首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Poly-lactic acid (PLA) derived from renewable resources is considered to be a good substitute for petroleum-based plastics. The number of poly l-lactic acid applications is increased by the introduction of a stereocomplex PLA, which consists of both poly-l and d-lactic acid and has a higher melting temperature. To date, several studies have explored the production of l-lactic acid, but information on biosynthesis of d-lactic acid is limited. Pulp and corn stover are abundant, renewable lignocellulosic materials that can be hydrolyzed to sugars and used in biosynthesis of d-lactic acid. In our study, saccharification of pulp and corn stover was done by cellulase CTec2 and sugars generated from hydrolysis were converted to d-lactic acid by a homofermentative strain, L. delbrueckii, through a sequential hydrolysis and fermentation process (SHF) and a simultaneous saccharification and fermentation process (SSF). 36.3 g L?1 of d-lactic acid with 99.8 % optical purity was obtained in the batch fermentation of pulp and attained highest yield and productivity of 0.83 g g?1 and 1.01 g L?1 h?1, respectively. Luedeking–Piret model described the mixed growth-associated production of d-lactic acid with a maximum specific growth rate 0.2 h?1 and product formation rate 0.026 h?1, obtained for this strain. The efficient synthesis of d-lactic acid having high optical purity and melting point will lead to unique stereocomplex PLA with innovative applications in polymer industry.  相似文献   

2.
l-Lactic acid production by Lactobacillus casei was used as a model to study the mechanism of substrate inhibition and the strategy for enhancing l-lactic acid production. It was found that the concentration of cell growth and l-lactate decreased with the increase of glucose concentration and fermentation temperature. To enhance the osmotic stress resistance of the strain at high temperature, a mutant G-03 was screened and selected with 360?g/L glucose at 45°C as the selective criterion. To further increase the cell growth for lactic acid production, 3?g/L of biotin was supplemented to the medium. As a result, l-lactate concentration by the mutant G-03 reached 198.2?g/L (productivity of 5.5?g?L?1?h?1) at 41°C in a 7-L fermentor with 210?g/L glucose as carbon source. l-Lactate concentration and productivity of mutant G-03 were 115.2% and 97.8% higher than those of the parent strain, respectively. The strategy for enhancing l-lactic acid production by increasing osmotic stress resistance at high temperature may provide an alternative approach to enhance organic acid production with other strains.  相似文献   

3.
The gene coding for d-psicose 3-epimerase (DPEase) from Clostridium sp. BNL1100 was cloned and expressed in Escherichia coli. The recombinant enzyme was purified by Ni-affinity chromatography. It was a metal-dependent enzyme and required Co2+ as optimum cofactor. It displayed catalytic activity maximally at pH 8.0 and 65 °C (as measured over 5 min). The optimum substrate was d-psicose, and the K m, turnover number (k cat), and catalytic efficiency (k cat/K m) for d-psicose were 227 mM, 32,185 min?1, and 141 min?1 mM?1, respectively. At pH 8.0 and 55 °C, 120 g d-psicose l?1 was produced from 500 g d-fructose l?1 after 5 h.  相似文献   

4.
?-Poly-l-lysine (?-PL), produced by Streptomyces or Kitasatospora strains, is a homo-poly-amino acid of l-lysine, which is used as a safe food preservative. In this study, the effects of l-lysine and its isomer, d-lysine, on ?-PL biosynthesis and their metabolites by the ?-PL-producing strain Streptomyces ahygroscopicus GIM8 were determined. The results indicated that l-lysine added into the fermentation medium in the production phase mainly served as a precursor for ?-PL biosynthesis during the flask culture phase, leading to greater ?-PL production. At an optimum level of 3 mM l-lysine, a ?-PL yield of 1.16 g/L was attained, with a 41.4% increment relative to the control of 0.78 g/L. Regarding d-lysine, the production of ?-PL increased by increasing its concentrations up to 6 mM in the initial fermentation medium. Interestingly, ?-PL production (1.20 g/L) with the addition of 3 mM d-lysine into the initial fermentation medium in flasks was higher than that of the initial addition of 3 mM L-lysine (1.06 g/L). The mechanism by which d-lysine improves ?-PL biosynthesis involves its utilization that leads to greater biomass. After S. ahygroscopicus GIM8 was cultivated in the defined medium with L-lysine, several key metabolites, including 5-aminovalerate, pipecolate, and l-2-aminoadipate formed in the cells, whereas only l-2-aminoadipate was observed after d-lysine metabolism. This result indicates that l-lysine and d-lysine undergo different metabolic pathways in the cells. Undoubtedly, the results of this study are expected to aid the understanding of ?-PL biosynthesis and serve as reference for the formulation of an alternative approach to improve ?-PL productivity using l-lysine as an additional substrate in the fermentation medium.  相似文献   

5.
Bifidobacterium longum NRRL B-41409 l-arabinose isomerase (l-AI) was overexpressed in Lactococcus lactis using a phosphate depletion inducible expression system. The resting L. lactis cells harboring the B. longum l-AI were used for production of d-tagatose from d-galactose in the presence of borate buffer. Multivariable analysis suggested that high pH, temperature and borate concentration favoured the conversion of d-galactose to d-tagatose. Almost quantitative conversion (92 %) was achieved at 20 g L?1 substrate and at 37.5 °C after 5 days. The d-tagatose production rate of 185 g L?1 day?1 was obtained at 300 g L?1 galactose, at 1.15 M borate, and at 41 °C during 10 days when the production medium was changed every 24 h. There was no significant loss in productivity during ten sequential 24 h batches. The initial d-tagatose production rate was 290 g L?1 day?1 under these conditions.  相似文献   

6.
The uptake ofl-andd-aspartate was studied in astrocytes cultured from prefrontal cortex and in granule cells cultured from cerebellum. A high affinity uptake system forl- andd-aspartate was found in both cell types, and the two stereoisomers exhibited essentially the sameK m - andV max -values in bouth astrocytes (l-aspartate:K m 77 μM;V max 11.8 nmol×min?1×mg?1;d-aspartate:K m 83 μM;V max 14.0 nmol×min?1×mg?1) and granule cells (l-aspartate:K m 32 μM;V max 2.8 nmol ×min?1×mg?1;d-aspartate:K m 26 μM;V max 3.0 nmol×min?1×mg?1). To investigate whetherl-glutamate,l-aspartate andd-aspartate use the same uptake system a detailed kenetic analysis was performed. The uptake kinetics of each one of the three amino acids was studied in the presence of the two other amino acids, and no essential differences between the uptake characteristics of the amino acids were found. In addition to the uptake studies the release ofD-aspartate from cerebellar granule cells was investigated and compared withl-glutamate release. A Ca2+-dependent, K+-induced release was found for both amino acids.  相似文献   

7.
The d,d-transpeptidase activity of Penicillin Binding Proteins (PBPs) is essential to maintain cell wall integrity. PBPs catalyze the final step of the peptidoglycan synthesis by forming 4 → 3 cross-links between two peptide stems. Recently, a novel β-lactam resistance mechanism involving l,d-transpeptidases has been identified in Enterococcus faecium and Mycobacterium tuberculosis. In this resistance pathway, the classical 4 → 3 cross-links are replaced by 3 → 3 cross-links, whose formation are catalyzed by the l,d-transpeptidases. To date, only one class of the entire β-lactam family, the carbapenems, is able to inhibit the l,d-transpeptidase activity. Nevertheless, the specificity of this inactivation is still not understood. Hence, the study of this new transpeptidase family is of considerable interest in order to understand the mechanism of the l,d-transpeptidases inhibition by carbapenems. In this context, we present herein the backbone and side-chain 1H, 15N and 13C NMR assignment of the l,d-transpeptidase from Bacillus subtilis (LdtBs) in the apo and in the acylated form with a carbapenem, the imipenem.  相似文献   

8.
Ethylene glycol (EG) is an important platform chemical with steadily expanding global demand. Its commercial production is currently limited to fossil resources; no biosynthesis route has been delineated. Herein, a biosynthesis route for EG production from d-xylose is reported. This route consists of four steps: d-xylose?→?d-xylonate?→?2-dehydro-3-deoxy-d-pentonate?→?glycoaldehyde?→?EG. Respective enzymes, d-xylose dehydrogenase, d-xylonate dehydratase, 2-dehydro-3-deoxy-d-pentonate aldolase, and glycoaldehyde reductase, were assembled. The route was implemented in a metabolically engineered Escherichia coli, in which the d-xylose?→?d-xylulose reaction was prevented by disrupting the d-xylose isomerase gene. The most efficient construct produced 11.7 g?L?1 of EG from 40.0 g?L?1 of d-xylose. Glycolate is a carbon-competing by-product during EG production in E. coli; blockage of glycoaldehyde?→?glycolate reaction was also performed by disrupting the gene encoding aldehyde dehydrogenase, but from this approach, EG productivity was not improved but rather led to d-xylonate accumulation. To channel more carbon flux towards EG than the glycolate pathway, further systematic metabolic engineering and fermentation optimization studies are still required to improve EG productivity.  相似文献   

9.
Corynebacterium glutamicum ATCC13032 and Brevibacterium flavum JV16 were engineered for l-valine production by over-expressing ilvEBN r C genes at 31?°C in 72?h fermentation. Different strategies were carried out to reduce the by-products’ accumulation in l-valine fermentation and also to increase the availability of precursor for l-valine biosynthesis. The native promoter of ilvA of C. glutamicum was replaced with a weak promoter MPilvA (P-ilvAM1CG) to reduce the biosynthetic rate of l-isoleucine. Effect of different relative dissolved oxygen on l-valine production and by-products’ formation was recorded, indicating that 15?% saturation may be the most appropriate relative dissolved oxygen for l-valine fermentation with almost no l-lactic acid and l-glutamate formed. To minimize l-alanine accumulation, alaT and/or avtA was inactivated in C. glutamicum and B. flavum, respectively. Compared to high concentration of l-alanine accumulated by alaT inactivated strains harboring ilvEBN r C genes, l-alanine concentration was reduced to 0.18?g/L by C. glutamicum ATCC13032MPilvAavtA pDXW-8-ilvEBN r C, and 0.22?g/L by B. flavum JV16avtA::Cm pDXW-8-ilvEBN r C. Meanwhile, l-valine production and conversion efficiency were enhanced to 31.15?g/L and 0.173?g/g by C. glutamicum ATCC13032MPilvAavtA pDXW-8-ilvEBN r C, 38.82?g/L and 0.252?g/g by B. flavum JV16avtA::Cm pDXW-8-ilvEBN r C. This study provides combined strategies to improve l-valine yield by minimization of by-products’ production.  相似文献   

10.
Four potential dehydrogenases identified through literature and bioinformatic searches were tested for l-arabonate production from l-arabinose in the yeast Saccharomyces cerevisiae. The most efficient enzyme, annotated as a d-galactose 1-dehydrogenase from the pea root nodule bacterium Rhizobium leguminosarum bv. trifolii, was purified from S. cerevisiae as a homodimeric protein and characterised. We named the enzyme as a l-arabinose/d-galactose 1-dehydrogenase (EC 1.1.1.-), Rl AraDH. It belongs to the Gfo/Idh/MocA protein family, prefers NADP+ but uses also NAD+ as a cofactor, and showed highest catalytic efficiency (k cat/K m) towards l-arabinose, d-galactose and d-fucose. Based on nuclear magnetic resonance (NMR) and modelling studies, the enzyme prefers the α-pyranose form of l-arabinose, and the stable oxidation product detected is l-arabino-1,4-lactone which can, however, open slowly at neutral pH to a linear l-arabonate form. The pH optimum for the enzyme was pH 9, but use of a yeast-in-vivo-like buffer at pH 6.8 indicated that good catalytic efficiency could still be expected in vivo. Expression of the Rl AraDH dehydrogenase in S. cerevisiae, together with the galactose permease Gal2 for l-arabinose uptake, resulted in production of 18 g of l-arabonate per litre, at a rate of 248 mg of l-arabonate per litre per hour, with 86 % of the provided l-arabinose converted to l-arabonate. Expression of a lactonase-encoding gene from Caulobacter crescentus was not necessary for l-arabonate production in yeast.  相似文献   

11.
We investigated d-amino acid oxidase (DAO) induction in the popular model yeast Schizosaccharomyces pombe. The product of the putative DAO gene of the yeast expressed in E.?coli displayed oxidase activity to neutral and basic d-amino acids, but not to an l-amino acid or acidic d-amino acids, showing that the putative DAO gene encodes catalytically active DAO. DAO activity was weakly detected in yeast cells grown on a culture medium without d-amino acid, and was approximately doubled by adding d-alanine. The elimination of ammonium chloride from culture medium induced activity by up to eight-fold. l-Alanine also induced the activity, but only by about half of that induced by d-alanine. The induction by d-alanine reached a maximum level at 2?h cultivation; it remained roughly constant until cell growth reached a stationary phase. The best inducer was d-alanine, followed by d-proline and then d-serine. Not effective were N-carbamoyl-d,l-alanine (a better inducer of DAO than d-alanine in the yeast Trigonopsis variabilis), and both basic and acidic d-amino acids. These results showed that S. pombe DAO could be a suitable model for analyzing the regulation of DAO expression in eukaryotic organisms.  相似文献   

12.
A recombinant l-fucose isomerase from Caldicellulosiruptor saccharolyticus was purified as a single 68 kDa band with an activity of 76 U mg?1. The molecular mass of the native enzyme was 204 kDa as a trimer. The maximum activity for l-fucose isomerization was at pH 7 and 75°C in the presence of 1 mM Mn2+. Its half-life at 70°C was 6.1 h. For aldose substrates, the enzyme displayed activity in decreasing order for l-fucose, with a k cat of 11,910 min?1 and a K m of 140 mM, d-arabinose, d-altrose, and l-galactose. These aldoses were converted to the ketoses l-fuculose, d-ribulose, d-psicose, and l-tagatose, respectively, with 24, 24, 85, 55% conversion yields after 3 h.  相似文献   

13.
The cell free culture filtrate of Bacillus cereus associated with an entomopathogenic nematode, Rhabditis (Oscheius) sp. exhibited strong antimicrobial activity. The ethyl acetate extract of the bacterial culture filtrate was purified by silica gel column chromatography to obtain four bioactive compounds. The structure and absolute stereochemistry of these compounds were determined based on extensive spectroscopic analyses (FABMS, 1H NMR, 13C NMR, 1H–1H COSY, 1H–13C HMBC) and Marfey’s method. The compounds were identified as cyclic dipeptides (CDPs): cyclo(l-Pro-l-Trp), cyclo(l-Leu-l-Val), cyclo(d-Pro-d-Met), and cyclo(d-Pro-d-Phe), respectively. Compounds recorded significant antibacterial activity against all the test bacteria (Staphylococcus epidermidis, Staphylococcus aureus, Klebsiella pneumoniae, Escherichia coli, Pseudomonas aeruginosa and methicillin-resistant S. aureus) except cyclo(l-Leu-l-Val). Cyclo(l-Leu-l-Val) recorded activity only against Gram positive bacteria. Best antibacterial activity was recorded by cyclo(l-Pro-l-Trp) against S. aureus (4 μg/ml). The four compounds were active against all the five fungi tested (Trichophyton rubrum, Aspergillus flavus, Candida albicans, Candida tropicalis and Cryptococcus neoformans) and the activity was compared with amphotericin B, the standard fungicide. The highest activity of 1 μg/ml by cyclo(l-Pro-l-Trp) was recorded against T. rubrum, a human pathogen responsible for causing athlete’s foot, jock itch, and ringworm. The activity of cyclo(l-Pro-l-Trp) against T. rubrum, C. neoformans and C. albicans were better than amphotericin B, the standard antifungal agent. To our knowledge, this is the first report of antifungal activity of CDPs against the human pathogenic fungi T. rubrum and C. neoformans. The four CDPs are nontoxic to healthy human cell line up to 200 μg/ml. We conclude that the bacterium associated with entomopathogenic nematode is promising sources of natural antimicrobial secondary metabolites, which may receive greater benefit as potential sources of new drugs in the pharmaceutical industry.  相似文献   

14.
d-galactose is an attractive substrate for bioconversion. Herein, Escherichia coli was metabolically engineered to convert d-galactose into d-galactonate, a valuable compound in the polymer and cosmetic industries. d-galactonate productions by engineered E. coli strains were observed in shake flask cultivations containing 2 g L?1 d-galactose. Engineered E. coli expressing gld coding for galactose dehydrogenase from Pseudomonas syringae was able to produce 0.17 g L?1 d-galactonate. Inherent metabolic pathways for assimilating both d-galactose and d-galactonate were blocked to enhance the production of d-galactonate. This approach finally led to a 7.3-fold increase with d-galactonate concentration of 1.24 g L?1 and yield of 62.0 %. Batch fermentation in 20 g L?1 d-galactose of E. coli ?galK?dgoK mutant expressing the gld resulted in 17.6 g L?1 of d-galactonate accumulation and highest yield of 88.1 %. Metabolic engineering strategy developed in this study could be useful for industrial production of d-galactonate.  相似文献   

15.
d(?)-lactic acid is needed for manufacturing of stereo-complex poly-lactic acid polymer. Large scale d-lactic acid fermentation, however, has yet to be demonstrated. A genetically engineered Escherichia coli strain, HBUT-D, was adaptively evolved in a 15% calcium lactate medium for improved lactate tolerance. The resulting strain, HBUT-D15, was tested at a lab scale (7 L) by fed-batch fermentation with up to 200 g L?1 of glucose, producing 184–191 g L?1 of d-lactic acid, with a volumetric productivity of 4.38 g L?1 h?1, a yield of 92%, and an optical purity of 99.9%. The HBUT-D15 was then evaluated at a semi-industrial scale (30 m3) via fed-batch fermentation with up to 160 g L?1 of glucose, producing 146–150 g L?1 of d-lactic acid, with a volumetric productivity of 3.95–4.29 g L?1 h?1, a yield of 91–94%, and an optical purity of 99.8%. These results are comparable to that of current industrial scale l(+)-lactic acid fermentation.  相似文献   

16.
Wild-type Corynebacterium glutamicum was metabolically engineered to convert glucose and mannose into guanosine 5′-diphosphate (GDP)-l-fucose, a precursor of fucosyl-oligosaccharides, which are involved in various biological and pathological functions. This was done by introducing the gmd and wcaG genes of Escherichia coli encoding GDP-d-mannose-4,6-dehydratase and GDP-4-keto-6-deoxy-d-mannose-3,5-epimerase-4-reductase, respectively, which are known as key enzymes in the production of GDP-l-fucose from GDP-d-mannose. Coexpression of the genes allowed the recombinant C. glutamicum cells to produce GDP-l-fucose in a minimal medium containing glucose and mannose as carbon sources. The specific product formation rate was much higher during growth on mannose than on glucose. In addition, the specific product formation rate was further increased by coexpressing the endogenous phosphomanno-mutase gene (manB) and GTP-mannose-1-phosphate guanylyl-transferase gene (manC), which are involved in the conversion of mannose-6-phosphate into GDP-d-mannose. However, the overexpression of manA encoding mannose-6-phosphate isomerase, catalyzing interconversion of mannose-6-phosphate and fructose-6-phosphate showed a negative effect on formation of the target product. Overall, coexpression of gmd, wcaG, manB and manC in C. glutamicum enabled production of GDP-l-fucose at the specific rate of 0.11 mg g cell?1 h?1. The specific GDP-l-fucose content reached 5.5 mg g cell?1, which is a 2.4-fold higher than that of the recombinant E. coli overexpressing gmd, wcaG, manB and manC under comparable conditions. Well-established metabolic engineering tools may permit optimization of the carbon and cofactor metabolisms of C. glutamicum to further improve their production capacity.  相似文献   

17.
This paper discusses the application of a reagentless, selective microbiosensor as a useful alternative tool for monitoring d-serine in neural samples. The main components of the 125-μm-diameter disk biosensor were d-amino acid oxidase for d-serine sensitivity (linear region slope, 61?±?7?μA?cm–2?mM–1; limit of detection, 20?nM), and poly-phenylenediamine for rejection of electroactive interference. The response time of the biosensor was of the order of 1?s, ideal for ‘real-time’ monitoring, and detection of systemically administered d-serine in brain extracellular fluid is demonstrated. Exploitation of this probe might resolve queries involving regulation of d-serine in excitotoxicity, and modulation of N-methyl-d-aspartate receptor function by d-serine and glycine in the central nervous system.  相似文献   

18.
This paper hinged on the combination effect of two different neutralizing agents Ca(OH)2 and NH4OH on the production of l-lactic acid by Lactobacillus paracasei. Present study quantitatively indicated that environmental osmotic pressure (844–1,772 mOsm/kg) exerted minor influence on l-lactic acid production, but a critical level fell on approximately 3,000 mOsm/kg which restricted l-lactic acid production significantly. Once osmotic pressure exceeded 3,600 mOsm/kg, l-lactic acid production ran aground. A new and efficient neutralizing agent-adding strategy was established in this study to procure 2.21-fold enhancement (5.94 g/l/h) relative to previous productivity of l-lactic acid with NH4OH as neutralizing agent via batch cultivation. It was, therefore, speculated that inhibition effect in the late phase of the fermentation might be in large part attributed to the dramatic increase of environmental osmotic stress, other than cumulative effect of lactate concentration itself.  相似文献   

19.
Sporolactobacillus inulinus, a homofermentative lactic acid bacterium, is a species capable of efficient industrial d-lactic acid production from glucose. Glucose phosphorylation is the key step of glucose metabolism, and fine-tuned expression of which can improve d-lactic acid production. During growth on high-concentration glucose, a fast induction of high glucokinase (GLK) activity was observed, and paralleled the patterns of glucose consumption and d-lactic acid accumulation, while phosphoenolpyruvate phosphotransferase system (PTS) activity was completely repressed. The transmembrane proton gradient of 1.3–1.5 units was expected to generate a large proton motive force to the uptake of glucose. This suggests that the GLK pathway is the major route for glucose utilization, with the uptake of glucose through PTS-independent transport systems and phosphorylation of glucose by GLK in S. inulinus d-lactic acid production. The gene encoding GLK was cloned from S. inulinus and expressed in Escherichia coli. The amino acid sequence revealed significant similarity to GLK sequences from Bacillaceae. The recombinant GLK was purified and shown to be a homodimer with a subunit molecular mass of 34.5?kDa. Strikingly, it demonstrated an unusual broad substrate specificity, catalyzing phosphorylation of 2-deoxyglucose, mannitol, maltose, galactose and glucosamine, in addition to glucose. This report documented the key step concerning glucose phosphorylation of S. inulinus, which will help to understand the regulation of glucose metabolism and d-lactic acid production.  相似文献   

20.
The gene of an l-rhamnose isomerase (RhaA) from Bacillus subtilis was cloned to the pET28a(+) and then expressed in the E. coli ER2566. The expressed enzyme was purified with a specific activity of 3.58 U/mg by His-Trap affinity chromatography. The recombinant enzyme existed as a 194 kDa tetramer and the maximal activity was observed at pH 8.0 and 60°C. The RhaA displayed activity for l-rhamnose, l-lyxose, l-mannose, d-allose, d-gulose, d-ribose, and l-talose, among all aldopentoses and aldohexoses and it showed enzyme activity for l-form monosaccharides such as l-rhamnose, l-lyxose, l-mannose, and l-talose. The catalytic efficiency (k cat/K m) of the recombinant enzyme for l-rhamnose, l-lyxose, and l-mannose were 7,460, 1,013, and 258 M/sec. When l-xylulose 100 g/L and l-fructose 100 g/L were used as substrates, the optimum concentrations of RpiB were determined with 6 and 15 U/mL, respectively. The l-lyxose 40 g/L was produced from l-xylulose 100 g/L by the enzyme during 60 min, while l-mannose 25 g/L was produced from l-fructose 100 g/L for 80 min. The results suggest that RhaA from B. subtilis is a potential producer of l-form monosaccharides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号