首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Exogenously supplied indole-3-acetic acid (IAA) stimulated ethylene production in tobacco (Nicotiana glauca) leaf discs but not in those of sugar beet (Beta vulgaris L.). The stimulatory effect of IAA in tobacco was relatively small during the first 24 hours of incubation but became greater during the next 24 hours. It was found that leaf discs of these two species metabolized [1-14C]IAA quite differently. The rate of decarboxylation in sugar beet discs was much higher than in tobacco. The latter contained much less free IAA but a markedly higher level of IAA conjugates. The major conjugate in the sugar beet extracts was indole-3-acetylaspartic acid, whereas tobacco extracts contained mainly three polar IAA conjugates which were not found in the sugar beet extracts. The accumulation of the unidentified conjugates corresponded with the rise of ethylene production in the tobacco leaf discs. Reapplication of all the extracted IAA conjugates resulted in a great stimulation of ethylene production by tobacco leaf discs which was accompanied by decarboxylation of the IAA conjugates. The results suggest that in tobacco IAA-treated leaf discs the IAA conjugates could stimulate ethylene production by a slow release of free IAA. The inability of the exogenously supplied IAA to stimulate ethylene production in the sugar beet leaf discs was not due to a deficiency of free IAA within the tissue but rather to the lack of responsiveness of this tissue to IAA, probably because of an autoinhibitory mechanism existing in the sugar beet leaf discs.  相似文献   

2.
An account is given of the preparation of aqueous extracts ofred beet root which are shown to stimulate potassium uptakein beet discs washed for a short period, but inhibit potassiumuptake in discs washed for four days or more. Analysis of extractsshowed them to contain organic anions (especially citrate andmalate) which affect both the metabolic phase of potassium uptakeand respiration of the tissue. The effects of extracts and organicacids on uptake of manganese by beet discs is described andcompared with effects on potassium absorption. The results arediscussed with respect to current theories of salt accumulationand in relation to the hypothesis relating an inhibitor of saltaccumulation to the lag phase of ion uptake by beet discs.  相似文献   

3.
This study was conducted to determine if aminoethoxyvinylglycine (AVG) insensitivity in avocado (Persea americana Mill., Lula, Haas, and Bacon) tissue was due to an alternate pathway of ethylene biosynthesis from methionine. AVG, at 0.1 millimolar, had little or no inhibitory effect on either total ethylene production or [(14)C] ethylene production from [(14)C]methionine in avocado tissue at various stages of ripening. However, aminoxyacetic acid (AOA), which inhibits 1-aminocyclopropane-1-carboxylic acid (ACC) synthase (the AVG-sensitive enzyme of ethylene biosynthesis), inhibited ethylene production in avocado tissue. Total ethylene production was stimulated, and [(14)C]ethylene production from [(14)C]methionine was lowered by treating avocado tissue with 1 millimolar ACC. An inhibitor of methionine adenosyltransferase (EC 2.5.1.6), l-2-amino-4-hexynoic acid (AHA), at 1.5 millimolar, effectively inhibited [(14)C]ethylene production from [(14)C]methionine in avocado tissue but had no effect on total ethylene production during a 2-hour incubation. Rates of [(14)C]AVG uptake by avocado and apple (Malus domestica Borkh., Golden Delicious) tissues were similar, and [(14)C]AVG was the only radioactive compound in alcohol-soluble fractions of the tissues. Hence, AVG-insensitivity in avocado tissue does not appear to be due to lack of uptake or to metabolism of AVG by avocado tissue. ACC synthase activity in extracts of avocado tissue was strongly inhibited (about 60%) by 10 micromolar AVG. Insensitivity of ethylene production in avocado tissue to AVG may be due to inaccessibility of ACC synthase to AVG. AVG-resistance in the avocado system is, therefore, different from that of early climacteric apple tissue, in which AVG-insensitivity of total ethylene production appears to be due to a high level of endogenous ACC relative to its rate of conversion to ethylene. However, the sensitivity of the avocado system to AOA and AHA, dilution of labeled ethylene production by ACC, and stimulation of total ethylene production by ACC provide evidence for the methionine --> SAM --> ACC --> ethylene pathway in avocado and do not suggest the operation of an alternate pathway.  相似文献   

4.
Alkali Cation/Sucrose Co-transport in the Root Sink of Sugar Beet   总被引:12,自引:11,他引:1       下载免费PDF全文
The mechanism of sucrose transport into the vacuole of root parenchyma cells of sugar beet was investigated using discs of intact tissue. Active sucrose uptake was evident only at the tonoplast. Sucrose caused a transient 8.3 millivolts depolarization of the membrane potential, suggesting an ion co-transport mechanism. Sucrose also stimulated net proton efflux. Active (net) uptake of sucrose was strongly affected by factors that influence the alkali cation and proton gradients across biological membranes. Alkali cations (Na+ and K+) at 95 millimolar activity stimulated active uptake of sucrose 2.1- to 4-fold, whereas membrane-permeating anions inhibited active sucrose uptake. The pH optima for uptake was between 6.5 and 7.0, pH values slightly higher than those of the vacuole. The ionophores valinomycin, gramicidin D, and carbonyl cyanide m-chlorophenylhydrazone at 10 micromolar concentrations strongly inhibited active sucrose uptake. These data are consistent with the hypothesis that an alkali cation influx/proton efflux reaction is coupled to the active uptake of sucrose into the vacuole of parenchyma cells in the root sink of sugar beets.  相似文献   

5.
The sink mobilizing abillity is partially determined by sugar uptake rates of storage cells. Two synthetic growth regulators (Pix and BAS 106W) were tested for their effect on sucrose uptake in root tissue discs or glucose uptake in cell cultures of sugar beet. In tissue discs, uptake at the plasmalemma was determined by incubating the discs for 1 h in the presence of 5 mM sucrose and at the tonoplast for 4 h in the presence of 40 mM sucrose. Cell cultures were incubated for 1 h in the presence of 1 mM glucose. Pix (10 mg l–1) caused a 20% stimulation of active sucrose uptake at the plasmalemma. Active sucrose uptake at the tonoplast was increased 67% by 100 mg l–1 Pix. No effect of BAS 106W was observed on sucrose uptake in tissue discs. In cell cultures, a 65% enhancement of active glucose uptake was observed with both Pix and BAs 106W. When the bioregulators were applied to the root medium of seedlings, Pix but not BAS 106W resulted in increased root/shoot ratio, translocation of 14C-assimilates, and allocation of more biomass to the root sink. The data suggested that sugar transport and translocation may be used as biochemical criteria for rapid screening of effective yield enhancing bioregulators.  相似文献   

6.
Kinetic studies were performed on fresh-cut and aged leaf discsof Spinacia oleracea L. in order to investigate the regulatoryprocesses involved in sugar transport across the mesophyll plasmamembrane. A comparison of the kinetic profiles for fructose,glucose, sucrose and arginine obtained on freshly-cut and ageddiscs revealed that during wound-recovery, uptake is enhanced,but that this enhancement varies considerably for the differentsubstrates tested. Variation in the saturable and first-orderkinetic components of uptake was also observed. The involvementof a phosphoinositide-signalling mechanism in the wounding processwas examined by pretreating spinach leaves with lithium. Lithiuminhibited the enhancement of uptake and this effect was reversedby the addition of miro-inositol. However, in some experimentsthe tissue appeared to be insensitive to Li+. Gas chromatographicanalyses performed on cut discs indicated that ethylene wasproduced in response to wounding and that the addition of cobaltto the ageing media inhibited this ethylene production. Comparativekinetic studies of control and cobalt-treated discs indicatedthat ethylene was essential for the enhancement of transportacross the plasma membrane. However, addition of ethylene touncut tissue caused only a partial increase in the uptake offructose, which indicates that some additional wound-signallingcomponent is involved. Addition of cycloheximide to the recoverymedia completely inhibited this enhancement phenomenon. Thecycloheximide-response was not due to an inhibition of ACC synthasesynthesis nor to a reduction of ATP levels. We concluded thatthe effect of cycloheximide was on protein synthesis. Our resultsare discussed in terms of possible cellular and molecular mechanismsregulating sugar transport. Key words: Sugar transport, wounding, ethylene production, spinach leaves  相似文献   

7.

Main conclusion

By integrating molecular, biochemical, and physiological data, ethylene biosynthesis in sugar beet was shown to be differentially regulated, affecting root elongation in a concentration-dependent manner. There is a close relation between ethylene production and seedling growth of sugar beet (Beta vulgaris L.), yet the exact function of ethylene during this early developmental stage is still unclear. While ethylene is mostly considered to be a root growth inhibitor, we found that external 1-aminocyclopropane-1-carboxylic acid (ACC) regulates root growth in sugar beet in a concentration-dependent manner: low concentrations stimulate root growth while high concentrations inhibit root growth. These results reveal that ethylene action during root elongation is strongly concentration dependent. Furthermore our detailed study of ethylene biosynthesis kinetics revealed a very strict gene regulation pattern of ACC synthase (ACS) and ACC oxidase (ACO), in which ACS is the rate liming step during sugar beet seedling development.  相似文献   

8.
Ethylene production by sugar beet (Beta vulgaris L.) leaf discs is inhibited by white (or red, >610 nm) light or by wounding. In contrast, in wounded leaf discs, ethylene production is stimulated by light. The effect of light on wounded leaf discs has been studied by using an in vitro system which mimics the loss of compartmentation in the wounded leaf. Chlorophyll-free extracts from sugar beet leaves stimulate the production of the superoxide free radical ion (as a prerequisite for ethylene formation) by illuminated chloroplast lamellae. The substance from the crude leaf extracts which is active in stimulating the production of the superoxide free radical ion has been identified as 3-hydroxytyramine (dopamine). Exogenous dopamine between 5 mum and 100 mum stimulates ethylene formation by illuminated chloroplast lamellae from methional. It also stimulates the production of the superoxide free radical ion, the formation of which apparently involves both a lamellar phenoloxidase and photosynthetic electron transport as a 1-electron donor, and is cyanide-sensitive.  相似文献   

9.
Changes in the 1-aminocyclopropane-1-carboxylate (ACC) synthaseactivity which regulates auxin-induced ethylene production werestudied in etiolated mung bean hypocotyl segments. Increasesboth in ethylene production and ACC synthase activity in tissuetreated with IAA and BA were severely inhibited by cycloheximide(CHI), 2-(4-methyl-2,6-dinitroanilino)-N-methylpropionamide,actinomycin D and -amanitin. Aminoethoxyvinylglycine (AVG),a potent inhibitor of the ACC synthase reaction, increased theactivity of the enzyme in the tissue 3- to 4-fold. This stimulationalso was severely inhibited by the above inhibitors. Stimulationof the increase in the enzyme content by AVG was partially suppressedby an exogenous supply of ACC or ethylene. Suppression of theincrease in the enzyme took place with 0.3 µl/liter ethylene,and inhibition was increased to 10 µl/liter, which caused65% suppression. Air-flow incubation of the AVG-treated tissue,which greatly decreased the ethylene concentration surroundingthe tissue, further increased the amount of enzyme. Thus, oneeffect of AVG is to decrease the ethylene concentration insidethe tissue. The apparent half life of ACC synthase activity,measured by the administration of CHI, was estimated as about25 min. AVG lengthened the half life of the activity about 2-fold.Feedback repression by ethylene in the biosynthetic pathwayof auxin-induced ethylene is discussed in relation to the effectof AVG. (Received January 22, 1982; Accepted March 26, 1982)  相似文献   

10.
Yu YB  Yang SF 《Plant physiology》1979,64(6):1074-1077
Auxin is known to stimulate greatly both C2H4 production and the conversion of methionine to ethylene in vegetative tissues, while amino-ethoxyvinylglycine (AVG) or Co2+ ion effectively block these processes. To identify the step in the ethylene biosynthetic pathway at which indoleacetic acid (IAA) and AVG exert their effects, [3-14C]methionine was administered to IAA or IAA-plus-AVG-treated mung bean hypocotyls, and the conversion of methionine to S-adenosylmethionine (SAM), 1-amino-cyclopropane-1-carboxylic acid (ACC), and C2H4 was studied. The conversion of methionine to SAM was unaffected by treatment with IAA or IAA plus AVG, but active conversion of methionine to ACC was found only in tissues which were treated with IAA and which were actively producing ethylene. AVG treatment abolished both the conversion of methionine to ACC and ethylene production. These results suggest that in the ethylene biosynthetic pathway (methionine → SAM → ACC → C2H4) IAA stimulates C2H4 production by inducing the synthesis or activation of ACC synthase, which catalyzes the conversion of SAM to ACC. Indeed, ACC synthase activity was detected only in IAA-treated tissues and its activity was completely inhibited by AVG. This conclusion was supported by the observation that endogenous ACC accumulated after IAA treatment, and that this accumulation was completely eliminated by AVG treatment. The characteristics of Co2+ inhibition of IAA-dependent and ACC-dependent ethylene production were similar. The data indicate that Co2+ exerts its effect by inhibiting the conversion of ACC to ethylene. This conclusion was further supported by the observation that when Co2+ was administered to IAA-treated tissues, endogenous ACC accumulated while ethylene production declined.  相似文献   

11.
Galactose, sucrose, and glucose (50 millimolar) applied to tobacco leaf discs (Nicotiana tabacum L. cv `Xanthi') during a prolonged incubation (5-6 d) markedly stimulated ethylene production which, in turn, could be inhibited by aminoethoxyvinylglycine (2-amino-4-(2′-aminoethoxy)-trans-3-butenoic acid) (AVG) or Co2+ ions. These three tested sugars also stimulated the conversion of l-[3,4-14C]methionine to [14C]1-amino-cyclopropane-1-carboxylic acid (ACC) and to [14C]ethylene, thus indicating that the carbohydrates-stimulated ethylene production proceeds from methionine via the ACC pathway. Sucrose concentrations above 25 mm considerably enhanced ACC-dependent ethylene production, and this enhancement was related to the increased respiratory carbon dioxide. However, sucrose by itself could directly promote the step of ACC conversion to ethylene, since low sucrose concentrations (1-25 mm) enhanced ACC-dependent ethylene production also in the presence of 15% CO2.  相似文献   

12.
The similarity of stress ethylene biosynthesis in whole plants to endogenous ethylene biosynthesis was investigated using two inhibitors of ethylene biosynthesis, aminoethoxyvinylglycine (AVG) and cobalt chloride (Co2+); and the intermediates, methionine, S -adenosylmethionine (SAM), and 1-aminocyclopropane-1-carboxylic acid (ACC), of basal ethylene biosynthesis. Stress ethylene production induced by ozone, cadmium, or 2,4-dichlorophenoxyacetic acid was inhibited in hydroponically-grown soybean seedlings in a concentration-dependent manner by both AVG and CO2+. The ethylene intermediates evoked responses in intact seedlings similar to that described for endogenous ethylene production in isolated vegetative tissue. The addition of SAM to the hydroponic system relieved AVG inhibition of stress ethylene production. Feeding ACC to the seedlings resulted in increased ethylene production independent of stress application or prior AVG inhibition. Cobalt inhibition of stress ethylene production was relieved by increasing concentrations of ACC. A short lag period of 12–18 min was observed in stress ethylene production following a 30-min ozone exposure. Addition of cycloheximide partially inhibited ozone-induced ethylene production.
These results suggest a common pathway in whole plants for stress ethylene production and endogenous ethylene biosynthesis.  相似文献   

13.
Callus-forming discs from potato ( Solanum tuberosum L. cv. Bintje) tubers grown on a nutrient medium containing an auxin and a cytokinin show both a higher ethylene formation and a higher capacity of the mitochondrial alternative pathway than nongrowing discs (on the same medium without auxin and cytokinin). Addition of 1-ami-nocyclopropane-1-carboxylic acid (ACC) to the nutrient medium of non-growing discs results in an enhancement of the ethylene formation as well as the alternative pathway capacity. In callus-forming tissue, the levels of both these parameters can be suppressed by adding aminoethoxyvinylglycine (AVG) to the nutrient medium without affecting growth. The effects on state 3-respiration of ACC (increase) and AVG (decrease) are relatively small. These results suggest that the alternative pathway capacity is controlled to a considerable extent by the endogenous ethylene formation of the tissues.  相似文献   

14.
Chi GL  Pua EC  Goh CJ 《Plant physiology》1991,96(1):178-183
The promotive effect of AgNO3 and aminoethoxyvinylglycine (AVG) on in vitro shoot regeneration from cotyledons of Brassica campestris ssp. pekinensis in relation to endogenous 1-amino-cyclopropane-1-carboxylic acid (ACC) synthase, ACC, and ethylene production was investigated. AgNO3 enhanced ACC synthase activity and ACC accumulation, which reached a maximum after 3 to 7 days of culture. ACC accumulation was concomitant with increased emanation of ethylene which peaked after 14 days. In contrast, AVG was inhibitory to endogenous ACC synthase activity and reduced ACC and ethylene production. The promotive effect of AVG on shoot regeneration was reversed by 2-chloroethylphosphonic acid at 50 micromolar or higher concentrations, whereas explants grown on AgNO3 medium were less affected by 2-chloroethylphosphonic acid. The distinctive effect of AgNO3 and AVG on endogenous ACC synthase, ACC, and ethylene production and its possible mechanisms are discussed.  相似文献   

15.
Jennifer F. Jones  Hans Kende 《Planta》1979,146(5):649-656
1-Aminocyclopropane-1-carboxylic acid (ACC) stimulated the production of ethylene in subapical stem sections of etiolated pea (cv. Alaska) seedlings in the presence and absence of indole-3-acetic acid (IAA). No lag period was evident following application of ACC, and the response was saturated at a concentration of 1 mM ACC. Levels of endogenous ACC paralleled the increase in ethylene production in sections treated with different concentrations of IAA and with selenoethionine or selenomethionine plus IAA. The IAA-induced formation of both ACC and ethylene was blocked by the rhizobitoxine analog aminoethoxyvinylglycine (AVG). Labelling studies with L-[U-14C]methionine showed an increase in the labelling of ethylene and ACC after treatment with IAA. IAA had no specific effect on the incorporation of label into S-methylmethionine or homoserine. The specific radioactivity of ethylene was similar to the specific radioactivity of carbon atoms 2 and 3 of ACC after treatment with IAA, indicating that all of the ethylene was derived from ACC. The activity of the ACC-forming enzyme was higher in sections incubated with IAA than in sections incubated with water alone. These results support the hypothesis that ACC is the in-vivo precursor of ethylene in etiolated pea tissue and that IAA stimulates ethylene production by increasing the activity of the ACC-forming enzyme.Abbreviations ACC 1-aminocyclopropane-1-carboxylic acid - AVG aminoethoxyvinylglycine, the aminoethoxy analog of rhizobitoxine - IAA indole-3-acetic acid - SAM S-adenosylmethionine - SMM S-methylmethionine  相似文献   

16.
Activities of both 1-aminocyclopropane-l-carboxylate (ACC) synthaseand phenylalanine ammonia-lyase (PAL) were rapidly induced inexcised mesocarp discs of Cucurbita maxima Duch. The increasein activity of ACC synthase preceded that of PAL. 2,5-Norbornadiene(NBD), an inhibitor of the action of ethylene [Sisler and Yang(1984) Phytochemistry 12: 2765-2768.], enhanced the level ofactivity of ACC synthase in excised mesocarp disc and overcamethe suppression by exogenous ethylene. NBD, by contrast, suppressedthe level of PAL activity induced in the wounded tissue. Theseresults suggest that endogenous ethylene produced in the woundedmesocarp tissue suppresses the induction of ACC synthase butpromotes the induction of PAL. (Received March 9, 1989; Accepted June 14, 1989)  相似文献   

17.
In heterotrophic cell suspensions of sunflower (Helianthus annuusL. cv. Spanners Allzweck) the effect of Pmg elicitor, a fungalelicitor preparation from Phytophthora megasperma f. sp. glycinea,on the induction of chitinase and ß-1,3-glucanaseactivity was studied in relation to changes in ethylene biosynthesis.Dose-response experiments with Pmg elicitor showed that theonset of the induction of intracellular chitinase and ß-1,3-glucanaseactivity coincided or followed a transient rise in ethyleneand particularly endogenous 1-aminocyclopropane-1-carboxylicacid (ACC) levels within 5 h of application. Treatment with5 µg ml–1 elicitor stimulated ethylene and ACC levels1.6-fold and 4-fold, relative to control, respectively. Themolar ratio of ACC to ethylene changed from approximately 3:1in controls to 9:1 in treated cells. During further incubation,ethylene formation and, to a lesser degree, ACC levels declinedand the ACC/ethylene ratio increased to 56:1 in elicitor-treatedcells. On a protein basis, the activities of ß-1,3-glucanaseand chitinase increased approximately 5-fold and 8-fold, respectively,48 h after elicitor application. Additional treatment with theACC synthesis inhibitor aminoethoxyvinyiglycine (AVG) decreasedelicitor-induced enzyme activities and the levels of both ethyleneand ACC. Elicitor effects on chitinase and ß-1,3-glucanaseactivities could be fully restored when ACC was additionallyapplied. Concomitantly, the ACC/ ethylene ratio increased. Neithertreatments with ACC alone, which simultaneously increased internalACC and ethylene levels, nor treatments with AVG alone, whichsimultaneously reduced ACC and ethylene levels, could generallystimulate chitinase or ß-1,3-glucanase activitiesin the cells. It is suggested that ACC functions as a promotingfactor in the induction of chitinase and ß-1,3-glucanaseactivity triggered by Pmg elicitor and appears to reverse aninhibiting influence of ethylene. Key words: 1-Aminocyclopropane-1-carboxylic acid, chitinase, ß-1,3-glucanase, ethylene, Helianthus cellsuspension cultures, Phytophthora megasperma-elicitor  相似文献   

18.
The flux of radioactivity from 3,4-[(14)C]methionine into S-adenosyl-l-methionine (SAM), 1-aminocyclopropane-1-carboxylic acid (ACC), spermine, and spermidine while inhibiting conversion of ACC to ethylene by 100 millimolar phosphate and 2 millimolar Co(2+) was studied in aged peel discs of orange (Citrus sinensis L. Osbeck) fruit. Inhibition up to 80% of ethylene production by phosphate and cobalt was accompanied by a 3.3 times increase of label in ACC while the radioactivity in SAM was only slightly reduced. Aminoethoxyvinylglycine (AVG) increased the label in SAM by 61% and reduced it in ACC by 47%. Different combinations of standard solution, in which putrescine or spermidine were administered alone or with AVG, demonstrated clearly that inhibition of ethylene biosynthesis-at the conversion of SAM to ACC-by AVG, exogenous putrescine or exogenous spermidine, stimulated the incorporation of 3,4-[(14)C]methionine into spermidine.  相似文献   

19.
We tested that the hypothesis that root elongation might be controlled by altering the level of ethylene in intact primary roots of maize(Zea mays L.). We measured root elongation in a short period using a computerized root auxanometer. Compounds which regulate ethylene production were applied to intact primary roots in different time periods. Root elongation was stimulated by the treatment with ethylene antagonists such as Co2+, aminoethoxyvinylglycine (AVG) and L-canaline. This result suggested that root elongation was closely related to ethylene level of intact primary roots. Furthermore, IAA- and 1-aminocyclopropane-1-carboxylic acid (ACC)-induced inhibition of root elongation was reversed by treatment with Co2+. The application of ACC to roots which have been exposed to IAA and Co2+ have no significant effect on root elongation. However, the inhibition of root elongation by ACC in roots previously treated with IAA and AVG became manifest when the applied IAA concentrations were lower. These results were consistent with the hypothesis that the level of ethylene in intact roots functions to moderate root elongation, and suggested that auxin-induced inhibition of root elongation results from auxin induced promotion of ethylene production.  相似文献   

20.
When turgor was increased, by decreasing the concentration of mannitol bathing discs of sugar beet storage root tissue, the rates of sucrose and potassium uptake into the vacuole were decreased. At all external mannitol concentrations the rate of sucrose and potassium uptake across the plasma membrane was an order of magnitude greater than the rate of quasi-steady uptake into the vacuole, implying a very large efflux. Efflux of both sucrose and potassium was increased at high turgor. However, while increasing turgor decreased the rate of K+ uptake, the rate of sucrose uptake at the plasma membrane increased with time. Compartmental analysis of tracer exchange kinetics was used to determine unidirectional K+ fluxes. From these results, it was estimated that the increase in K+ efflux accompanying a 1.5 MPa increase in turgor could lead to a net increase of 140mol?3h?1 in the external potassium concentration. It is suggested that the turgor-imposed increase in solute efflux is a means of regulating intracellular osmotic pressure and/or turgor in sugar beet storage roots, but that sucrose is preferentially retrieved from the apoplast, even under conditions of excessively high turgor. However, much of this sucrose is probably lost from the cell, implying a ‘futile’ sucrose transport cycle at the plasma membrane. The turgor-stimulated leak of potassium could play a major role in the regulation of turgor pressure in sugar beet storage root tissue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号