 but not 10-4, after 10 min at 55 but not 60oC, and after 7 but not 8 days at 25oC. Lyophilized sap from P. hybrida was infective after 6 years in vacuo. Yields of 10–25 mg of virus per kg of leaf tissue were consistently obtained from P. hybrida or N. clevelandii by extracting systemically infected leaves in 0.5 M borate (pH 7.8) containing 0.2% mercaptoethanol and chloroform, followed by repeated precipitation with 50 g polyethylene glycol (M.W. 6000) per l, several cycles of differential centrifugation and centrifugation in sucrose density-gradient columns. Virus preparations had ultraviolet absorption spectra typical of a nucleoprotein containing c. 6% nuclei acid (A 260/280 = 1.25; A 260/246 = 1.27) and contained numerous unaggregated and unbroken filamentous particles c. 770 times 12 nm which sedimented as a single component with a sedimentation coefficient (so20,w) of 155 S. PVMV contained RNA (moles %: G = 24, A = 23, C = 27, U = 26), and a single protein species with a molecular weight of 32000–33000 daltons. PVMV was not serologically related to potato virus Y (three strains), or to twelve other morphologically similar viruses, and seems to be a distinct member of the potato virus Y group. The cryptogram of PVMV is R/(I):*/(6):E/E:S/Ap.  相似文献   

11.
Pepino mosaic virus, a new potexvirus from pepino (Solanum muricatum)   总被引:1,自引:0,他引:1  
Pepino mosaic virus (PepMV), a previously undescribed virus, was found in fields of pepino (Solanum muricatum) in the Canete valley in coastal Peru. PepMV was transmitted by inoculation of sap to 32 species from three families out of 47 species from nine families tested. It caused a yellow mosaic in young leaves of pepino and either a mild mosaic or symptomless infection in 12 wild potato species, five potato cultivars and potato clone USDA 41956 but S. stoloniferum and potato cultivars Merpata and Revolucion reacted with severe systemic necrotic symptoms. The virus was transmitted by plant contact but not by Myzus persicae. It was best propagated and assayed in Nicotiana glutinosa. Sap from infected N. glutinosa was infective after dilution to 10-1 but not 10-6, after 10 min at 65°C but not 70°C and after 3 months at 20°C. PepMV had filamentous particles with a normal length of 508 nm; the ends of some seemed damaged. Ultra-thin sections of infected leaves of N. glutinosa revealed many inclusions containing arrays of virus-like particles some of which were banded or whorled; small aggregates of virus-like particles were also common. The virus was purified by extracting sap from infected leaves in a solution containing 0·065 M disodium tetraborate, 0·435 M boric acid, 0·2% ascorbic acid and 0·2% sodium sulphite at pH 7·8, adding silver nitrate solution to the extract, and precipitating the virus with polyethylene glycol followed by two cycles of differential centrifugation. Particles of PepMV normally yielded two proteins with molecular weights of 26 600 and 23 200, but virus obtained from infective sap aged overnight yielded only the smaller protein suggesting that it was a product of degradation of the larger one. The virus is serologically related to two potexviruses, narcissus mosaic and cactus X and its properties are typical of the potexvirus group.  相似文献   

12.
Tulip virus X (TVX), a previously undescribed mechanically transmissible virus, causes chlorotic and necrotic lesions in leaves and streaks of intensified pigmentation in tepals of tulip plants. The virus infected 22 of 42 other plant species in 10 of 14 families, but most host species were infected only erratically. TVX is best propagated in Chenopodium quinoa and assayed in C. amaranticolor. Spindleshaped inclusions were observed in epidermal cells of C. amaranticolor leaves. Leaf extracts from C. quinoa contained flexuous filamentous particles measuring c. 495 ×13 nm. The extracts were infective after dilution to 10-9, after heating for 10 min at 60 °C but not at 65 °C, and after storage at c. 20 °C for 30 days or at -20 °C for 6 months. TVX particles were purified (500 μg/g C. quinoa leaf) from tissue extracts in 0.067 M phosphate buffer containing 10 mM EDTA at pH 7, by twice precipitating the virus with 8% polyethylene glycol in 0.2 M NaCl followed by differential centrifugation. The virus particles have a sedimentation coefficient (s20, w) of 102 S. They contain a protein of mol. wt c. 22 500 and a nucleic acid that, when glyoxalated, migrates in agarose gel like single-stranded RNA of mol. wt 2.05 × 106. TVX particles tend to aggregate, and evidence was obtained that a 118 S component which was consistently observed in purified preparations and in infective sap is an end-to-end dimer. A distant serological relationship was found between particles of TVX and those of viola mottle and hydrangea ringspot viruses, but no serological relationship was detected to nine other potexviruses. TVX is considered to be a distinct and definitive member of the potexvirus group.  相似文献   

13.
Cowpea mild mottle virus (CMMV), a previously undescribed virus widespread in cowpeas (Vigna unguiculata) in the Eastern Region of Ghana, was seed-borne in V. unguiculata, Phaseolus vulgaris and Glycine max, but was not transmitted by twelve aphid species including Aphis craccivora, A. fabae, Acyrthosiphon pisum and Myzus persicae. CMMV was transmitted by inoculation of sap to eleven of seventeen members of the Papilionaceae causing very severe diseases in G. max and Arachis hypogaea, and to ten of fifty-one species within five of nineteen other families; it was best propagated in G. max and Nicotiana clevelandii, and assayed in Chenopodium quinoa. Sap from systemically infected G. max was infective after dilution to 10-3 but not 10-4, after 10 min at 65 °C but not at 70 °C, or after 4 days at 18 °C or 16 days at 2 °C. Lyophilized sap was infective after 3 years in vacuo. CMMV has straight to slightly flexuous, fragile filamentous particles, c. 13 × 650 nm which, in sap, are occasionally surrounded by a loose external spiral. About 5 mg of purified virus was obtained from 1 kg of leaf tissue of G. max or N. clevelandii by clarifying leaf extracts in 0.02 m borate buffer (pH 9.5) with chloroform, followed by two or three cycles of differential centrifugation, and density gradient centrifugation. Virus preparations had ultraviolet absorption spectra typical of a nucleoprotein containing c. 5 % nucleic acid, contained numerous particles without external spirals, which sedimented as a single component with a sedimentation coefficient (s°20, w) of 165 × 4S, and contained a single polypeptide species with a molecular weight of 32000–33000. CMMV showed a distant serological relationship to carnation latent virus, but not to ten other morphologically similar viruses; it thus seems to be a distinct member of the carlavirus group, and has the cryptogram: */*:*/(5):E/E:S/*.  相似文献   

14.
A mechanically transmissible soil-borne virus causing peanut clump disease in Upper Volta is described. It infected mainly species of Chenopodia-ceae and was propagated in Chenopodium amaranticolor. Infectivity was lost from sap of C. amaranticolor after 10 min at 64 °C, and after dilution to 10-5 but not io-4. A purification procedure is described. The particles are rod-shaped and of two predominant lengths, 190 and 245 nm. The virus is not serologically related to tobacco rattle, pea early-browning, or soil-borne wheat mosaic viruses, or to a virus associated with a rhizomania-like disease of beet.  相似文献   

15.
Studies on the occurrence of tomato bushy stunt virus in English rivers   总被引:4,自引:0,他引:4  
Tomato bushy stunt virus (TBSV) of unknown source was isolated from water of the River Thames, near Oxford. The isolate designated TBSV-T was mechanically transmissible to several tomato (Lycopersicon esculentum) cvs and to other species including Petunia hybrida, pepper (Capsicum annuum). eggplant (Solanum melongena), Nicotiana clevelandii, Chenopodium amaranticolor and C. quinoa in which it caused systemic symptoms. It caused no infection of globe artichoke (Cynara scolymus) or Pelargonium domesticum. The virus was not adsorbed to soil and could be isolated from leachate of soil in which systemically-infected tomato or C. quinoa plants were grown. Tomato plants became infected when grown in soil watered with virus suspensions. TBSV-T was infective after 10 min at 80°C but not at 90°C and when diluted to 10-5 but not to 10-6. Purified virus preparations contained C. 30 nm isometric particles. In gel-diffusion serological tests, TBSV-T reacted with homologous anti-serum and with antiserum to petunia asteroid mosaic virus but not to pelargonium leaf curl virus. Seed-borne infection (50–65%) of TBSV was demonstrated in plants grown from seed of symptomlessly-infected tomato fruit. TBSV was isolated from symptomlessly-infected tomato fruit imported from Morocco during October-April 1981. One of the isolates (TBSV-M) was indistinguishable from TBSV-T in host range, symptomatology and serological reactions. TBSV was also found in tomato plants growing extraneously in primary settlement beds at sewage works; such plants having been derived from undigested seeds in sewage. Because of its ‘alimentary-resistance’ in man, it is possible that one ecological route whereby TBSV enters rivers is by man's consumption of TBSV-infected tomatoes and eventual sewage dispersal into rivers.  相似文献   

16.
Host range, purification and properties of potato virus T   总被引:2,自引:0,他引:2  
Potato virus T (PVT) infected nine species of tuber-bearing Solanum, most of them symptomlessly, and as a rule was transmitted through the tubers to progeny plants: two genotypes of S. tuberosum ssp. andigena were not infected. The virus was also transmitted by inoculation with sap to 37 other species in eight plant families. Chenopodium amaranticolor is useful as an indicator host, C quinoa as a source of virus for purification, and Phaseolus vulgaris as a local-lesion assay host; the systemic symptoms in Datura stramonium, Nicotiana debneyi and in these three species are useful for diagnosis. Attempts to transmit PVT by aphids failed, but the virus was transmitted through seed to progeny seedlings of four solanaceous species, and from pollen to seed of S. demissum. PVT was purified by clarifying sap with n-butanol or bentonite, followed by precipitation with polyethylene glycol, differential centrifugation and sedimentation in a sucrose density gradient. Purified preparations had an E260/E280 ratio of 1.18 and contained a single infective component with a sedimentation coefficient of 99 S. This component consisted of flexuous filamentous particles of about 640 times 12 nm that showed a characteristic substructure when stained with uranyl acetate. The virus particles contained a single species of infective single-stranded RNA, of molecular weight 2–2 times 106 daltons, and a single species of polypeptide of molecular weight about 27 000 daltons. PVT is serologically related to apple stem grooving virus but not to four other common potato viruses with flexuous filamentous particles. Apple stem grooving virus and PVT cause similar symptoms in several hosts, but also differ somewhat in host range and symptomatology. Apple stem grooving virus did not infect potato, caused additional symptoms in C. quinoa also infected with PVT, and its particles did not show the structural features specific to PVT. The two viruses are considered to be distinct. The cryptogram of PVT is R/1:2–2/(5): E/E: S/C.  相似文献   

17.
A virus obtained from pelargonium cvs Irene and Paul Crampel appears to differ from any previously reported; although symptomless in most pelargonium cvs tested, it caused colour break in the flowers of two seedling clones. It seems uncommon in pelargoniums. The virus was readily transmitted by inoculation of sap, but not by Myzus persicae with short feeds, by dodder or through seed. It infected only fifteen of 100 species tested in six of thirty-five plant families. Pelargoniums were freed from the virus by heat-treatment. The virus remained infective after 10 min at 85 oC, 3 wk at 20 oC or 27 wk at 2 oC; it was infective at 1/500000 dilution of Nicotiana clevelandii or Chenopodium quinoa sap. Purified preparations were readily made by several methods, and contained isometric particles c. 30 nm diameter. Although a good antigen, the virus was serologically unrelated to any of forty-two isometric viruses. In immunoelectrophoresis, the virus moved as a single antigenic component towards the cathode. It gave a single, specific zone in density-gradient centrifugation, and one moving component (s020 w= 125 S) in analytical centrifugation. The virus contained one protein of mol. wt. c. 41000. The present cryptogram of the virus is (R)/*: */*:S/S:S/*, and the name pelargonium flower-break virus is proposed.  相似文献   

18.
A virus with spherical particles c. 28 nm in diameter was sap-transmitted from different cassava (Manihot esculenta) cultivars to a limited range of species in the families Chenopodiaceae and Solanaceae. Cassava seedlings infected by inoculation with sap or with purified virus preparations did not show any symptom, although the virus was readily detected by ELISA or by further inoculations. Leaf extracts from infected Nicotiana benthamiana were infective after dilution of 10--3but not 10--4, and after heating for 10 min at 70°C, but not at 72°C. The virus was purified from N. benthamiana, N. clevelandii or from cassava. On sucrose gradients, the virus particles sediment as three components all containing a protein of mol. wt c. 57000. The genome of the virus is composed of two RNAs of mol. wt c. 2.54 times 106(RNA-1) and 1.44 times 106(RNA-2). RNA-2 was detected in the middle and the bottom nucleoprotein components, and RNA-1 only in the bottom component. An antiserum prepared to purified virus particles was used to readily detect the virus in cassava and other host plants by ELISA and by ISEM. No serological relationship was shown between this virus and eight nepoviruses, including the recently described cassava green mottle nepovirus infecting cassava in the Solomon Islands (Lennon, Aiton & Harrison, 1987). The virus described here is the first nepovirus isolated from cassava in South America, and is named cassava American latent virus.  相似文献   

19.
A virus obtained from sweet potatoes in Kenya, Uganda and Tanzania was transmitted by inoculation of sap and by whiteflies (Bemisia tabaci). It infected forty-five of 119 plant species in fourteen of thirty-six plant families. It was propagated in Nicotiana glutinosa and N. tabacum, in which diagnostic symptoms of vein clearing, leaf curling and distortion developed. Cheno-podium quinoa was a good local lesion host. Different seedling lines of sweet potato differed greatly in their susceptibility to infection and in symptoms produced; some developed leaf mottling and were stunted, some were symptomless, and some appeared immune. The virus was transmitted by dodder (Cuscuta campestris) but not by aphids, or through seed of Ipomoea nil or N. clevelandii. Sweet potato sap contained strong inhibitors of infection, and a low concentration of virus. Virus-free cuttings of sweet potato were obtained by thermotherapy (4–5 wk at 35 °C), or by meristem-tip culture. The virus remained infective in sap of N. tabacum after dilution to 10-3, or after 10 min at 55 °C (but not 60 °C), 3 but not 7 days at 18 °C, or 42 but not 49 days at 2 °C. Infectivity was abolished by sonication or u.v. irradiation, by 2% formaldehyde or 2% tri-sodium orthophosphate, and was greatly decreased by 20 % CHC13 or 20 % ether. Purified virus preparations were obtained from N. tabacum by clarifying phosphate buffer extracts with n-butanol, virus precipitation with polyethylene glycol, and differential centrifugation. The virus sedimented as one band in density gradients, and produced a single sedimenting boundary in analytical centrifugation (s°20, w = 1555)- It contained one polypeptide species of mol wt 37700, and preliminary digestion experiments suggested a single-stranded RNA. Antisera prepared against the virus reacted specifically in precipitin tube tests with titres of 1/16384, but no serological relationships could be found between the virus and fourteen viruses of the potato virus Y group. Electron micrographs showed straight, filamentous particles c. 950 nm long when mounted in MgCla, but 800–900 nra long in EDTA. The present cryptogram is: (R/i):*/*:E/E:S/Al. This virus is probably the same as Sheffield's virus B.  相似文献   

20.
The titres obtained in microprecipitin tests with purified preparations of pepino latent virus (PepLV) and the Andean strain of potato virus S (PVSA) using PepLV antiserum and two antisera to the ordinary strain of PVS (PVS°) indicated a close serological relationship between PepLV and PVSA. Using antiserum to PVS°, both viruses were detected by ELISA when infective Chenopodium quinoa sap was diluted to 10-5but not to 10-6. Particles of both viruses were decorated equally well by antibodies to PVSo, PVSAand PepLV in all virus-antiserum combinations. When PepLV was inoculated to C. quinoa, C. amaranticolor and potato plants, the symptoms induced closely resembled those of PVSAin these hosts. It is concluded that PepLV is an isolate of PVSAfrom pepino.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号