首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《L'Anthropologie》2022,126(4):103054
The Kromdraai archaeological site is located in a fossiliferous paleokarst situated in the UNESCO World Heritage Site referred to as the “Cradle of Humankind” in the Gauteng Province of South Africa. Kromdraai is noteworthy because it features among the three southern African early hominin-bearing sites considered to represent distinct temporal periods within the same stratigraphic succession. Kromdraai also yielded a partial skull and dentition (TM 1517) in 1938 that was designated as the holotype of a new genus and species, Paranthropus robustus. Although the hominin fossil assemblage collected from Kromdraai between 1938 and 2014 is rather paltry, morphometric and cladistic analyses of this material suggested that it represented a somewhat less-derived form of P. robustus than the considerably larger assemblage from the nearby site of Swartkrans. However, the geochronological and biotic relationships among the P. robustus-bearing sites in South Africa are not resolved. Since 2014, the previously unknown, albeit densely fossiliferous Unit P produced 51 individually catalogued hominin fossils (36 craniodental and 15 postcranial) that currently represent 13% of the faunal assemblage from this unit with a minimum number of 10 juvenile and 9 adult individuals. P. robustus and early Homo coexisted at the time of the accumulation of Unit P at Kromdraai, with a relative abundance of 89% and 11%, respectively. P. robustus and early Homo are associated with a highly diverse fauna that includes several water-dependent species, and a large variety of bovid and carnivore taxa. Biochronological data from Unit P and an interval of reversed polarity measured in younger deposits above it are interpreted in the context of the regional chronological framework to infer that it represents a deposit that was likely accumulated prior to 2 Ma.  相似文献   

2.
3.
The specific attribution of the large hominin M2 (GDA-2) from Gondolin has significant implications for the paleobiology of Paranthropus. If it is a specimen of Paranthropus robustus it impacts that species' size range, and if it belongs to Paranthropus boisei it has important biogeographic implications. We evaluate crown size, cusp proportions and the likelihood of encountering a large-bodied mammal species in both East and South Africa in the Early Pleistocene. The tooth falls well outside the P. robustus sample range, and comfortably within that for penecontemporaneous P. boisei. Analyses of sample range, distribution and variability suggest that it is possible, albeit unlikely to find a M2 of this size in the current P. robustus sample. However, taphonomic agents - carnivore (particularly leopard) feeding behaviors - have likely skewed the size distribution of the Swartkrans and Drimolen P. robustus assemblage. In particular, assemblages of large-bodied mammals accumulated by leopards typically display high proportions of juveniles and smaller adults. The skew in the P. robustus sample is consistent with this type of assemblage. Morphological evidence in the form of cusp proportions is congruent with GDA-2 representing P. robustus rather than P. boisei. The comparatively small number of large-bodied mammal species common to both South and East Africa in the Early Pleistocene suggests a low probability of encountering an herbivorous australopith in both. Our results are most consistent with the interpretation of the Gondolin molar as a very large specimen of P. robustus. This, in turn, suggests that large, presumptive male, specimens are rare, and that the levels of size variation (sexual dimorphism) previously ascribed to this species are likely to be gross underestimates.  相似文献   

4.
《Comptes Rendus Palevol》2003,2(4):269-279
Kromdraai B, situated less than 2 km east of Sterkfontein, in the Gauteng province of South Africa, has yielded 27 specimens, attributed to a single Plio-Pleistocene hominid species, including the type specimen of Paranthropus (Australopithecus) robustus. By using resampling and morphological analysis, and after considering the most diagnostic features that have been used in the past for the lower dentition, we here suggest that one specimen from Kromdraai B, KB 5223, is clearly distinct from P. robustus and represents early Homo. To cite this article: J. Braga, J.F. Thackeray, C. R. Palevol 2 (2003).  相似文献   

5.
The Plio-Pleistocene locality of Kromdraai B has yielded the type specimen of Paranthropus robustus, as well as 27 additional fossil hominin specimens. In a number of both cranial and dental features, the states shown by the Kromdraai Paranthropus are more conservative when compared to the more derived conditions displayed by both South African conspecifics and the post-2.3 Ma eastern African Paranthropus boisei. Since 2014, we excavated the earliest known infilling of the Kromdraai cave system in a previously unexplored area. This new locality provided as yet 2200 identifiable macrovertebrate fossils, including 22 hominins, all tied in the earliest part of the stratigraphic sequence, representing three distinct depositional periods. Since we report here, for the first time, the occurrence of fossil hominins in Members 1 and 2, our discoveries stretch the time span of hominin evolution at Kromdraai and contribute to a better understanding of the origin of Paranthropus in southern Africa.  相似文献   

6.
Drimolen is one of the newest and most productive hominin sites in South Africa, and is dated on faunal grounds between 2.0 Ma to 1.5 Ma. This paper provides the first overview of the Carnivora from Drimolen, updating the previously published preliminary faunal list, and describing all currently prepared craniodental and postcranial material. The Drimolen specimens are described in comparison with other modern and fossil South African carnivore material. The carnivores cover a range of taxa including hyaenids, felids, canids and herpestids. Most notable amongst these are the sabretooth Dinofelis aff. piveteaui craniodental and postcranial remains, which are described in detail, and a Chasmaporthetes nitidula cranium. The genus Chasmaporthetes is found at three other sites in the area - Sterkfontein, Swartkrans and Coopers D. There are two models for the geographic origin of Dinofelis piveteaui, in that it may have arisen in either eastern or southern Africa. These possibilities are discussed in the light of the new South African Dinofelis material, as the Drimolen material appears to represent a more primitive form with affinities with D. piveteaui. Fossil leopard material from Kromdraai B and Drimolen is also discussed, as the metapodia assigned to P. pardus from these two sites are very small, but lie within the variation of modern leopards. Such size differences in fossil postcrania may have implications for the niches that these animals may have occupied in the past.  相似文献   

7.
Australopithecus robustus is one of the best represented hominin taxa in Africa, with hundreds of specimens recovered from six fossil localities in the Bloubank Valley area of Gauteng Province, South Africa. However, precise geochronological ages are presently lacking for these fossil cave infills. In this paper, we provide a detailed geological background to a series of hominin fossils retrieved from the newly investigated deposit of Cooper's D (located partway between Sterkfontein and Kromdraai in the Bloubank Valley), including uranium-lead (U-Pb) ages for speleothem material associated with A. robustus. U-Pb dating of a basal speleothem underlying the entire deposit results in a maximum age of 1.526 (±0.088) Ma for Cooper's D. A second U-Pb date of ca. 1.4 Ma is produced from a flowstone layer above this basal speleothem; since this upper flowstone is not a capping flowstone, and fossiliferous sediments are preserved above this layer, some of the hominins might be slightly younger than the calculated age. As a result, we can broadly constrain the age of the hominins from Cooper's D to between 1.5 and approximately 1.4 Ma. Extinct fauna recorded in this comparatively young deposit raise the possibility that the Bloubank Valley region of South Africa represented a more stable environmental refugium for taxa relative to tectonically more active East Africa. The sediments of the deposit likely infilled rapidly during periods when arid conditions prevailed in the paleoenvironment, although it is unclear whether sediment deposition and bone deposition were necessarily contemporaneous occurrences. We reconstruct the paleoenvironment of Cooper's D as predominantly grassland, with nearby woodlands and a permanent water source. The hominin teeth recovered from Cooper's D are all from juveniles and can be confidently assigned to A. robustus. In addition, two juvenile mandibular fragments and an adult thoracic vertebra are tentatively attributed to A. robustus.  相似文献   

8.
9.
Discovery of the first complete Early Pleistocene hominin pelvis, Gona BSN49/P27, attributed to Homo erectus, raises a number of issues regarding early hominin body size and shape variation. Here, acetabular breadth, femoral head breadth, and body mass calculated from femoral head breadth are compared in 37 early hominin (6.0-0.26 Ma) specimens, including BSN49/P27. Acetabular and estimated femoral head sizes in the Gona specimen fall close to the means for non-Homo specimens (Orrorin tugenesis, Australopithecus africanus, Paranthropus robustus), and well below the ranges of all previously described Early and Middle Pleistocene Homo specimens. The Gona specimen has an estimated body mass of 33.2 kg, close to the mean for the non-Homo sample (34.1 kg, range 24-51.5 kg, n = 19) and far outside the range for any previously known Homo specimen (mean = 70.5 kg; range 52-82 kg, n = 17). Inclusion of the Gona specimen within H. erectus increases inferred sexual dimorphism in body mass in this taxon to a level greater than that observed here for any other hominin taxon, and increases variation in body mass within H. erectus females to a level much greater than that observed for any living primate species. This raises questions regarding the taxonomic attribution of the Gona specimen. When considered within the context of overall variation in body breadth among early hominins, the mediolaterally very wide Gona pelvis fits within the distribution of other lower latitude Early and Middle Pleistocene specimens, and below that of higher latitude specimens. Thus, ecogeographic variation in body breadth was present among earlier hominins as it is in living humans. The increased M-L pelvic breadth in all earlier hominins relative to modern humans is related to an increase in ellipticity of the birth canal, possibly as a result of a non-rotational birth mechanism that was common to both australopithecines and archaic Homo.  相似文献   

10.
The announcement of a new species, Homo floresiensis, a primitive hominin that survived until relatively recent times is an enormous challenge to paradigms of human evolution. Until this announcement, the dominant paradigm stipulated that: 1) only more derived hominins had emerged from Africa, and 2) H. sapiens was the only hominin since the demise of Homo erectus and Homo neanderthalensis. Resistance to H. floresiensis has been intense, and debate centers on two sets of competing hypotheses: 1) that it is a primitive hominin, and 2) that it is a modern human, either a pygmoid form or a pathological individual. Despite a range of analytical techniques having been applied to the question, no resolution has been reached. Here, we use cladistic analysis, a tool that has not, until now, been applied to the problem, to establish the phylogenetic position of the species. Our results produce two equally parsimonious phylogenetic trees. The first suggests that H. floresiensis is an early hominin that emerged after Homo rudolfensis (1.86 Ma) but before H. habilis (1.66 Ma, or after 1.9 Ma if the earlier chronology for H. habilis is retained). The second tree indicates H. floresiensis branched after Homo habilis.  相似文献   

11.
We investigate cochlear variation, an indirect evidence of auditory capacities among early hominins and extant catarrhine species, in order to assess (i) the phylogenetic signal of relative external cochlear length (RECL) and oval window area (OWA), (ii) the evolutionary model with the highest probability of explaining our observed data, (iii) some hominin ancestral nodes for RECL and OWA. RECL has a high phylogenetic signal under a Brownian motion model, and is closely correlated with body mass. Our model-based method has the advantage over parsimony-based methods of incorporating branch lengths in a phylo-morphospace, and this shows RECL shifted towards significantly higher values at the Homo erectus-Homo sapiens node. We also observe that the StW 53 and KB 6067 fossil specimens from Sterkfontein and Kromdraai likely represent one or two distinct, smaller-bodied and less derived hominin form(s) compared to Paranthropus specimens represented at Swartkrans.  相似文献   

12.
Hominin fossils of gracile and robust australopith groups were found both in East and in South Africa. It is unclear, however, whether all robusts belong to a monophyletic Paranthropus clade, as the craniofacial resemblance among robust australopiths might only be a superficial correlate of similar masticatory adaptations and not evidence of shared ancestry. It has been suggested that the East African Australopithecus/Paranthropus boisei and the South African A./P. robustus might be convergent allometric variants of their gracile geographical neighbors A. afarensis and A. africanus. Here we approach the phylogenetic questions about robust and gracile australopiths from an ??evo-devo?? perspective, examining how simple alterations of development could contribute to the shape differences among hominin species. Using geometric morphometrics we compare gracile and robust australopith crania in the context of the allometric scaling patterns of Pan troglodytes, P. paniscus, and Gorilla gorilla. We examine support for two alternative evolutionary scenarios based on predictions derived from quantitative genetics models: either (1) A./P. robustus evolved in South Africa from the gracile A. africanus, or (2) A./P. robustus is a local variant of the eastern African A./P. boisei. We use developmental simulations to demonstrate that some robust characteristics (wide faces, anteriorly placed zygomatics, and facial dishing) can be predicted by allometric scaling along the ontogenetic trajectory of the gracile A. africanus. We find, however, that the facial differences between A. africanus specimens (Taung, Sts 5, Sts 71, and Stw 505) and A./P. robustus specimen SK 48 cannot be explained by allometric scaling alone. Facial shape differences between A./P. robustus SK 48 and A./P. boisei (KNM-ER 732, KNM-ER 406, OH 5) and the A./P. aethiopicus specimen KNM-WT 17000, on the other hand, can largely be explained by allometric scaling. This is consistent with a close evolutionary relationship of these robust taxa.  相似文献   

13.
The angle at which enamel prisms approach the wear surface holds information with regard to the stiffness of the tissue, as well as its wear resistance. Hence, analyses of prism orientation may shed light on questions of whether the thick enamel in hominins has evolved to confer stiffness or wear resistance to the teeth and may thus inform about the diet and behavioural ecology of these species. This was explored for Paranthropus robustus and Australopithecus africanus, whereby a distinction was made between prisms at the Phase I and Phase II facets. The results were compared with those obtained for Theropithecus, Macaca, and Potamochoerus for whom behavioural and/or experimental data are available, and were interpreted against simple mechanical principles. The South African hominins differ significantly in their relationships between wear facets and prism angulations. Teeth of P. robustus are better adapted to more vertical loads during mastication (Phase I), whereas those of A. africanus are better adapted to cope with more laterally-directed loads (Phase II) commonly associated with roll-crush and mastication. Overall, teeth of P. robustus appear stiffer, while those of A. africanus seem more wear resistant.  相似文献   

14.
There are a total of 16 fossil cercopithecid specimens, representing at least 10 individuals, from the Chiwondo Beds of northern Malawi. The majority of this material is derived from the Middle Pliocene Unit 3A, but one specimen is from the Early Pliocene Unit 2. This latter specimen is from a papionin of indeterminate genus similar in size to Parapapio ado and Pliopapio alemui. Among the specimens from Unit 3A, two species can be diagnosed: an indeterminate species of Theropithecus, and a species of Parapapio similar in dental size to P. broomi. Neither of the genera from Unit 3A are exclusive to either East Africa or South Africa. Their relative abundances, however, are more similar to Middle Pliocene South African sites where Parapapio is the most common primate genus, and Theropithecus is comparatively rare. This is in contrast to similarly-aged East African sites where Theropithecus is by far the most abundant genus.  相似文献   

15.
Excavations at Liang Bua, on the Indonesian island of Flores, have yielded a stratified sequence of stone artifacts and faunal remains spanning the last 95 k.yr., which includes the skeletal remains of two human species, Homo sapiens in the Holocene and Homo floresiensis in the Pleistocene. This paper summarizes and focuses on some of the evidence for Homo floresiensis in context, as presented in this Special Issue edition of the Journal of Human Evolution and elsewhere. Attempts to dismiss the Pleistocene hominins (and the type specimen LB1 in particular) as pathological pygmy humans are not compatible with detailed analyses of the skull, teeth, brain endocast, and postcranium. We initially concluded that H. floresiensis may have evolved by insular dwarfing of a larger-bodied hominin species over 880 k.yr. or more. However, recovery of additional specimens and the numerous primitive morphological traits seen throughout the skeleton suggest instead that it is more likely to be a late representative of a small-bodied lineage that exited Africa before the emergence of Homo erectus sensu lato. Homo floresiensis is clearly not an australopithecine, but does retain many aspects of anatomy (and perhaps behavior) that are probably plesiomorphic for the genus Homo. We also discuss some of the other implications of this tiny, endemic species for early hominin dispersal and evolution (e.g., for the “Out of Africa 1” paradigm and more specifically for colonizing Southeast Asia), and we present options for future research in the region.  相似文献   

16.
The kipunji, a recently discovered primate endemic to Tanzania's Southern Highlands and Udzungwa Mountains, was initially referred to the mangabey genus Lophocebus (Cercopithecinae: Papionini), but subsequent molecular analyses showed it to be more closely related to Papio. Its consequent referral to a new genus, Rungwecebus, has met with skepticism among papionin researchers, who have questioned both the robustness of the phylogenetic results and the kipunji's morphological distinctiveness. This circumstance has been exacerbated by the immaturity of the single available specimen (FMNH 187122), an M1-stage juvenile. Therefore, a geometric morphometric analysis of juvenile papionin cranial shape was used to explore the kipunji's phenetic affinities and evaluate morphological support for its separation from Lophocebus. Three-dimensional craniometric landmarks and semi-landmarks were collected on a sample of 124 subadult (dp4-M2 stage) cercopithecid crania. Traditional interlandmark distances were compared and a variety of multivariate statistical shape analyses were performed for the zygomaxillary region (diagnostic in mangabeys) and the cranium as a whole. Raw and size-adjusted interlandmark distances show the kipunji to have a relatively taller, shorter neurocranium and broader face and cranial base than is seen in M1-stage Lophocebus. Principal components and cluster analyses consistently unite the two Lophocebus species but group the kipunji with Cercocebus and/or Macaca. Morphological distances (Mahalanobis D2) between the kipunji and Lophocebus species are comparable to distances between recognized papionin genera. Discriminant function analyses suggest phenetic affinities between the kipunji and Cercocebus/Macaca and do not support the kipunji's classification to Lophocebus or to any other papionin taxon. In canonical plots, the kipunji occupies a region intermediate between macaques and African papionins or groups with Cercocebus, suggesting that it retains basal papionin shape characteristics. In shape comparisons among M1-stage papionins, the kipunji cranium is distinguished from Lophocebus by its relatively unrestricted suborbital fossa, more parasagittally oriented zygomatic arches, and longer auditory tube and from all papionins by its relatively tall, short neurocranium, broad face and cranial base, short nasals, dished nasal profile, and dorsally oriented rostrum. The kipunji is thus a cranially diagnosable phenon with a unique combination of cranial traits that cannot be accommodated within Lophocebus as currently defined. Based upon these results, Rungwecebus appears to be a valid and useful nomen that accurately reflects the morphological diversity of African papionins.  相似文献   

17.
Knowledge of the Early-Middle Pleistocene (Ensenadan Age/Stage ; ca. 1.8-0.4 Ma) South American Glyptodontidae (Cingulata) is still poor compared with the Late Pleistocene-Early Holocene taxa (Lujanian Age/Stage). This is especially true for the Glyptodontidae Panochthini, in which it is possible to recognize two Ensenadan species from the Pampean region of Argentina, Panochthus intermedius and P. subintermedius, known only by their type material. Prior to this contribution, the knowledge of P. intermedius, a taxon with biostratigraphic importance for being considered as a guide taxon of the Ensenadan Age/Stage of South America, was limited to a dorsal carapace. The finding of an exceptional almost complete specimen from the Early-Middle Pleistocene of Bolivia has allowed us to greatly improve the morphological characterization of this species, and discuss some taxonomic aspects related to the other Ensenadan Panochthini. This specimen represents the most completely known Panochthini and one of the most complete Glyptodontidae from the Early-Middle Pleistocene of South America.  相似文献   

18.
Among several highly fossiliferous localities in the Bloubank Valley (Gauteng, South Africa), the Cooper's Cave System has been known since 1938 and has produced a rich fossil assemblage, including some remains of the early hominin Paranthropus robustus. In 2001, excavations began at a new locality, Cooper's D, which dates to ~1.4-1.5 Ma. Although hominins are relatively rare in the assemblage, remains of cercopithecoid primates are much more common. Craniodental fossils currently indicate the possible presence of at least three large-bodied cercopithecoid primate genera at Cooper's D: Gorgopithecus, Papio, and Theropithecus. In this study, we identify and describe > 100 cercopithecoid primate postcranial fossils representing all regions of the appendicular skeleton. The specimens come from several age classes and size morphs; more than one third of the fossils described are from sub-adult and juvenile individuals. The adult postcranial fossils vary substantially in size, with body masses estimated between 30 and 60 kg (from 16 of the better preserved specimens). The functional morphology of the postcranial remains indicate that these elements come from animals that likely utilized terrestrial substrates, but they remain difficult to definitively attribute to Gorgopithecus, Theropithecus, or Papio given the absence of associated skeletons. The smaller specimens likely belong to Papio while the larger ones can be attributed to the other two genera. Because Cooper's D has also yielded fossils of the early hominin Paranthropus robustus, this raises the question of how these four large-bodied, mostly terrestrial primates sympatrically utilized the landscape.  相似文献   

19.
Recent humans and their fossil relatives are classified as having thick molar enamel, one of very few dental traits that distinguish hominins from living African apes. However, little is known about enamel thickness in the earliest members of the genus Homo, and recent studies of later Homo report considerable intra- and inter-specific variation. In order to assess taxonomic, geographic, and temporal trends in enamel thickness, we applied micro-computed tomographic imaging to 150 fossil Homo teeth spanning two million years. Early Homo postcanine teeth from Africa and Asia show highly variable average and relative enamel thickness (AET and RET) values. Three molars from South Africa exceed Homo AET and RET ranges, resembling the hyper thick Paranthropus condition. Most later Homo groups (archaic European and north African Homo, and fossil and recent Homo sapiens) possess absolutely and relatively thick enamel across the entire dentition. In contrast, Neanderthals show relatively thin enamel in their incisors, canines, premolars, and molars, although incisor AET values are similar to H. sapiens. Comparisons of recent and fossil H. sapiens reveal that dental size reduction has led to a disproportionate decrease in coronal dentine compared with enamel (although both are reduced), leading to relatively thicker enamel in recent humans. General characterizations of hominins as having ‘thick enamel’ thus oversimplify a surprisingly variable craniodental trait with limited taxonomic utility within a genus. Moreover, estimates of dental attrition rates employed in paleodemographic reconstruction may be biased when this variation is not considered. Additional research is necessary to reconstruct hominin dietary ecology since thick enamel is not a prerequisite for hard-object feeding, and it is present in most later Homo species despite advances in technology and food processing.  相似文献   

20.
The aim of this study was to characterise the genetic variation and molecular relationships of the brown rot polypore, Laetiporus sulphureus s. lat., from Europe, South America, Africa, and Asia, using ITS sequences of the nu-rDNA and by comparing the growth rate in vitro. In a NJ analysis of the sequences of 130 individuals of L. sulphureus s. lat., eight distinct clusters emerged, supported by BS values of 70-100 %. Within each cluster, the ITS rDNA sequence variation was below 3 %. The sequences were also analysed together with Laetiporus sequences available from GenBank. Results demonstrated the possible presence of L. huroniensis in Europe (invalidly named L. montanus) and L. gilbertsonii in South America, and provided more information on the Pan-American and European distribution of one of the clades, currently known in North America as L. sulphureus. L. conifericola formed a separate distinct clade. Moreover, the analysis revealed two unknown Laetiporus taxa in Korea, one in South Africa, and one in Europe. As L. sulphureus is described from Europe (France), and we show that more than one taxon exist here, it is presently not possible to define L. sulphureus s. str. Certain biological differences between some of the clades (in vitro growth rates, chemical composition, and pigmentation) were demonstrated and discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号