首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
Alternariol (AOH) was reported recently to act as a topoisomerase poison. To underline the relevance of topoisomerase targeting for the genotoxic properties of AOH, we addressed the question whether human tyrosyl-DNA phosphodiesterase 1 (TDP1), an enzyme vital to the repair of covalent DNA-topoisomerase adducts, affects AOH-mediated genotoxicity. The relevance of TDP1 activity on AOH-induced genotoxicity was investigated by the comet assay in human cells overexpressing GFP chimera of TDP1 or the inactive mutant TDP1H263A as well as in cells subjected to siRNA-mediated knock-down of endogenous TDP1. Cells overexpressing TDP1 exhibited significantly less DNA damage after treatment with AOH in comparison to cells expressing the inactive mutant TDP1H263A. In accordance with these results, levels of AOH inducing DNA strand breaks were increased in TDP1-suppressed cells in comparison to cells transfected with control siRNA. The specific topoisomerase poisons camptothecin and etoposide caused comparable effects, underlining that TDP1 plays an important role in the repair of topoisomerase-mediated DNA damage. In summary, the repair enzyme TDP1 was identified as a factor for the modulation of AOH-mediated DNA damage in human cells.  相似文献   

2.
In this study, the effect of DNA single strand breaks (ssb) on the neutral (pH 9.6) filter elution of DNA from Chinese hamster ovary (CHO K1) cells containing DNA double strand breaks (dsb) was investigated. Protein associated ssb were induced by the inhibition of DNA topoisomerase I with camptothecin (cpt). Protein associated dsb were introduced by treating cells with the DNA topoisomerase II poison; etoposide (VP-16). Protein associated ssb and dsb were converted to ssb and dsb by proteinase K present in the lysis solution. In some experiments dsb were generated by the restriction endonuclease Pvu II. It was found that elution of DNA in the presence and absence of ssb was similar under neutral conditions. This finding is consistent with the view that the fast component of the bi-phasic repair kinetics observed in irradiated mammalian cells with the neutral filter elution technique is not attributable to the interference of ssb with the measurement of dsb, and thus suggests that the two components of repair observed with the neutral filter elution elution technique may represent two different types of dsb or modes of repair of dsb.  相似文献   

3.
Y Yamashita  S Kawada  N Fujii  H Nakano 《Biochemistry》1991,30(24):5838-5845
Saintopin is an antitumor antibiotic recently discovered in mechanistically oriented screening using purified calf thymus DNA topoisomerases. Saintopin induced topoisomerase I mediated DNA cleavage comparable to that of camptothecin, and topoisomerase II mediated DNA cleavage equipotent to those of 4'-(9-acridinylamino)methanesulfon-m-anisidide (m-AMSA) or 4'-demethylepipodophyllotoxin 9-(4,6-O-ethylidene-beta-D-glucopyranoside) (VP-16). Treatment of a reaction mixture containing saintopin and topoisomerase I or II with either elevated temperature (65 degrees C) or higher salt concentration (0.5 M NaCl) resulted in a substantial reduction in DNA cleavage, suggesting that the topoisomerase I and II mediated DNA cleavage induced by saintopin is through the mechanism of stabilizing the reversible enzyme-DNA "cleavable complex". Consistent with the cleavable complex formation with both topoisomerases, saintopin inhibited catalytic activities of both topoisomerase I and topoisomerase II. The DNA cleavage intensity pattern induced by saintopin with topoisomerase I was different from that by camptothecin. A difference in cleavage pattern was also detected between saintopin and m-AMSA or VP-16 in topoisomerase II mediated DNA cleavage. DNA unwinding assay using T4 DNA ligase showed that saintopin is a weak DNA intercalator like m-AMSA. Thus, saintopin represents a new class of antitumor agent that can induce both mammalian DNA topoisomerase I and mammalian DNA topisomerase II mediated DNA cleavage.  相似文献   

4.
5.
The cytotoxic and mutagenic effects of topoisomerase II inhibitors were measured in closely related strains of mouse lymphoma L5178Y cells differing in their sensitivity to ionizing radiation. Strain LY-S is sensitive to ionizing radiation relative to strain LY-R and is deficient in the rejoining of DNA double-strand breaks induced by this agent, whereas 2 radiation-resistant variants of strain LY-S have regained the ability to rejoin these double-strand breaks. We have found that the sensitivity of these cells to m-AMSA, VP-16, and ellipticine is correlated to their sensitivity to ionizing radiation. However, this correlation did not extend to their sensitivities to novobiocin, camptothecin, hydrogen peroxide, methyl nitrosourea and UV radiation. Thus, there appears to be a unique correlation between sensitivity to ionizing radiation and to topoisomerase II inhibitors which stabilize the cleavable complex between the enzyme and DNA. It is possible either that (1) topoisomerase II is altered in strain LY-S and that this enzyme is involved in the repair of DNA double-strand breaks or (2) strain LY-S is deficient in a reaction which is necessary for the repair of DNA double-strand breaks induced by ionizing radiation as well as the repair of DNA damage induced by these topoisomerase II inhibitors. m-AMSA, VP-16, and ellipticine were found to be highly mutagenic at the tk locus in L5178Y strains which are heterozygous for the tk gene but not in a tk hemizygous strain, indicating that these inhibitors induce multilocus lesions in DNA, as does ionizing radiation. The differences in the sensitivity of strains LY-R and LY-S to the topoisomerase II inhibitors were paralleled by differences in the induction of protein-associated DNA double-strand breaks in the 2 strains. This correlation did not extend to the radiation-resistant variants of strain LY-S, however. The variants showed resistance to the cytotoxic effects of the inhibitors relative to strain LY-S, but exhibited DNA double-strand break induction similar to that observed in strain LY-S.  相似文献   

6.
We have studied the effect of some specific enzyme inhibitors on DNA repair and replication after UV damage in Chinese hamster ovary cells. The DNA repair was studied at the level of the average, overall genome and also in the active dihydrofolate reductase gene. Replication was measured in the overall genome. We tested inhibitors of DNA polymerase alpha and delta (aphidicolin), of poly(ADPr) polymerase (3-aminobenzamide), of ribonucleotide reductase (hydroxyurea), of topoisomerase I (camptothecin), and of topoisomerase II (merbarone, VP-16). In addition, we tested the effect of the potential topoisomerase I activator, beta-lapachone. All of these compounds inhibited genome replication and all topoisomerase inhibitors affected the overall genome repair; beta-lapachone stimulated it. None of these compounds had any effect on the gene-specific repair.  相似文献   

7.
8.
DNA topoisomerase I is a nucleolar protein, which relocates to the nucleoplasm in response to drugs stabilizing topoisomerase I.DNA intermediates (e.g. camptothecin). Here we demonstrate that this phenomenon is solely caused by the drug's impact on the interplay between mobility and localization of topoisomerase I in a living cell nucleus. We show by photobleaching of cells expressing biofluorescent topoisomerase I-chimera that the enzyme moves continuously between nucleoli and nucleoplasm. Complex kinetics of fluorescence recovery after photobleaching indicates that two enzyme fractions with different mobility coexist in nucleoli and nucleoplasm. However, the whole complement of topoisomerase I is in continuous flux between these compartments and nucleolar accumulation can plausibly explained by the enzyme's 2-fold lesser overall mobility in nucleoli versus nucleoplasm. Upon addition of camptothecin, topoisomerase I relocates within 30 s from the nucleoli to radial nucleoplasmic structures. At these sites, the enzyme becomes retarded in a dose-dependent manner. Inside nucleoli the mobility of topoisomerase I is much less affected by camptothecin. Thus, the enzyme's distribution equilibrium is shifted toward the nucleoplasm, which causes nucleolar delocalization. In general, topoisomerase I is an entirely mobile nuclear component, unlikely to require specific signaling for movements between nuclear compartments.  相似文献   

9.
10.
In vertebrate cells, DNA double-strand breaks are efficiently repaired by homologous recombination or nonhomologous end-joining (NHEJ). The latter pathway relies on Ku (the Ku70/Ku86 heterodimer), DNA-PKcs, Artemis, Xrcc4, and DNA ligase IV (Lig4). Here, we show that a human pre-B cell line nullizygous for Lig4 exhibits hypersensitivity to topoisomerase II (Top2) inhibitors, demonstrating a crucial role for the NHEJ pathway in repair of Top2-induced DNA damage in vertebrates. We also show that in the chicken DT40 cell line, all NHEJ mutants (i.e., Ku70-, Lig4-, and DNA-PKcs-null cells) are equally hypersensitive to the Top2 inhibitor ICRF-193, indicating that the drug-induced damage is repaired by NHEJ involving DNA-PKcs. Intriguingly, however, DNA-PKcs-null cells display considerably less severe phenotype than other NHEJ mutants in terms of hypersensitivity to VP-16, a Top2 poison that stabilizes cleavable complexes. The results indicate that two distinct NHEJ pathways, involving or not involving DNA-PKcs, are important for the repair of VP-16-induced DNA damage, providing additional evidence for the biological relevance of DNA-PKcs-independent NHEJ. Our results provide significant insights into the mechanisms of repair of Top2-mediated DNA damage, with implications for chemotherapy involving Top2 inhibitors.  相似文献   

11.
DNA topoisomerases I and II are the two major nuclear enzymes capable of relieving torsional strain in DNA. Of these enzymes, topoisomerase I plays the dominant role in relieving torsional strain during chromatin assembly in cell extracts from oocytes, eggs, and early embryos. We tested if the topoisomerases are used differentially during chromatin assembly in Saccharomyces cerevisiae by a combined biochemical and pharmacological approach. As measured by plasmid supercoiling, nucleosome deposition is severely impaired in assembly extracts from a yeast mutant with no topoisomerase I and a temperature-sensitive form of topoisomerase II (strain top1-top2). Expression of wild-type topoisomerase II in strain top1-top2 fully restored assembly-driven supercoiling, and assembly was equally efficient in extracts from strains expressing either topoisomerase I or II alone. Supercoiling in top1-top2 extract was rescued by adding back either purified topoisomerase I or II. Using the topoisomerase II poison VP-16, we show that topoisomerase II activity during chromatin assembly is the same in the presence and absence of topoisomerase I. We conclude that both topoisomerases I and II can provide the DNA relaxation activity required for efficient chromatin assembly in mitotically cycling yeast cells.  相似文献   

12.
Tyrosyl-DNA phosphodiesterase 1 (Tdp1) repairs topoisomerase I cleavage complexes (Top1cc) by hydrolyzing their 3'-phosphotyrosyl DNA bonds and repairs bleomycin-induced DNA damage by hydrolyzing 3'-phosphoglycolates. Yeast Tdp1 has also been implicated in the repair of topoisomerase II-DNA cleavage complexes (Top2cc). To determine whether vertebrate Tdp1 is involved in the repair of various DNA end-blocking lesions, we generated Tdp1 knock-out cells in chicken DT40 cells (Tdp1-/-) and Tdp1-complemented DT40 cells with human TDP1. We found that Tdp1-/- cells were not only hypersensitive to camptothecin and bleomycin but also to etoposide, methyl methanesulfonate (MMS), H(2)O(2), and ionizing radiation. We also show they were deficient in mitochondrial Tdp1 activity. In biochemical assays, recombinant human TDP1 was found to process 5'-phosphotyrosyl DNA ends when they mimic the 5'-overhangs of Top2cc. Tdp1 also processes 3'-deoxyribose phosphates generated from hydrolysis of abasic sites, which is consistent with the hypersensitivity of Tdp1-/- cells to MMS and H(2)O(2). Because recent studies established that CtIP together with BRCA1 also repairs topoisomerase-mediated DNA damage, we generated dual Tdp1-CtIP-deficient DT40 cells. Our results show that Tdp1 and CtIP act in parallel pathways for the repair of Top1cc and MMS-induced lesions but are epistatic for Top2cc. Together, our findings reveal a broad involvement of Tdp1 in DNA repair and clarify the role of human TDP1 in the repair of Top2-induced DNA damage.  相似文献   

13.
The cytotoxicity and DNA damage induced by the epipodophyllotoxins and several intercalating agents appear to be mediated by DNA topoisomerase II. We have purified topoisomerase II to homogeneity both from an epipodophyllotoxin-resistant Chinese hamster ovary cell line, VpmR-5, and from the wild-type parental cell line. Immunoblots demonstrate similar topoisomerase II content in these two cell lines. The purified enzymes are dissimilar in that DNA cleavage by VpmR-5 topoisomerase II is not stimulated by VP-16 or m-AMSA. Furthermore, the VpmR-5 enzyme is unstable at 37 degrees C. Thus, the drug resistance of VpmR-5 cells appears to result from the presence of an altered topoisomerase II in these cells. Purified topoisomerase II from VPMR-5 and wild-type cells has the same monomeric molecular mass as well as equivalent catalytic activity with respect to decatenation of kinetoplast DNA. Etoposide (VP-16) inhibits the activity of both enzymes. Noncovalent DNA-enzyme complex formation, assayed by nitrocellulose filter binding, is also similar, as is protection from salt dissociation of this complex by ATP and VP-16. The data suggest a model in which the drug-resistant cell line, VpmR-5, has religation activity which is less affected by drug than that of the wild-type cells. Drug effect on DNA religation and catalytic activity are dissociated mechanistically. In addition, under certain circumstances, the "cleavable complex" observed following denaturation of a drug-stabilized DNA-enzyme complex may not adequately reflect the nature of the antecedent lesion.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Topoisomerase I adjusts torsional stress in the genome by breaking and resealing one strand of the helix through a transient covalent coupling between enzyme and DNA. Camptothecin, a specific topoisomerase I poison, traps this covalent intermediate, thereby damaging the genome. Here we examined the activity of topoisomerase I at telomeric repeats to determine whether telomere structures are targets for DNA damage. We show that topoisomerase I is catalytically active in cleaving the G-rich telomeric strand in vitro in the presence of camptothecin but not in cleaving the C-rich strand. The topoisomerase I cleavage site is 5'-TT (downward arrow) AGGG-3' (cleavage site marked by the downward arrow). We also show that endogenous topoisomerase I can access telomeric DNA in vivo and form camptothecin-dependent covalent complexes. Therefore, each telomeric repeat represents a potential topoisomerase I cleavage site in vivo. Because telomere structures are comprised of a large number of repeats, telomeres in fact represent a high concentration of nested topoisomerase I sites. Therefore, more telomeric DNA damage by camptothecin could occur in cells with longer telomeres when cells possess equivalent levels of topoisomerase I. The evidence presented here suggests that DNA damage at telomeric repeats by topoisomerase I is a prominent feature of cell killing by camptothecin and triggers camptothecin-induced apoptosis.  相似文献   

15.
Topoisomerase I-mediated DNA damage induced by camptothecin has been shown to induce rapid small ubiquitin-related modifier (SUMO)-1 conjugation to topoisomerase I. In the current study, we show that topoisomerase II-mediated DNA damage induced by teniposide (VM-26) results in the formation of high molecular weight conjugates of both topoisomerase IIalpha and IIbeta isozymes in HeLa cells. Immunological characterization of these conjugates suggests that both topoisomerase IIalpha and IIbeta isozymes are conjugated to SUMO-1. The involvement of SUMO-1/UBC9 in the modification of topoisomerase II isozymes is also supported by the demonstration of physical interaction between topoisomerase II and SUMO-1/UBC9. Surprisingly, ICRF-193, which does not induce topoisomerase II-mediated DNA damage but traps topoisomerase II into a circular clamp conformation, is also shown to induce similar SUMO-1 conjugation to topoisomerase II isozymes. In addition, we show that both oxidative and heat shock stresses, which can cause protein damage, rapidly increase nuclear SUMO-1 conjugates. These studies raise the question on whether SUMO-1 conjugation to topoisomerases is an indirect result of a DNA damage response or a direct result because of protein conformational changes.  相似文献   

16.
Topoisomerase II (Top2) activity involves an intermediate in which the topoisomerase is covalently bound to a DNA double-strand break via a 5'-phosphotyrosyl bond. Although these intermediates are normally transient, they can be stabilized by antitumor agents that act as Top2 "poisons," resulting in the induction of cytotoxic double-strand breaks, and they are implicated in the formation of site-specific translocations that are commonly associated with cancer. Recently, we revealed that TRAF and TNF receptor-associated protein (TTRAP) is a 5'-tyrosyl DNA phosphodiesterase (5'-TDP) that can cleave 5'-phosphotyrosyl bonds, and we denoted this protein tyrosyl DNA phosphodiesterase-2 (TDP2). Here, we have generated TDP2-deleted DT40 cells, and we show that TDP2 is the major if not the only 5'-TDP activity present in vertebrate cells. We also show that TDP2-deleted DT40 cells are highly sensitive to the anticancer Top2 poison, etoposide, but are not hypersensitive to the Top1 poison camptothecin or the DNA-alkyating agent methyl methanesulfonate. These data identify an important mechanism for resistance to Top2-induced chromosome breakage and raise the possibility that TDP2 is a significant factor in cancer development and treatment.  相似文献   

17.
A number of clinically useful anticancer drugs, including etoposide (VP-16), target DNA topoisomerase (topo) II. These drugs, referred to as topo II poisons, stabilize cleavable complexes, thereby generating DNA double-strand breaks. Bis-2,6-dioxopiperazines such as ICRF-193 also inhibit topo II by inducing a distinct type of DNA damage, termed topo II clamps, which has been believed to be devoid of double-strand breaks. Despite the biological and clinical importance, the molecular mechanisms for the repair of topo II-mediated DNA damage remain largely unknown. Here, we perform genetic analyses using the chicken DT40 cell line to investigate how DNA lesions caused by topo II inhibitors are repaired. Notably, we show that LIG4-/- and KU70-/- cells, which are defective in nonhomologous DNA end-joining (NHEJ), are extremely sensitive to both VP-16 and ICRF-193. In contrast, RAD54-/- cells (defective in homologous recombination) are much less hypersensitive to VP-16 than the NHEJ mutants and, more importantly, are not hypersensitive to ICRF-193. Our results provide the first evidence that NHEJ is the predominant pathway for the repair of topo II-mediated DNA damage; that is, cleavable complexes and topo II clamps. The outstandingly increased cytotoxicity of topo II inhibitors in the absence of NHEJ suggests that simultaneous inhibition of topo II and NHEJ would provide a powerful protocol in cancer chemotherapy involving topo II inhibitors.  相似文献   

18.
19.
Inhibition of DNA topoisomerase II in simian virus 40 (SV40)-infected BSC-1 cells with a topoisomerase II poison, VM-26 (teniposide), resulted in rapid conversion of a population of the SV40 DNA into a high-molecular-weight form. Characterization of this high-molecular-weight form of SV40 DNA suggests that it is linear, double stranded, and a recombinant with SV40 DNA sequences covalently joined to cellular DNA. The majority of the integrants contain fewer than two tandem copies of SV40 DNA. Neither DNA-damaging agents, such as mitomycin and UV, nor the topoisomerase I inhibitor camptothecin induced detectable integration in this system. In addition, the recombination junctions within the SV40 portion of the integrants correlate with VM-26-induced, topoisomerase II cleavage hot spots on SV40 DNA. These results suggest a direct and specific role for topoisomerase II and possibly the enzyme-inhibitor-DNA ternary cleavable complex in integration. The propensity of poisoned topoisomerase II to induce viral integration also suggests a role for topoisomerase II in a pathway of chromosomal DNA rearrangements.  相似文献   

20.
Liu C  Pouliot JJ  Nash HA 《DNA Repair》2004,3(6):593-601
The TDP1 gene encodes a protein that can hydrolyze certain types of 3'-terminal phosphodiesters, but the relevance of these catalytic activities to gene function has not been previously tested. In this work we engineered a point mutation in TDP1 and present evidence that, as per design, it severely diminishes tyrosyl-DNA phosphodiesterase enzyme activity without affecting protein folding. The phenotypes of yeast strains that express this mutant show that the contribution of TDP1 to the repair of two kinds of damaged termini-induced, respectively, by camptothecin (CPT) and by bleomycin-strongly depends on enzyme activity. In routine assays of cell survival and growth the contribution of this activity is often overshadowed by other repair pathways. However, the value of TDP1 in the economy of the cell is highlighted by our discovery of several phenotypes that are evident even without deliberate inactivation of parallel pathways. These non-redundant mutant phenotypes include increased spontaneous mutation rate, transient accumulation of cells in a mid-anaphase checkpoint after exposure to camptothecin and, in cells that overexpress topoisomerase I (Top1), decreased survival of camptothecin-induced damage. The relationship between the role of TDP1 in Saccharomyces and its role in metazoans is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号