首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 334 毫秒
1.
A 96-well protein precipitation, liquid chromatography-tandem mass spectrometry (LC-MS/MS) method has been developed and fully validated for the determination of fudosteine in human plasma. After protein precipitation of the plasma samples (50 microL) by the methanol (150 microL) containing the internal standard (IS), erdosteine, the 96-well plate was vortexed for 5 min and centrifuged for 15 min. The 100 microL supernatant and 100 microL mobile phase were added to another plate and mixed and then the mixture was directly injected into the LC-MS/MS system in the negative ionization mode. The separation was performed on a XB-CN column for 3.0 min per sample using an eluent of methanol-water (60:40, v/v) containing 0.005% formic acid. Multiple reaction monitoring (MRM) using the precursor-product ion transitions m/z 178-->91 and m/z 284-->91 was performed to quantify fudosteine and erdosteine, respectively. The method was sensitive with a lower limit of quantification (LLOQ) of 0.02 microg mL(-1), with good linearity (r>0.999) over the linear range of 0.02-10 microg mL(-1). The within- and between-run precision was less than 5.5% and accuracy ranged from 94.2 to 106.7% for quality control (QC) samples at three concentrations of 0.05, 1 and 8 microg mL(-1). The method was employed in the clinical pharmacokinetic study of fudosteine formulation product after oral administration to healthy volunteers.  相似文献   

2.
A rapid and sensitive liquid chromatography/tandem mass spectrometry (LC/MS/MS) method for simultaneous quantitation of dexamethasone palmitate and dexamethasone in human plasma was developed. After sample preparation by protein precipitation and liquid-liquid extraction, the analytes and internal standard (IS) were separated on a Venusil XBP-C8 column using gradient elution. Multiple reaction monitoring of dexamethasone palmitate, dexamethasone and IS used the precursor to product ion transitions at m/z 631.8-->373.1, m/z 393.2-->147.1 and m/z 264.2-->58.1, respectively. The method was linear over the ranges 1.5-1000ng/mL for dexamethasone palmitate and 2.5-250ng/mL for dexamethasone with intra- and inter-day precisions of <10% and accuracies of 100+/-7%. The assay was applied to a clinical pharmacokinetic study involving the injection of dexamethasone palmitate to healthy volunteers.  相似文献   

3.
A rapid and sensitive liquid chromatographic/tandem mass spectrometric method for determination of misoprostol acid, the active metabolite of misoprostol, was developed and validated. Following liquid-liquid extraction, the analytes were separated using an isocratic mobile phase on a C(18) column. An API 4000 tandem mass spectrometer equipped with Turbo IonSpray ionization source was used as detector and was operated in the negative ion mode. Multiple reaction monitoring using the precursor to product ion combinations of m/z 367-249 and 296-269 was performed to quantify misoprostol acid and the internal standard hydrochlorothiazide, respectively. The method was linear in the concentration range of 10.0-3000 pg mL(-1) using 200 microL plasma. The lower limit of quantification was 10.0 pg mL(-1). The intra- and inter-day relative standard deviation over the entire concentration range was less than 8.3%. Accuracy determined at three concentrations (25.0, 200 and 2700 pg mL(-1) for misoprostol acid) ranged from -0.5 to 1.2% in terms of relative error. Each plasma sample was chromatographed within 3.5 min. The method was successfully used in a pharmacokinetic study of misoprostol in human plasma after an oral administration of 0.6 mg misoprostol.  相似文献   

4.
A simple and specific method using a one-step liquid-liquid extraction (LLE) with butyl acetate followed by high performance liquid chromatography (HPLC) coupled with positive ion electrospray ionization tandem mass spectrometry (ESI-MS/MS) detection was developed for the determination of etodolac in human plasma, using indomethacin as an internal standard (IS). Chromatographic separation was performed isocratically using a Capcellpak MGII C(18) column with 65% acetonitrile and 35% water containing 10mM ammonium formate (adjusted to pH 3.5 with formic acid). Acquisition was performed in multiple reaction monitoring (MRM) mode by monitoring the transitions: m/z 287.99>172.23 for etodolac and m/z 357.92>139.01 for IS. The method was validated to determine its selectivity, linearity, sensitivity, precision, accuracy, recovery and stability. The limit of quantitation (LLOQ) was 0.1microg/mL with a relative standard deviation of less than 15%. The devised method provides an accurate, precise and sensitive tool for determining etodolac levels in plasma.  相似文献   

5.
A sensitive and enantioselective method was developed and validated for the determination of ondansetron enantiomers in human plasma using enantioselective liquid chromatography-tandem mass spectrometry. The enantiomers of ondansetron were extracted from plasma using ethyl acetate under alkaline conditions. HPLC separation was performed on an ovomucoid column using an isocratic mobile phase of methanol-5 mM ammonium acetate-acetic acid (20:80:0.02, v/v/v) at a flow rate of 0.40 mL/min. Acquisition of mass spectrometric data was performed in multiple reaction monitoring mode, using the transitions of m/z 294-->170 for ondansetron enantiomers, and m/z 285-->124 for tropisetron (internal standard). The method was linear in the concentration range of 0.10-40 ng/mL for each enantiomer using 200 microL of plasma. The lower limit of quantification (LLOQ) for each enantiomer was 0.10 ng/mL. The intra- and inter-assay precision was 3.7-11.6% and 5.6-12.3% for R-(-)-ondansetron and S-(+)-ondansetron, respectively. The accuracy was 100.4-107.1% for R-(-)-ondansetron and 103.3-104.9% for S-(+)-ondansetron. No chiral inversion was observed during the plasma storage, preparation and analysis. The method was successfully applied to characterize the pharmacokinetic profiles of ondansetron enantiomers in healthy volunteers after an intravenous infusion of 8 mg racemic ondansetron.  相似文献   

6.
A sensitive and specific method using a one-step liquid-liquid extraction (LLE) with ethyl acetate followed by high-performance liquid chromatography (HPLC) coupled with positive ion electrospray ionization tandem mass spectrometry (ESI-MS/MS) detection was developed and validated for the determination of roxatidine in human plasma using famotidine as an internal standard (IS). Data acquisition was carried out in multiple reaction monitoring (MRM) mode, by monitoring the transitions m/z 307.3-->107.1 for roxatidine and m/z 338.4-->189.1 for famotidine. Chromatographic separation was performed on a reverse phase Hydrosphere C(18) column at 0.2 mL min(-1) using a mixture of methanol-ammonium formate buffer as mobile phase (20:80, v/v; adjusted to pH 3.9 with formic acid). The achieved lower limit of quantification (LLOQ) was 1.0 ng mL(-1) and the standard calibration curve for roxatidine was linear (r(2)=0.998) over the studied range (1-1000 ng mL(-1)) with acceptable accuracy and precision. Roxatidine was found to be stable in human plasma samples under short-, long-term storage and processing conditions. The developed method was validated and successfully applied to the bioequivalence study of roxatidine administrated as a single oral dose (75 mg as roxatidine acetate hydrochloride) to healthy female Korean volunteers.  相似文献   

7.
A sensitive method for the determination of Cloretazine (VNP40101M) and its metabolite (VNP4090CE) with an internal standard (ISTD) in human plasma was developed using high-performance liquid chromatographic separation with tandem mass spectrometric detection. Acidified plasma samples (500 microL) were prepared using solid phase extraction (SPE) columns, and 25 microL of the reconstituted sample was injected onto an Ascentis C18 HPLC column (3 microm, 5 cmx2.1 mm) with an isocratic mobile phase. Analytes were detected with an API-3000 LC-MS/MS System at unit (Q1) and low (Q3) resolution in negative multiple reaction monitoring mode: m/z 249.0 (precursor ion) to m/z 114.9 (product ion) for both Cloretazine (at 3.64 min) and VNP4090CE (at 2.91 min), and m/z 253.0 (precursor ion) to m/z 116.9 (product ion) for the ISTD. The mean recovery for Cloretazine (VNP40101M) and its metabolite (VNP4090CE) was greater than 87% with a lower limit of quantification of 1.0 ng/mL for Cloretazine (S/N=9.7, CV相似文献   

8.
A rapid, sensitive and accurate liquid chromatographic-tandem mass spectrometric method is described for the determination of tamsulosin in dog plasma. Tamsulosin was extracted from plasma using a mixture of hexane-ethyl acetate (2:1, v/v) and separated on a C18 column interfaced with a triple quadrupole tandem mass spectrometer. The mobile phase consisting of a mixture of methanol, water and formic acid (80:20:1, v/v/v) was delivered at a flow rate of 0.5 ml/min. Atmospheric pressure chemical ionization (APCI) source was operated in positive ion mode. Selected reaction monitoring (SRM) mode using the transitions of m/z 409-->m/z 228 and m/z 256-->m/z 166.9 were used to quantify tamsulosin and the internal standard, respectively. The linearity was obtained over the concentration range of 0.1-50.0 ng/ml for tamsulosin and the lower limit of quantitation was 0.1 ng/ml. For each level of QC samples, inter- and intra-run precision was less than 5.0 and 4.0% (relative standard deviation (R.S.D.)), respectively, and accuracy was within +/-0.3% (relative error (R.E.)). This method was successfully applied to pharmacokinetic study of a tamsulosin formulation product after oral administration to beagle dogs.  相似文献   

9.
An analytical method based on liquid chromatography with positive ion electrospray ionization (ESI) coupled to tandem mass spectrometry detection (LC-MS/MS) was developed for the determination of a potent 5-HT(1B/1D) receptor agonist, rizatriptan in human plasma using granisetron as the internal standard. The analyte and internal standard were isolated from 100 microL plasma samples by liquid-liquid extraction (LLE) and chromatographed on a Lichrospher C18 column (4.6mm x 50mm, 5 microm) with a mobile phase consisting of acetonitrile-10mM aqueous ammonium acetate-acetic acid (50:50:0.5, v/v/v) pumped at 1.0 mL/min. The method had a chromatographic total run time of 2 min. A Varian 1200 L electrospray tandem mass spectrometer equipped with an electrospray ionization source was operated in selected reaction monitoring (SRM) mode with the precursor-to-product ion transitions m/z 270-->201 (rizatriptan) and 313.4-->138 (granisetron) used for quantitation. The assay was validated over the concentration range of 0.05-50 ng/mL and was found to have acceptable accuracy, precision, linearity, and selectivity. The mean extraction recovery from spiked plasma samples was above 98%. The intra-day accuracy of the assay was within 12% of nominal and intra-day precision was better than 13% C.V. Following a 10mg dose of the compound administered to human subjects, mean concentrations of rizatriptan ranged from 0.2 to 70.6 ng/mL in plasma samples collected up to 24h after dosing. Inter-day accuracy and precision results for quality control samples run over a 5-day period alongside clinical samples showed mean accuracies of within 12% of nominal and precision better than 9.5% C.V.  相似文献   

10.
The long-acting antibiotic tulathromycin is on the marked for treatment of pulmonary infection of cattle, swine and horses. To measure disposition and distribution of tulathromycin in foals, a high throughput method was developed for horse plasma (calibration range: 0.006-0.8 microg/mL) and broncho-alveolar cells (calibration range: 0.1-4.0 microg/10(9)cells) using tandem mass spectrometry. Tulathromycin was extracted from plasma and broncho-alveolar fluid using cation exchange cartridges with acetonitrile/ammonia (95:5, v/v). The chromatography was performed isocratically with a mobile phase consisting of 5 mM ammonium formiate buffer/acetonitrile (30:70, v/v). The mass spectrometer operated in selected ion mode with atmospheric pressure chemical ionization to monitor the respective MH+ ions m/z 577.3 for tulathromycin and m/z 679.3 for the internal standard roxithromycin. All quality parameters fulfilled the international criteria for bioanalytical method validation and were successfully applied to the determination of tulathromycin in plasma of foals and broncho-alveolar cells. In foals, tulathromycin after intramuscular administration was rapidly absorbed, widely distributed and slowly eliminated. It cumulated manifold in broncho-alveolar cells.  相似文献   

11.
A new method for the determination of tranexamic acid (TA) in human plasma using high performance liquid chromatography with tandem mass spectrometric detection was described. TA and the internal standard, methyldopa, was extracted from a 200 l plasma sample by a one-step deproteination using perchloric acid. Chromatographic separation was performed on an Xtrra MS C18 Column (2.1 mm x 100 mm, 3.5 microm) with the mobile phase consisting of 10% acetonitrile in 2 mM ammonium acetate buffer (pH 3.5) at a flow rate of 0.15 ml/min. The total run time was 5 min for each sample. Detection and quantitation was performed by the mass spectrometer using the multiple reaction monitoring of the precursor-product ion pair m/z 158 --> 95 for TA and m/z 212 --> 166 for methyldopa, respectively. The method was linear over the concentration range of 0.02-10.00 g/ml with lower limit of quantification of 0.02 microg/ml for TA. The intra- and inter-day precision was less than 11% and accuracy ranged -10.88 to 11.35% at the TA concentrations tested. The present method provides a relatively simple and sensitive assay with short turn-around time. The method has been successfully applied to a clinical pharmacokinetic study of TA in 12 healthy subjects.  相似文献   

12.
We describe a liquid chromatography-tandem mass spectrometric method (LC-MS/MS) for levocetirizine quantification (I) in human plasma. Sample preparation was made using a fexofenadine (II) addition as internal standard (IS), liquid-liquid extraction using cold dichloromethane, and dissolving the final extract in acetonitrile. I and II (IS) were injected in a C18 column and the mobile phase composed of acetonitrile:water:formic acid (80.00:19.90:0.10, v/v/v) and monitored using positive electrospray source with tandem mass spectrometry analyses. The selected reaction monitoring (SRM) was set using precursor ion and product ion combinations of m/z 389>201 for I and m/z 502>467 for II. The limit of quantification and the dynamic range achieved were 0.5ng/mL and 0.5-500.0ng/mL. Validation results on linearity, specificity, accuracy, precision and stability, as well as its application to the analysis of plasma samples taken up to 48h after oral administration of 5mg of levocetirizine dichloridrate in healthy volunteers demonstrate its applicability to bioavailability studies.  相似文献   

13.
A simple, sensitive and rapid liquid chromatography/tandem mass spectrometric (LC-MS/MS) method was developed and validated for quantification of chloroquine, an antimalarial drug, in plasma using its structural analogue, piperazine bis chloroquinoline as internal standard (IS). The method is based on simple protein precipitation with methanol followed by a rapid isocratic elution with 10 mM ammonium acetate buffer/methanol (25/75, v/v, pH 4.6) on Chromolith SpeedROD RP-18e reversed phase chromatographic column and subsequent analysis by mass spectrometry in the multiple reaction monitoring mode (MRM). The precursor to product ion transitions of m/z 320.3-->247.2 and m/z 409.1-->205.2 were used to measure the analyte and the IS, respectively. The assay exhibited a linear dynamic range of 2.0-489.1 ng/mL for chloroquine in dog plasma. The limit of detection (LOD) and lower limit of quantification (LLOQ) were 0.4 and 2.0 ng/mL, respectively in 0.05 mL plasma. Acceptable precision and accuracy were obtained for concentrations over the standard curve range of 2.0-489.1 ng/mL. A run time of 2.0 min for a sample made it possible to achieve a throughput of more than 400 plasma samples analyzed per day. The validated method was successfully used to analyze samples of dog plasma during non-clinical study of chloroquine.  相似文献   

14.
A rapid, sensitive and reliable method was developed to quantitate omeprazole in human plasma using liquid chromatography-tandem mass spectrometry. The assay is based on protein precipitation with acetonitrile and reversed-phase liquid chromatography performed on an octadecylsilica column (55 mm x 2mm, 3 microm particles), the mobile phase consisted of methanol-10 mM ammonium acetate (60:40, v/v). Omeprazole and flunitrazepam, the internal standard, elute at 0.80+/-0.10 min with a total run time 1.35 min. Quantification was through positive ion mode and selected reaction monitoring mode at m/z 346.1-->197.9 for omeprazole and m/z 314.0-->268.0 for flunitrazepam, respectively. The lower limit of quantitation was 1.2 ng/ml using 0.25 ml of plasma and linearity was observed from 1.2 to 1200 ng/ml. Within-day and between-day precision expressed by relative standard deviation was less than 5% and inaccuracy did not exceed 12%. The assay was applied to the analysis of samples from a pharmacokinetic study.  相似文献   

15.
A sensitive and simple method was developed for determination of the enantiomers of azelnidipine, (R)-(-)-azelnidipine and (S)-(+)-azelnidipine, in human plasma using chiral liquid chromatography with positive ion atmospheric pressure chemical ionization tandem mass spectrometry. Plasma samples spiked with stable isotope-labeled azelnidipine, [(2)H(6)]-azelnidipine, as an internal standard, were processed for analysis using a solid-phase extraction in a 96-well plate format. The azelnidipine enantiomers were separated on a chiral column containing alpha(1)-acid glycoprotein as a chiral selector under isocratic mobile phase conditions. Acquisition of mass spectrometric data was performed in multiple reaction monitoring mode, monitoring the transitions from m/z 583-->167 for (R)-(-)-azelnidipine and (S)-(+)-azelnidipine, and from m/z 589-->167 for [(2)H(6)]-azelnidipine. The standard curve was linear over the studied range (0.05-20 ng/mL), with r(2)>0.997 using weighted (1/x(2)) quadratic regression, and the chromatographic run time was 5.0 min/injection. The intra- and inter-assay precision (coefficient of variation), calculated from the assay data of the quality control samples, was 1.2-8.2% and 2.4-5.8% for (R)-(-)-azelnidipine and (S)-(+)-azelnidipine, respectively. The accuracy was 101.2-117.0% for (R)-(-)-azelnidipine and 100.0-107.0% for (S)-(+)-azelnidipine. The overall recoveries for (R)-(-)-azelnidipine and (S)-(+)-azelnidipine were 71.4-79.7% and 71.7-84.2%, respectively. The lower limit of quantification for both enantiomers was 0.05 ng/mL using 1.0 mL of plasma. All the analytes showed acceptable short-term, long-term, auto-sampler and stock solution stability. Furthermore, the method described above was used to separately measure the concentrations of the azelnidipine enantiomers in plasma samples collected from healthy subjects who had received a single oral dose of 16 mg of azelnidipine.  相似文献   

16.
A sensitive and reliable method for the determination of gamma-aminobutyric acid (GABA), a major inhibitory neurotransmitter, in human plasma and cerebrospinal fluid (CSF) has been developed. The method is based on capillary liquid chromatography (LC)/tandem mass spectrometry (MS/MS) using deuterium-labeled GABA (gamma-aminobutyric acid-2,2-D(2), GABA-d(2)) as internal standard. Pre-column derivatization with 7-fluoro-4-nitrobenzoxadiazole (NBD-F) was deployed, allowing both effective in-line pre-concentration and sensitive tandem MS detection of the analyte. An extraction column (10 mm x 0.25 mm, 7 microm, C(18)) was used for preconcentrating and stacking the sample. Separation was carried out on an analytical column (50 mm x 0.25 mm, 5 microm, C(18)). Characteristic precursor-to-product ion transitions, m/z 267--> 249 (for NBD-GABA) and m/z 269--> 251 (for NBD-GABA-d(2)) were monitored for the quantification. A linear calibration curve from 10 to 250 ng/mL GABA with an r(2) value of 0.9994 was obtained. Detection limit was estimated to be 5.00 ng/mL GABA (S/N = 3). Human plasma and CSF samples were analyzed. The concentrations of GABA were found to be 98.6 +/- 33.9 ng/mL (mean +/- S.D., n = 12), and 44.3 +/- 10.0 ng/mL (n = 6) in plasma and CSF, respectively.  相似文献   

17.
A selective and sensitive high performance liquid chromatography-electrospray ionization-tandem mass spectrometry (ESI-MS/MS) method for simultaneous determination of metformin and rosiglitazone in human plasma using phenformin as internal standard (IS) has been first developed and validated. Plasma samples were precipitated by acetonitrile and the analytes were separated on a prepacked Phenomenex Luna 5u CN 100A (150 mm x 2.0 mm I.D.) column using a mobile phase comprised of methanol:30 mM ammonium acetate pH 5.0 (80:20, v/v) delivered at 0.2 ml/min. Detection was performed on a Finnigan TSQ triple-quadrupole tandem mass spectrometer in positive ion selected reaction monitoring (SRM) mode using electrospray ionization. The ion transitions monitored were m/z 130.27-->71.11 for metformin, m/z 358.14-->135.07 for rosiglitazone and m/z 206.20-->105.19 for the IS. The standard curves were linear (r(2)>0.99) over the concentration range of 5-3000 ng/ml for metformin and 1.5-500 ng/ml for rosiglitazone with acceptable accuracy and precision, respectively. The within- and between-batch precisions were less than 15% of the relative standard deviation. The limit of detection (LOD) of both metformin and rosiglitazone was 1 ng/ml. The method described is precise and sensitive and has been successfully applied to the study of pharmacokinetics of compound metformin and rosiglitazone capsules in 12 healthy Chinese volunteers.  相似文献   

18.
A liquid chromatography/tandem mass spectrometric (LC/MS/MS) assay was developed for the quantitative determination of salirasib (S-trans,trans-farnesylthiosalicylic acid, FTS) in human plasma. Sample pretreatment involved liquid-liquid extraction with methyl t-butyl ether of 0.5-mL aliquots of lithium heparin plasma spiked with the internal standard, S-trans,trans-5-fluoro-farnesylthiosalicylic acid (5-F-FTS). Separation was achieved on Waters X-Terra C(18) (50 mm x 2.1 mm i.d., 3.5 microm) at room temperature using isocratic elution with acetonitrile/10 mM ammonium acetate buffer mobile phase (80:20, v/v) containing 0.1% formic acid at a flow rate of 0.20 mL/min. Detection was performed using electrospray MS/MS by monitoring the ion transitions from m/z 357.2-->153.0 (salirasib) and m/z 375.1-->138.8 (5-F-FTS). Calibration curves were linear in the concentration range of 1-1000 ng/mL. A 5000 ng/mL sample that was diluted 1:10 (v/v) with plasma was accurately quantitated. The values for both within day and between day precision and accuracy were well within the generally accepted criteria for analytical method (<8.0%). This assay was subsequently used for the determination of salirasib concentrations in plasma of cancer patients after oral administration of salirasib at a dose of 400 mg.  相似文献   

19.
A sensitive and selective LC-MS-MS method has been developed and validated for the determination of cryptotanshinone (CTS) and its active metabolite tanshinone II A (TS II A) in rat plasma using fenofibrate (FOFB) as internal standard. Liquid-liquid extraction was used for sample preparation. Chromatographic separation was achieved on a Waters symmetry ODS column using methanol and water (85:15) as mobile phase delivered at 1.0 mL/min. LC-MS-MS analysis was carried out on a Finnigan LC-TSQ Quantum mass spectrometer using atmospheric pressure chemical ionization (APCI) and positive multiple reaction monitoring. Ions monitored were m/z 297.0--> 251.0 for CTS, m/z 295.0--> 249.0 for TS II A, and m/z 361.1--> 233.0 for FOFB with argon at a pressure of 0.2 Pa and collision energy of 25 eV for collision-induced dissociation (CID). The assay was linear over the range 0.1-20 ng/mL for CTS and 0.2-15 ng/mL for TS II A. The average recoveries of CTS and TS II A from rat plasma were 93.7 and 94.7%, respectively. The established method has been applied in a pharmacokinetic study of CTS in rats.  相似文献   

20.
A liquid chromatography/tandem mass spectrometry (LC-MS/MS) method was established for the determination of 5-aminoimidazole-4-carboxamide (AICA) in human plasma. The method included a solvent extraction of AICA as an ion pair with 1-pentanesulfonate ion and a separation on a Hypersil ODS2 column with the mobile phase of methanol-water (68:32, v/v). Determination was performed using an electrospray ionization source in positive ion mode (ESI(+)). Multiple reaction monitoring (MRM) was utilized for the detection monitoring m/z at 127-->110 for AICA, and 172-->128 for IS. The calibration curve was linear within a range from 20 to 2000 ng/mL and the limit of quantity for AICA in plasma was 20 ng/mL. RSD of intra-assay and inter-assay were no more than 5.90% and 5.65%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号